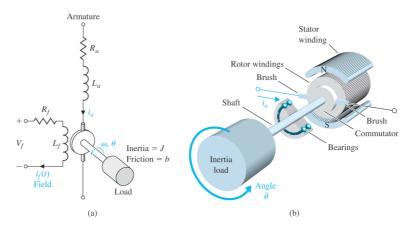
Bepartamento de Tecnología Electrónica

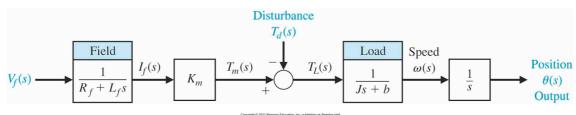
Tema 2: Modelado, Transformadas de Laplace, Diagramas de Bloques y Flujogramas.

Problema 2.1. Una impresora láser emplea un haz láser para copiar con gran rapidez documentos. El láser se posiciona mediante una entrada de control, r(t). De manera que se tiene:

$$Y(s) = \frac{5(s+100)}{s^2 + 60s + 500}R(s)$$

La entrada r(t) representa la posición deseada del haz del láser.

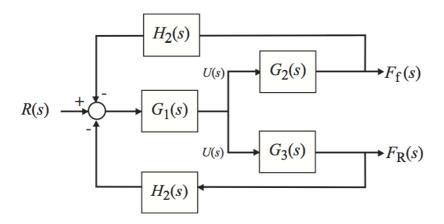

- a) Si r(t) es una entrada a escalón unitario, averígüese la salida y(t).
- b) ¿Cuál es el valor final de y(t)


Solución:

a)
$$y(t)=1-0.125e^{-50t}-1.125e^{-10t}$$
.

b)
$$y_{ss}=1$$
.

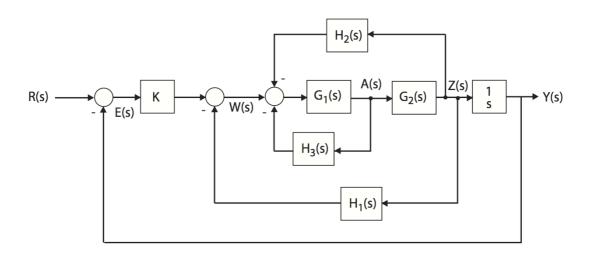
Problema 2.2. Dado el siguiente motor en corriente continua controlado por campo y su diagrama de bloques de control en lazo abierto por corriente excitadora



a) Calcular la Función de Transferencia global del sistema. (Suponiendo T_d(s) =0)

a)
$$G(s) = \frac{Km}{s[(Ra + Las)(Js + b) + KbKm]}$$

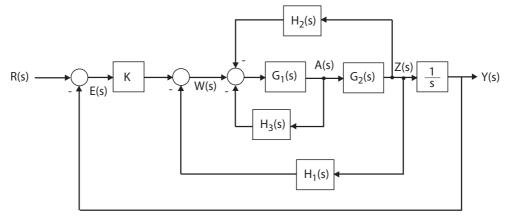
Bepartamento de Tecnología Electrónica


Problema 2.3. Calcular la función de transferencia que relaciona la variable de salida F_f(s) y R(s):

Solución:

$$F_f(s) = \left[\frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H_2(s) + G_1(s)G_3(s)H_2(s)} \right] R(s)$$

Problema 2.3 Calcular la Función de Transferencia $T(s) = \frac{Y(s)}{R(s)}$

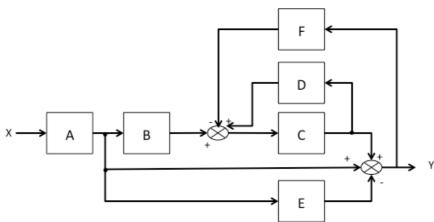

$$T(s) = \frac{KG_1(s)G_2(s)/s}{1 + G_1(s)G_2(s)\left[(H_2(s) + H_1(s)\right] + G_1(s)H_3(s) + KG_1(s)G_2(s)/s}.$$

Grado de Ingeniería en Tecnologías Industriales. Control y Automatización. Tema 2

Bepartamento de Tecnología Electrónica

Problema 2.4. N. Minorsky, ingeniero de control, diseñó en la década de 1930 un nuevo sistema de dirección para la marina de Estados Unidos. El sistema está representado por el siguiente diagrama de bloques:

Y(s) es el rumbo del barco, R(S) es el rumbo deseado y A(s) es el ángulo del timón. Calcular la función de transferencia.

