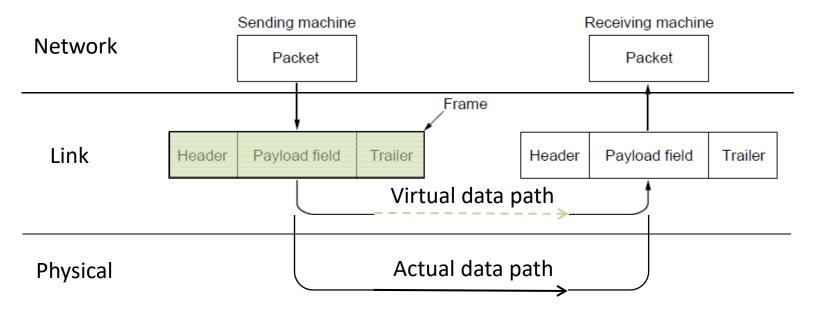


Capa de Enlace de Datos


- Funciones
- Servicios
- División de las tramas
- Control de errores
- Control de flujo
- Detección y corrección de errores
- Protocolos de enlace de datos

- Funciones:
 - Interfaz de servicio con la capa de red
 - Gestionar los errores de transmisión
 - Regular el flujo de datos para que los receptores lentos no se saturen con los rápidos
- Agrupación:
 - Encapsula los paquetes de la capa de red en tramas
 - Cada trama tiene:
 - Encabezado
 - Carga útil (Paquete)
 - Terminador
- Funcionalidades replicadas:
 - Control de errores
 - Control de flujo

• Funciones:

- Servicios:
 - No orientados a la conexión, sin confirmación de recepción
 - No detecta pérdidas ni errores
 - Correcto para sistemas en tiempo real y LANs con canales estables
 - No orientados a la conexión, con confirmación de recepción
 - Se define un timeout con el que se estable el periodo máximo de espera para la confirmación. Si se supera, se reenvía
 - Correcto para redes inalámbricas con canales inestables
 - Orientados a la conexión, con confirmación de recepción
 - Establece conexiones e inicializa una serie de variables
 - Transmite las tramas
 - Cierra la conexión, libera las variables, búferes y el resto de recursos
 - Correcto para WANs

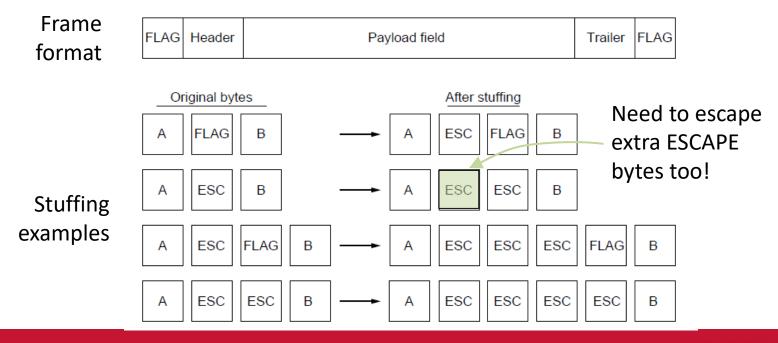
Servicios:

- Las líneas de comunicación no estables parezcan perfectas desde el punto de vista de red
 - El flujo de bits no tiene porque estar libre de errores
 - La cantidad de bits recibidos puede ser menor que los transmitidos
 - Es responsabilidad de la capa de enlace de datos corregir los errores

Solución:

- La capa de enlace de datos divide el flujo de bits en tramas separadas
- Cada trama tiene una suma de verificación
- Si la suma de verificación en recepción es diferente se detecta un error
 - Se descarta la trama
 - Se retransmite la trama

- División de las tramas:
 - Como es difícil establecer una marca temporal en toda la red para fijar el inicio y el fin de trama (trama completa), se utilizan otros métodos:
 - Conteo de caracteres
 - En el encabezado se especifica el número de caracteres de la trama
 - PROBLEMA: Si se deteriora el encabezado se pierde la sincronía
 - Banderas con relleno de caracteres
 - Utilizar el mismo símbolo/carácter (flag para delimitar principio y fin de trama)
 - PROBLEMA: Se puede confundir con los datos de la carga útil



