
1

L8: Deadlocks

Este texto se distribuye bajo los términos de la Creative Commons License

César Sánchez

Grado en Ingenieŕıa Informática
Grado en Matemáticas e Informática

Universidad Politécnica de Madrid

Fri, 27 Feb 2015

Under
co

nstr
uct

ion! Do
not prin

t



2

Mapa Conceptual

Concurrency = Simultaneous + Nondeterminism + Interaction

Interaction = Communication | Synchronization

Synchronization = Mutual Exclusion | Conditional
Synchronization

atomic race condition
interleaving busy-wait
mutual exclusion critical section
deadlock livelock
liveness

Terminology:



3

Deadlock

Deadlock:

a deadlock is a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever
does.



3

Deadlock

Deadlock:

a deadlock is a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever
does.

“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other
has gone.”

Statute passed by the Kansas State Legislature,
early in the 20th century.



4

Livelock

Livelock:

A livelock is similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with regard
to one another, none progressing.



4

Livelock

Livelock:

A livelock is similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with regard
to one another, none progressing.



5

Conditions for Deadlock (necessary and sufficient)

1. Mutual Exclusion

The resource is only accessed by one thread at a time.

2. Hold and wait

The resource is kept until the job is finished.

3. No preemption

A resource is not stolen.

4. Circular wait

There is a circular chain of processes waiting for resources held
by the next process in the chain.



6

Resource allocation graph

R1

R2

P

Q



6

Resource allocation graph

R1

R2

P

Q



6

Resource allocation graph

R1

R2

P

Q



6

Resource allocation graph

R1

R2

P

Q



6

Resource allocation graph

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



7

Resource allocation graph (Deadlock Example)

R1

R2

P

Q



8

Deadlock.java

public void run () {

for (int n = 1; n <= Dining.ROUNDS; ++ n) {

//think();

left.take();

System.out.println(me+" takes fork "+left.me);

right.take();

System.out.println(me+" takes fork "+right.me);

eat();

right.put_back();

left.put_back();

}

System.out.println(me+" leaves");

}



9

Starvation

Starvation:

Starvation describes a situation where a thread is unable to gain
regular access to shared resources and is unable to make progress.
This happens when shared resources are made unavailable for long
periods by “greedy” threads.


