
Chapter 3

Derivatives

3.1 Derivative of a function. Differentiation rules

3.1.1 Slope of a curve

The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point
on the curve near P , then the slope of the curve at P is approximately the slope of the line
segment PQ. The slope of the curve at P is defined to be the limit of the slope of PQ as
Q approaches P along the curve.

0

P

Q

In symbols, slope of curve at P = limQ→P (slope of PQ).

To find the slope of the curve y = x2 at point P = (1, 1) we choose a point Q on the
curve near P . Let the x–coordinate of Q be 1 + h with h small. The y–coordinate of Q is
(1 + h)2. We now calculate

slope of PQ =
(1 + h)2 − 1

(1 + h)− 1
= 2 + h.

As Q approaches P , h approaches 0. Thus:

slope of curve at (1, 1) = lim
h→0

(2 + h) = 2.
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Definition 3.1.1. The derivative of function f at point c, f ′(c), is the slope of the curve
y = f(x) at point (c, f(c)), that is:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
,

whenever the limit exists.

We shall say that f is differentiable at point c if f ′(c) exists.

O

P

Q

c c+ h

h

f(c+ h)− f(c)

3.1.2 Table of derivatives of basic elementary functions

1. (xα)′ = αxα−1 (α is any number).

2. (lnx)′ = 1
x .

3. (ax)′ = ax ln a, in particular (ex)′ = ex.

4. (sinx)′ = cosx.

5. (cosx)′ = − sinx.

6. (tanx)′ =
1

cos2 x
, (x 6= π

2 + πn, n integer).

7. (arcsinx)′ =
1√

1− x2
(−1 < x < 1).

8. (arccosx)′ = − 1√
1− x2

(−1 < x < 1).

9. (arctanx)′ =
1

1 + x2
.

3.1.3 The line tangent to a curve

The line tangent to a curve at a point is defined to be the line that passes through the point
and that has slope that is the same as the slope of the curve at that point. Thus,

y − f(c) = f ′(c)(x− c)
is the the equation of the line tangent to y = f(x) at point P = (c, f(c)).
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Example 3.1.2.

1. Find the line tangent to y =
√
x at (16, 4).

Solution: f(x) = x1/2, f ′(x) =
1

2
x−1/2, f ′(16) =

1

8
.

Hence, y − 4 =
1

8
(x− 16), or y =

1

8
x+ 2.

2. Find the line tangent to y = |x| at (0, 0).

Solution: There is no tangent line to y = |x| at (0, 0), since the function f(x) = |x|
is not differentiable at 0. To see this, notice that the limit

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

does not exist (the left limit is −1 and the right limit is 1).

3.1.4 One–sided derivatives

If there is the limit

lim
h→0+

f(c+ h)− f(c)

h

(
lim
h→0−

f(c+ h)− f(c)

h

)
,

then it is called the right–hand (left–hand) derivative of the function f at the point c and
is denoted f ′(c+) (f ′(c−)).

Theorem 3.1.3. f ′(c) exists if and only if both f ′(c+) and f ′(c−) exists and they are equal.
In this case, f ′(c) = f ′(c+) = f ′(c−).

Example 3.1.4. Is the function f(x) =

{
x2, if x ≤ 0;

xe−1/x, if x > 0.
differentiable at 0?

Solution: Yes, and f ′(0) = 0.

f ′(0−) = lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

h2

h
= 0;

f ′(0+) = lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

he−1/h

h
= e−∞ = 0.

3.1.5 Continuity and differentiability

Continuity is a necessary condition for differentiability. In other words, a discontinuous
function cannot be differentiable.

Theorem 3.1.5. Let f be differentiable at c. Then, it is continuous at c.
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Proof. By assumption the limit

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

exists. We want to prove that f is continuous at c, that is, limh→0 f(c+h) = f(c) or, equiv-
alently, that limh→0

(
f(c+h)−f(c)

)
= 0. To this end consider the following computations:

lim
h→0

h

h

(
f(c+ h)− f(c)

)
= lim

h→0
h · lim

h→0

f(c+ h)− f(c)

h
= 0 · f ′(c) = 0.

