September 15, 2020

CHAPTER 1: INTRODUCTION TO THE TOPOLOGY OF EUCLIDEAN SPACE

1. Scalar product in \mathbb{R}^n

Definition 1.1. Given $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, we define their scalar product as

$$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

Example 1.2. $(2,1,3) \cdot (-1,0,2) = -2 + 6 = 4$

Remark 1.3. $x \cdot y = y \cdot x$.

Definition 1.4. Given $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ we define its **norm** as

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + \dots + x_n^2}$$

Example 1.5. Example: $\|(-1, 0, 3)\| = \sqrt{10}$

Remark 1.6. Some interpretations of the norm are:

- The norm ||x|| is the distance from x to the origin.
- We may also interpret ||x|| as the length of the vector x.
- The norm ||x y|| is the distance between x and y.

Remark 1.7. Let θ be the angle between u and v. Then,

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$$

2. 1. The Euclidean space \mathbb{R}^n

Definition 2.1. Given $p \in \mathbb{R}^n$ and r > 0 we define the **open ball** of center p and radius r as the set

$$B(p,r) = \{ y \in \mathbb{R}^n : ||p - y|| < r \}$$

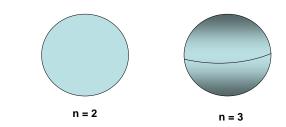
and the **closed ball** of center p and radius r as the set

$$\overline{B(p,r)} = \{ y \in \mathbb{R}^n : ||p - y|| \le r \}$$

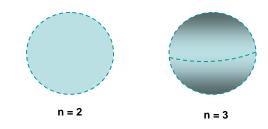
Remark 2.2.

- Recall that ||p y|| is distance from p to y.
- For n = 1, we have that B(p, r) = (p r, p + r) and $\overline{B(p, r)} = [p r, p + r]$.

• For n = 2, 3 the closed balls are



• For n = 2, 3 the open balls are

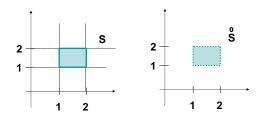


Definition 2.3. Let $S \subset \mathbb{R}^n$. We say that $p \in \mathbb{R}^n$ is **interior** to S if there is some r > 0 such that $B(p,r) \subset S$.

Notation: $\overset{\circ}{S}$ is set of interior points of S.

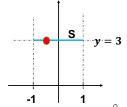
Remark 2.4. Note that $\overset{\circ}{S} \subset S$ because $p \in B(p,r)$ for any r > 0.

Example 2.5. Consider $S \subset \mathbb{R}^2, S = [1,2] \times [1,2]$. Then, $\overset{\circ}{S} = (1,2) \times (1,2)$.



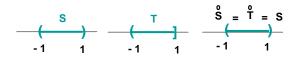
Example 2.6. Consider $S = [-1, 1] \cup \{3\} \subset \mathbb{R}$. Then, $\overset{\circ}{S} = (-1, 1)$.

Example 2.7. Consider $S = [-1, 1] \times \{3\} \subset \mathbb{R}^2$. Then, $\overset{\circ}{S} = \emptyset$.



Definition 2.8. A subset $S \subset \mathbb{R}^n$ is open if $S = \overset{\circ}{S}$

Example 2.9. In \mathbb{R} , the set S = (-1, 1) is open, T = (-1, 1] is not.



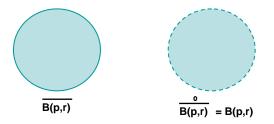
Example 2.10. The set $S = \{(x, 0) : -1 < x < 1\}$ is not open in \mathbb{R}^2 .

You should compare this with the previous example

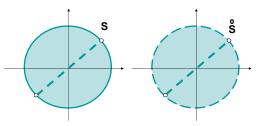
Example 2.11. The open ball B(p,r) is an open set.

4

Example 2.12. The closed ball $\overline{B(p,r)}$ is not an open set, because $\overrightarrow{B(p,r)} = B(p,r)$.



Example 2.13. Consider the set $S = \{(x, y) \in R^2 : x^2 + y^2 \le 1, x \ne y\}$. Then, $\overset{\circ}{S} = \{(x, y) \in R^2 : x^2 + y^2 < 1, x \ne y\}$. So, S is not open.



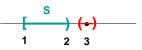
Proposition 2.14. $\overset{\circ}{S}$ is the largest open set contained in S. (That is $\overset{\circ}{S}$ is open, $\overset{\circ}{S} \subset S$ and if $A \subset S$ is open, then $A \subset \overset{\circ}{S}$).

Definition 2.15. Let $S \subset \mathbb{R}^n$. A point $p \in \mathbb{R}^n$ is in the closure of S if for any r > 0 we have that $B(p,r) \cap S \neq \emptyset$.

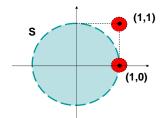
Notation: \overline{S} is the set of points in the closure of S.

Example 2.16. Consider the set $S = [1,2) \subset \mathbb{R}$. Then, the points $1, 2 \in \overline{S}$. But, $3 \notin \overline{S}$.

5

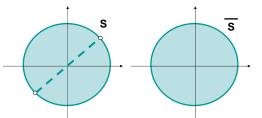


Example 2.17. Consider the set $S = B((0,0), 1) \subset \mathbb{R}^2$. Then, the point $(1,0) \in \overline{S}$. But, the point $(1,1) \notin \overline{S}$.



