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Mapa Conceptual

Concurrency = Simultaneous + Nondeterminism 4+ Interaction
Interaction = Communication | Synchronization

Conditional

Synchronization = Mutual Exclusion | Synchronization

= [erminology:

atomic race condition
interleaving busy-wait
mutual exclusion critical section
deadlock livelock

liveness



Deadlock

Deadlock:

a deadlock is a situation in which two or more competing actions
are each waiting for the other to finish, and thus neither ever
does.
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“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other
has gone.”

Statute passed by the Kansas State Legislature,
early in the 20th century.



Livelock

Livelock:

A livelock is similar to a deadlock, except that the states of the
processes involved in the livelock constantly change with regard
to one another, none progressing.
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Conditions for Deadlock (necessary and sufficient)

1. Mutual Exclusion

The resource is only accessed by one thread at a time.

2. Hold and wait

The resource is kept until the job is finished.

3. No preemption

A resource is not stolen.

4. Circular wait

There is a circular chain of processes waiting for resources held
by the next process in the chain.
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Deadlock.java

public void run () {

for (int n = 1; n <= Dining.ROUNDS; ++ n) {
//think() ;
left.take();
System.out.println(me+" takes fork "+left.me);
right.take();
System.out.println(me+" takes fork "+right.me);
eat();
right.put_back();
left.put_back();

}

System.out.println(me+" leaves");

}




Starvation

Starvation:

Starvation describes a situation where a thread is unable to gain
regular access to shared resources and is unable to make progress.
This happens when shared resources are made unavailable for long
periods by ‘greedy” threads.