Example 3.1.6. Discuss the differentiability of the function f(x) =

{
ax− x2, if x < 1;
b(x− 1), if x ≥ 1.

,

where a, b ∈ R.

Solution: First we study continuity. The domain of f is the whole real line. For x < 1
and x > 1 it is given by elementary functions, which are continuous. It remains to consider
the frontier point x = 1. We have f(1) = 0 and limx→1− f(x) = limx→1− ax − x2 = a − 1.
Thus, f is continuous at 1 if and only if a = 1. Hence

If x 6= 1, then f is continuous for any a, b and at x = 1, f is continuous if and
only if a = 1 (b arbitrary).

Now we go with differentiability. Clearly, f is differentiable at any point x 6= 1. When
a 6= 1 f is not differentiable at x = 1 since it is not continuous at this point. Hence, let us
consider a = 1.

f ′(1−) = lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

(1 + h)− (1 + h)2 − 0

h

= lim
h→0−

(1 + h)− (1 + 2h+ h2)

h
= lim

h→0−

−h− h2
h

= −1;

f ′(1+) = lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

b(1 + h− 1)

h
= b.

Hence f ′(1−) = f ′(1+) = f ′(1) if and only if b = −1. In summary

If x 6= 1, then f is differentiable for any a, b and at x = 1, f is differentiable if
and only if a = 1 and b = −1.

3.1.6 Rules of differentiation

Let f and g be functions differentiable at point c. Then, the sum, difference, product by
a scalar, product and quotient are also differentiable at c and the derivatives are given by
the following expressions.

1. Sum: (f + g)′ = f ′ + g′;

2. Difference: (f − g)′ = f ′ − g′;
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3. Product by a scalar: (λf)′ = λf ′, λ ∈ R;

4. Product: (f · g)′ = f ′ · g + f · g′;

5. Quotient:

(
f

g

)′
=
f ′g − fg′

g2
, g(c) 6= 0.

3.1.7 Chain Rule

(Derivative of a compose function). Let f be differentiable at c and let g be differentiable
at f(c). Then the composition g ◦ f is differentiable at c and the derivative

(g ◦ f)′(c) = g′(f(c)) · f ′(c).

Example 3.1.7. Find the derivative of y = sin (3x + x3).

Solution: We can represent the function in the form y = sin t where t = 3x+x3. Using
the chain rule we get

y′ = (sin t)′|t=3x+x3(3x + x3)′ = cos (3x + x3)(3x ln 3 + 3x2).

Example 3.1.8. Find the derivative of h(x) =
√
ex − x2 at the point c = 1.

Solution:

h′(x) =
(

(ex − x2) 1
2

)′
=

1

2
(ex − x2)− 1

2 (ex − x2)′ = 1

2
(ex − x2)− 1

2 (ex − 2x).

Hence h′(1) = e−2
2
√
e−1 , approximately 0.274

Example 3.1.9. In the following examples it is supposed that f is a differentiable function.

•
(
ef(x)

)′
= f ′(x)ef(x);

•
(
af(x)

)′
= (ln a)f ′(x)af(x).

• (ln f(x))′ =
f ′(x)

f(x)
;

• (arctan f(x))′ =
f ′(x)

1 + f2(x)
.

3.1.8 Derivative of the inverse function

Let f be continuous and one-to-one in an open interval (x − δ, x + δ) and such that f ′(x)
exists. Then f−1 is differentiable at y = f(x) and the derivative is(

f−1(y)
)′

=
1

f ′(x)
=

1

f ′(f−1(y))
. (3.1.1)
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The proof of this assertion is easy using the Chain Rule. For, deriving in both sides of
the identity

x = f−1(f(x)),

we obtain
1 =

(
f−1

)′
(f(x)) · f ′(x).

The formula follows, once we substitute y = f(x).

Example 3.1.10. Prove that arctan′ x =
1

1 + x2
.

Solution: The function arctanx is the inverse of the function tanx. According to the
formula (3.1.1) above

arctan′ y =
1

1 + tan2 x
,

because tan′ x = 1 + tan2 x, and where y = tanx. Thus,

arctan′ y =
1

1 + y2
.

Of course, we can change the name of the variable from y to x to get the result.