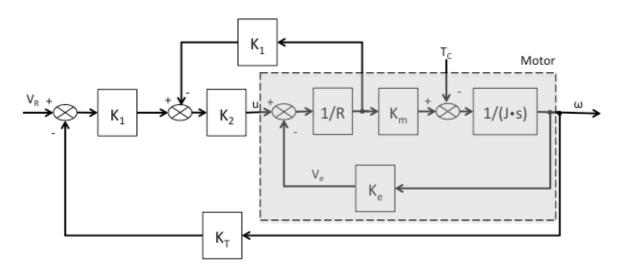

Solución:

Y(s) = T(s)R(s) donde

$$T(s) = \frac{KG_1(s)G_2(s)/s}{1 + G_1(s)G_2(s)\left[(H_2(s) + H_1(s)\right] + G_1(s)H_3(s) + KG_1(s)G_2(s)/s}.$$

Problema 2.5.

Calcular la Función de Transferencia M(s)=Y(s)/X(s) utilizando el álgebra de bloques y la fórmula de Mason.


Bebartamento de Tecnología Electrónica

$$M(s) = \frac{A(s)B(s)C(s) + A(s)(1 - C(s)D(s)) - A(s)E(s)(1 - C(s)D(s))}{1 - (C(s)D(s)) + F(s)C(s)}$$

Problema 2.6.

La siguiente figura representa el diagrama de bloques de un conjunto motor-accionador de corriente continua controlado por inducido, con realimentación de velocidad y de intensidad. Obtener mediante la reducción de diagramas de bloques y mediante flujogramas (Fórmula de Mason) las funciones de transferencia:

- $M_1(s) = W(s)/V_R(s)$ entre la velocidad angular \boldsymbol{w} y la tensión de referencia V_R
- $M_2(s) = W(s)/V_R(s)$ entre la velocidad angular $\boldsymbol{\varpi}$ y el par resistente T_C

Conjunto motor-accionador de corriente continua controlado por inducido, con realimentación de velocidad y de intensidad.

Solución:

$$M1(s) = \frac{K1G1(s)G2(s)}{1 + K1KTG1(s)G2(s))}$$

$$M2(s) = \frac{-(R + K1K2)}{(R + K1K2)Js + KmKe + K1K2KmKT}$$

Problema 2.7.

La figura representa una prensa hidráulica. El émbolo de sección **A** es accionado por una presión **p**. La masa del émbolo es **M**, encontrando en su movimiento un rozamiento viscoso de constante **B**.

El cuerpo prensado tiene una masa despreciable y se compara idealmente según la ley de Hooke, con constante elástica \mathbf{K}_p . Además se encuentra apoyado sobre una superficie de masa despreciable, aislada por cuatro resortes de constante elástica \mathbf{K}_{\bullet} .

Se pide:

- a) Ecuaciones físicas del sistema
- b) Linealizar las ecuaciones en torno a un punto de equilibrio $p_0=0$

Grado de Ingeniería en Tecnologías Industriales. Control y Automatización. Tema 2

Bepartamento de Tecnología Electrónica

- c) Diagrama de bloques
- d) Función de transferencia de la longitud que se comprime el cuerpo respecto a la presión que se ejerce.
- e) Si p aumenta bruscamente en una unidad, ¿Cuántas unidades se comprimirá el cuerpo?

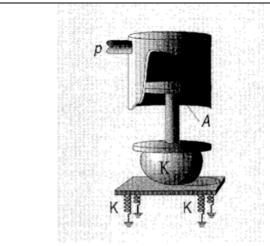


Fig. 1. Prensa Hidráulica

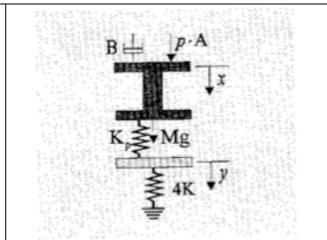


Fig. 2. Equilibrio de fuerzas en la prensa hidráulica

Problema 2.8.

El comportamiento de un sistema viene definido por el siguiente sistema de ecuaciones en transformadas de Laplace:

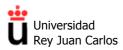
$$E(s) = R(s) - C(s)H3(s)$$

$$U1(s) = E(s)G1(s)$$

$$U3(s) = [U1(s) - U2(s)]G2(s)$$

$$U2(s) = U4(s)H2(s)$$

$$U4(s) = [U3(s) + U5(s)]G3(s)$$


$$C(s) = U4(s)G4(s)$$

$$U5(s) = C(s)H1(s)$$

- a) Obtener el diagrama de bloques del sistema
- b) Obtener la representación mediante flujograma y utilizar la fórmula de Mason para obtener M(s).

$$M(s) = \frac{C(s)}{R(s)}$$

Grado de Ingeniería en Tecnologías Industriales. Control y Automatización. Tema 2

Bepartamento de Tecnología Electrónica

$$M(s) = C(s) / R(s) = \frac{G1(s)G2(s)G3(s)G4(s)}{1 - G3(s)G4(s)H1(s) + G2(s)G3(s)H2(s) + G1(s)G2(s)G3(s)G4(s)}$$