Example 2.18. Let S = [0, 1], T = (0, 1). Then, $\overline{S} = \overline{T} = S = [0, 1]$.

Example 2.19. Let $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ne y\}$. Then, $\overline{S} = \overline{B((0, 0), 1)}$.



Example 2.20. $\overline{B(p,r)}$ is the closure of the open unit ball B(p,r).

Remark 2.21. $S \subset \overline{S}$.

Definition 2.22. A set $F \subset \mathbb{R}^n$ is closed if $F = \overline{F}$.

Proposition 2.23. A set $F \subset \mathbb{R}^n$ is closed if and only if $\mathbb{R}^n \setminus F$ is open.

Example 2.24. The set $[1,2] \subset \mathbb{R}$ is closed. But, the set $[1,2] \subset \mathbb{R}$ is not.

Example 2.25. The set $\overline{B(p,r)}$ is closed. But, the set B(p,r) is not.

Example 2.26. The set $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x \neq y\}$ is not closed.

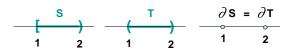
Proposition 2.27. The closure \overline{S} of S is the smallest closed set that contains S. (That is \overline{S} is closed, $S \subset \overline{S}$ and if F is another closed set that contains S, then $\overline{S} \subset F$).

Definition 2.28. Let $S \subset \mathbb{R}^n$, we say that $p \in \mathbb{R}^n$ is a **boundary point** of S if for any positive radius r > 0, we have that,

- (1) $B(p,r) \cap S \neq \emptyset$.
- (2) $B(p,r) \cap (\mathbb{R}^n \setminus S) \neq \emptyset.$

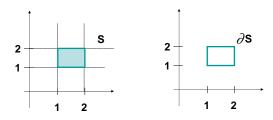
Notation: The set of boundary points of S is denoted by ∂S .

Example 2.29. Let S = [1, 2), T = (1, 2). Then, $\partial S = \partial T = \{1, 2\}$.

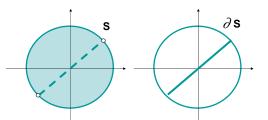


Example 2.30. Let $S = [-1, 1] \cup \{3\} \subset \mathbb{R}$. Then, $\partial S = \{-1, 1, 3\}$.

Example 2.31. Let $S \subset \mathbb{R}^2$, $S = [1, 2] \times [1, 2]$. Then, ∂S is



Example 2.32. $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x \neq y\}$. Then, $\partial S = \{(x, y) : x^2 + y^2 = 1\} \bigcup \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x = y\}.$



The above concepts are related in the following Proposition.

Proposition 2.33. Let $S \subset \mathbb{R}^n$, then

(1)
$$\overset{\circ}{S} = S \setminus \partial S$$

 $\mathbf{6}$

- (2) $\bar{S} = S \cup \partial S$
- (3) $\partial S = \overline{S} \cap \overline{\mathbb{R}^n \setminus S}.$ (4) S is closed $\Leftrightarrow S = \overline{S} \Leftrightarrow \partial S \subset S$
- (5) S is open $\Leftrightarrow S = \overset{\circ}{S} \Leftrightarrow S \cap \partial S = \emptyset$.

Proposition 2.34.

- (1) The finite intersection of open (closed) sets is also open (closed).
- (2) The finite union of open (closed) sets is also open (closed).

Definition 2.35. A set $S \subset \mathbb{R}^n$ is **bounded** if there is some R > 0 such that $S \subset B(0, R)$.

Example 2.36. The straight line $V = \{(x, y, z) \in \mathbb{R}^3 : x - y = 0, z = 0\}$ is not a bounded set.

Example 2.37. The ball B(p, R) of center p and radius R is bounded.

Definition 2.38. A subset $S \subset \mathbb{R}^n$ is **compact** if S is closed and bounded.

Example 2.39. $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x \neq y\}$ is not compact (bounded, but not closed).

Example 2.40. B(p, R) is not compact (bounded, but not closed).

Example 2.41. $\overline{B(p,R)}$ is compact.

Example 2.42. (0,1] is not compact. [0,1] is compact.

Example 2.43. $[0,1] \times [0,1]$ is compact.

Definition 2.44. A subset $S \subset \mathbb{R}^n$ is **convex** if for any $x, y \in S$ and $\lambda \in [0, 1]$ we have that $\lambda \cdot x + (1 - \lambda) \cdot y \in S$.

Example 2.45. Let A a matrix of order $n \times m$ and let $b \in \mathbb{R}^m$. We define

$$S = \{x \in \mathbb{R}^n : Ax = b\}$$

as the set of solutions of the linear system of equations Ax = b. Let $x, y \in S$, be two solutions of this linear system of equations. Then, we have that Ax = Ay = b. If we now take any $0 \le t \le 1$ (indeed any $t \in \mathbb{R}$) then

A(tx + (1 - t)y) = tAx + (1 - t)Ay = tb + (1 - t)b = b

that is, $tx + (1-t)y \in S$ so the set of solutions of a linear system of equations is a convex set.

Example 2.46. $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x \neq y\}$ is not a convex set.