3.1.9 Using the derivative for approximations

The line tangent to a curve at a point (c, f(c)) coincides with the curve at the point of
tangency, and constitute a good approximation of the curve at points near (c, f(c)). In
fact, a function is differentiable at a point when the graph of the function at this point can
be well approximated by a straight line (the tangent line).

Thus, for small values of h, the value of f(c + h) can be approximated by the known
valued of f(c) and f ′(c):

f(c+ h) ≈ f(c) + f ′(c)h. (3.1.2)

Example 3.1.11. Without using a pocket calculator, give an approximated value of
√

0.98.

Solution: Let us consider the function f(x) =
√

1 + x. Notice that f(0) = 1,

f(−0.02) =
√

0.98, f ′(x) =
1

2
(1 + x)−1/2, f ′(0) = 0.5. We find from formula (3.1.2)

with c = 0 and h = −0.02 that

√
0.98 = f(0− 0.02) ≈ f(0) + f ′(0)(−0.02) = 1 + 0.5(−0.02) = 0.99.

3.1.10 Implicit differentiation

Definition 3.1.12. An equation F (x, y) = 0 defines y = f(x) in an implicit way near the
point (x0, y0) when it is satisfied that:

1. F (x0, y0) = 0

2. if (x, y) is close to the point (x0, y0) : F (x, y) = 0 ⇐⇒ y = f(x).
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Theorem 3.1.13. F (x0, y0) = 0, ∂F∂y (x0, y0) 6= 0 =⇒
The equation F (x, y) = 0 defines y = f(x) in an implicit way near the point (x0, y0) .

Theorem 3.1.14. y′0 = f ′(x0) can be obtained from the equation:
∂F
∂x (x0, y0) + ∂F

∂y (x0, y0)y
′
0 = 0 (∗)

This way, even if we do not know the explicit expression of y = f(x), we can have an
approximate idea of the function knowing that

y − y0 = f ′(x0)(x− x0)
is the tangent line of f(x) at the point (x0, y0).
Besides, if by taking the derivative of the equation (∗) we find y0” 6= 0, our information

on the function improves since:

1. if y0” > 0 =⇒ f is convex near x0 =⇒ the graph of f lies above the tangent line near
the point (x0, y0).

2. if y0” < 0 =⇒ f is convex near x0 =⇒ the graph of f lies below the tangent line near
the point (x0, y0).

3.2 Some Theorems on Differentiable Functions

3.2.1 Monotonicity

The function f is said to be increasing at a point c if there is some interval around the point
c in which f(x) > f(c) for x > c, f(x) < f(c) for x < c.

A decrease of a function at a point can be defined analogously.
For example, c = 0 is a point of increasing of x3, but is not of x2.

Theorem 3.2.1. If the function f is differentiable at c and f ′(c) > 0 (f ′(c) < 0), then f
increases (decreases) at the point c.

The theorem establishes only a sufficient condition, because c = 0 is a point of increasing
of f(x) = x3 but f ′(0) = 0.

The following results are about the monotonic behavior of a differentiable function in
an interval.

Theorem 3.2.2. For the function f differentiable on an interval I to be increasing (de-
creasing) it is necessary and sufficient that for every x ∈ I f ′(x) ≥ 0 (f ′(x) ≤ 0) holds.

Theorem 3.2.3. If f ′(x) > 0 (f ′(x) < 0) for every x ∈ I, then f is strictly increasing
(decreasing) on the interval I.

Example 3.2.4. Find the intervals of monotonicity of f(x) = 3x− x3.

Solution: We have f ′(x) = 3 − 3x2 = 3(1 − x2). Since f ′(x) > 0 for x ∈ (−1, 1) and
f ′(x) < 0 for x ∈ (−∞, 1) and x ∈ (1,+∞), it follows that f is strictly increasing in [−1, 1]
and strictly decreasing in (−∞,−1] ∪ [1,∞).
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3.2.2 Local Extremum of functions

Derivatives are a very useful tool for locating and identifying maximum and minimum values
(extremum) of functions. In the following, we suppose that the function f is defined in an
open interval (c− δ, c+ δ) around c.

