8: Deadlocks

César Sanchez

Grado en Ingenieria Informatica
Grado en Matematicas e Informatica
Universidad Politécnica de Madrid

Fri, 27 Feb 2015

Este texto se distribuye bajo los términos de la Creative Commons License



Mapa Conceptual

Concurrency = Simultaneous + Nondeterminism 4+ Interaction
Interaction = Communication | Synchronization

Conditional

Synchronization = Mutual Exclusion | Synchronization

= [erminology:

atomic race condition
interleaving busy-wait
mutual exclusion critical section
deadlock livelock

liveness



Deadlock

Deadlock:

a deadlock is a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever
does.



Deadlock

Deadlock:

a deadlock is a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever
does.

“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other
has gone.”

Statute passed by the Kansas State Legislature,
early in the 20th century.



Livelock

Livelock:

A livelock is similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with regard
to one another, none progressing.



Livelock

Livelock:

A livelock is similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with regard
to one another, none progressing.




Conditions for Deadlock (necessary and sufficient)

1. Mutual Exclusion

The resource is only accessed by one thread at a time.

2. Hold and wait

The resource is kept until the job is finished.

3. No preemption

A resource is not stolen.

4. Circular wait

There is a circular chain of processes waiting for resources held
by the next process in the chain.



Resource allocation graph




Resource allocation graph




Resource allocation graph




Resource allocation graph




Resource allocation graph




Resource allocation graph (Deadlock Example)




Resource allocation graph (Deadlock Example)




Resource allocation graph (Deadlock Example)




Resource allocation graph (Deadlock Example)




Resource allocation graph (Deadlock Example)




Resource allocation graph (Deadlock Example)




Resource allocation graph (Deadlock Example)

R, @




Deadlock.java

public void run () {

for (int n = 1; n <= Dining.ROUNDS; ++ n) {
//think() ;
left.take();
System.out.println(me+" takes fork "+left.me);
right.take();
System.out.println(me+" takes fork "+right.me);
eat();
right.put_back();
left.put_back();

}

System.out.println(me+" leaves");

}




Starvation

Starvation:

Starvation describes a situation where a thread is unable to gain
regular access to shared resources and is unable to make progress.
This happens when shared resources are made unavailable for long
periods by ‘greedy” threads.