Definition 3.2.5. The function f has a local maximum (minimum) at the point c if there
is δ > 0 such that for every x ∈ (c− δ, c+ δ)

f(x) ≤ f(c) (f(x) ≥ f(c)).

A local maximum or a local minimum are local extremum of f .

Theorem 3.2.6. If the function f has an extremum at the point c, then the derivative f ′(c)
is either zero or does not exist.

Proof. Without loss of generality, suppose that c a local minimum point of f and that f ′(c)
exists. By definition of a local minimum, we have f(c+ h) ≥ f(c) for every h with |h| < δ.
Let h > 0 and consider the quotient

f(c+ h)− f(c)

h
.

It is non–negative and the limit exists when h→ 0 and equals f ′(c), since f is differentiable
at c. Given that the limit of non–negative quantities must be non–negative, we get the
inequality f ′(c) ≥ 0. Consider now h < 0. Then, the above quotient is non–positive.
Taking the limit as h → 0 we get the reverse inequality f ′(c) ≤ 0. Hence it must be
f ′(c) = 0 and we are done.

The points where the function is not differentiable or the derivative vanishes are possible
extrema of f , and for this reason they are called critical points of f .

Example 3.2.7. Find the critical points of f(x) = 3x− x3 and g(x) = |x|.

Solution: Function f is differentiable at every point and f ′(x) = 3(1 − x2). Thus,
f ′(x) = 0 if and only if x = ±1. Hence, the critical points of f are 1 and −1. Function g is
differentiable at every point except c = 0, where it has a corner. Actually, the derivative

g′(x) =

{
1, if x > 0;
−1, if x < 0,

never vanishes. Hence, 0 is the only critical point of g.

Theorem 3.2.8. Suppose that f is differentiable in an interval I = (c − δ, c + δ) around
point c (except, maybe, for the point c itself). Then, if the derivative of f changes sign from
plus to minus (from minus to plus) when passing through the point c, then f has a local
maximum (minimum) at the point c. If the derivative does not change sign when passing
through the point c, then the function f does not posses an extremum at the point c.

Example 3.2.9. Find the the local extrema points of f(x) = 3x− x3 and g(x) = |x|.

Solution: We know from Example 3.2.4 that the sign of f ′ change from minus to plus
at −1 and from plus to minus at 1, hence f has a local minimum at −1, and f has a local
maximum at 1. On the other hand, g′ change from minus to plus at 0 (see Example 3.2.7),
hence although g is not differentiable at 0, g has a local minimum at this point.
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3.2.3 Theorems of Rolle and Lagrange

Theorem 3.2.10 (Rolle’s Theorem). Let the function f satisfy the following conditions:

1. f is continuous on [a, b];

2. f is differentiable in (a, b);

3. f(a) = f(b).

Then there is a point c ∈ (a, b) such that f ′(c) = 0.

Rolle’s Theorem states that there is a point c ∈ (a, b) such that the tangent line to the
graph of the function f at the point (c, f(c)) is parallel to the x–axis.

Theorem 3.2.11 (Lagrange’s Theorem). Let the function f satisfy the following conditions:

1. f is continuous on [a, b];

2. f is differentiable in (a, b).

Then there is a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Lagrange’s Theorem is also known as Mean Value Theorem. It can be interpreted as
follows: The number

f(b)− f(a)

b− a
is the slope of the line r which passes through the points (a, f(a)) and (b, f(b)) of the graph
of f , and f ′(c) is the slope of the tangent to the graph of f at (c, f(c)). Lagrange’s formula
shows that this tangent line is parallel to the straight line r.

3.3 L’Hopital’s Rule

Now we present a useful technique for evaluating limits that uses the derivatives of the
functions involved.

Theorem 3.3.1 (Indetermination of the type 0/0). Assume that the following conditions
are fulfilled:

1. The functions f and g are defined and differentiable in an interval I = (c − δ, c + δ)
around point c (except, maybe, the point c itself);

2. limx→c f(x) = limx→c g(x) = 0;

3. The derivative g′(x) 6= 0 for any x ∈ I (except, maybe, the point c itself).

4. There exists the limit limx→c
f ′(x)

g′(x)
.
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Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Example 3.3.2. Evaluate limx→0
sin ax

tan bx
, where a, b ∈ R.

Solution: The limit is of the indeterminate type 0/0. It is easy to verify that all
conditions of Theorem 3.3.1 are fulfilled. Consequently,

lim
x→0

sin ax

tan bx
= lim

x→0

a cos ax
b

cos2 bx

=
a

b
.

Theorem 3.3.3 (Indetermination of the type ±∞/∞). Assume that (1), (3) and (4) of
Theorem 3.3.1 are fulfilled and that (2) is replaced by

(2’) limx→c f(x) = limx→c g(x) = ±∞.

Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Example 3.3.4. Evaluate limx→0+ x lnx.

Solution: The limit is of the indeterminate type 0 · ∞. Writing x lnx as
lnx

1/x
we get

an indeterminate form ∞/∞. Applying L’Hospital Rule one obtains

lim
x→0+

lnx

1/x
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0.

Remark 3.3.5. Similarly to Theorems 3.3.1 and 3.3.3, L’Hopital’s Rule can be also stated
when x→ +∞ or x→ −∞,

lim
x→±∞

f(x)

g(x)
= lim

x→±∞

f ′(x)

g′(x)
.

Example 3.3.6. Evaluate limx→∞
lnx

x
.

Solution: The limit is of the indeterminate type ∞/∞. Differentiating above and
below, we get

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0.

Remark 3.3.7. Indeterminate forms of other types, 0 · ∞, ∞−∞, 1∞, 00 or ∞0 can be
reduced to indeterminate forms of type 0/0 or ∞/∞ and to them we can apply L’Hopital’s
Rule.

Example 3.3.8. Evaluate limx→∞ x
1/x.

Solution: The limit is of the indeterminate type ∞0. We represent x1/x = elnx/x and

study limx→∞
lnx

x
= limx→∞

1

x
= 0, hence the limit is e0 = 1.
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Example 3.3.9. Evaluate limx→1

(
x

x− 1
− 1

lnx

)
.

Solution: The limit is of indeterminate type ∞−∞. If we combine fractions, then
we obtain

x lnx− (x− 1)

(x− 1) lnx
,

which is of the form 0/0 at x = 1. Differentiating above and below, we get

lnx

1− x−1 + lnx

which is again 0/0 at x = 1. Another differentiation above and below gives

x−1

x−2 + x−1
=

x

1 + x

which has limit 1/2 as x → 1. Thus, we had to apply L’Hospital Rule twice to find that
the limit is 1/2.

When the hypotheses of the theorems are not satisfied, we might obtain incorrect an-
swers, as in the following example.

Example 3.3.10. Clearly, limx→0+
lnx

x
=
−∞
0+

= −∞. If we attempt to use L’Hopital

Rule, we would obtain

lim
x→0+

lnx

x
= lim

x→0+

x−1

1
= +∞,

which is incorrect. Notice that the limit is not indeterminate, hence theorems 3.3.1 and
3.3.3 do not apply.

3.4 Optimization of continuous functions on intervals [a, b]

Consider a continuous function f defined on an interval I = [a, b]. By Weierstrass’ Theorem,
f attains in [a, b] global extremum. On the other hand, since a global extremum is also a
local extremum, if the global extremum are in the open interval (a, b), then they must be
critical points of f . Hence, to locate and classify the global extremum of f , we will use the
following recipe:

1. Find the critical points of f in (a, b);

2. Evaluate f at the critical points found in (a) and at the extreme points of the interval,
a, b;

3. Select the maximum value (global maximum) and the minimum value (global mini-
mum).

Example 3.4.1. Find and classify the extremum points of f(x) = 3x− x3 in the interval
[−2, 2].
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Solution: Since f is continuous and I = [−2, 2] is closed and bounded, by Weierstrass’
Theorem f attains on I global maximum and minimum. Then, as explained above, the
possible global extremum are among the critical points of f in I and the extreme points
of the interval I: −2 and 2. We know that −1 ∈ I is a local minimizer, f(−1) = −2, and
1 ∈ I is a local maximizer, f(1) = 2, see Example 3.2.9. On the other hand, f(−2) = 2 and
f(2) = −2, thus points −1 and 2 are both global minimizers of f in I, and points −2 and
1 are global maximizers of f in I.
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