Conteo de caracteres División de las tramas: One byte Byte count Expected 5 9 3 0 3 6 8 0 case Frame 1 Frame 2 Frame 3 Frame 4 5 bytes 8 bytes 5 bytes 8 bytes (a) Error Error 3 3 5 8 8 9 6 9 case Frame 1 Frame 2 Now a byte (Wrong) count

División de las tramas:

Banderas con relleno de caracteres

- División de las tramas:
 - Como es difícil establecer una marca temporal en toda la red para fijar el inicio y el fin de trama (trama completa), se utilizan otros métodos:
 - Banderas de inicio y fin
 - Para independizar del número de bits de un símbolo
 - La trama empieza y finaliza con un patrón especial de bits
 - Si el patrón se repite en los datos, también hay que modificarlos para que no se confundan en recepción
 - El receptor sólo tiene que esperar a la secuencia de banderas
 - Combinación de varios métodos para obtener soluciones más robustas (p.e. bandera inicio y fin + conteo de caracteres)

- División de las tramas:
 - Frame flag has six consecutive 1s (not shown)
 - On transmit, after five 1s in the data, a 0 is added
 - On receive, a 0 after five 1s is deleted

- Control de errores:
 - Asegurar que todas las tramas se entreguen en el orden correcto en la capa de red destino
 - Es necesario proporcionar realimentación al emisor mediante tramas de control que contengan confirmaciones
 - Si la confirmación es negativa son necesarias retransmisiones
 - Se introduce una temporización en la capa de enlace de datos para que el emisor no se quede esperando eternamente si se pierde una trama
 - Cuando se envía una trama se inicia un temporizador.
 - Si la trama de recepción se pierde el temporizador generará un aviso y retransmitirá.
 - Para evitar enviar la misma trama varias veces a la capa de red cada trama tendrá un identificador con el número de secuencia

- Control de flujo:
 - Cómo gestionar la recepción de tramas cuando el emisor transmite más rápido que el receptor:
 - Control de flujo basado en realimentación: el receptor envía información indicando el estado de su buffer
 - Existen reglas que prohíben el envío de tramas hasta que el receptor lo autoriza
 - Control de flujo basado en tasa: el emisor tiene un sistema integrado para limitar la tasa

- Detección y corrección de errores:
 - Códigos de detección de errores: Redundancia para saber que se ha producido un error
 - Códigos de corrección de errores: Redundancia para poder recuperar un error
 - Distancia de Hamming: cantidad de posiciones (en bits) que difieren dos palabras codificadas
 - Las propiedades de detección y corrección de errores de un código dependen de su distancia de Hamming
 - Para detectar *d* errores se necesita un código con distancia *d*+1
 - Para corregir d errores se necesita un código con distancia 2d+1
 - Ejemplo: Un bit de paridad tiene distancia dos puede detectar errores simples

- Detección y corrección de errores:
 - *m* bits por mensaje, n longitud del código, *r* redundancia
 - n=m+r
 - 2^m mensajes legales
 - n palabras codificadas a ilegales a distancia 1 de él
 - Tenemos los por tanto dos límites:
 - $(n+1) 2^m = <2^n$
 - $(m+r+1) = <2^r$

- Detección y corrección de errores:
 - Hamming utiliza los bits potencia de dos para verificación/redundancia y el resto son bits de datos

Bit position Encoded data bits		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		p1	p2	d1	p4	d2	d3	d4	р8	d5	d6	d7	d8	d9	d10	d11	p16	d12	d13	d14	d15
Parity bit coverage	p1	Χ		Χ		Χ	37 3.	X		X		X		Χ		X		X		X	
	p2		Χ	Χ			Χ	Χ			X	X			X	X			X	Χ	
	р4				X	X	X	X					Χ	Χ	X	X					X
	р8						37 3		X	Χ	X	X	X	Χ	Χ	Χ					
	p16	18					87 8								8/ 1		Χ	Χ	Χ	Χ	Χ

- Detección y corrección de errores:
 - Hamming utiliza los bits potencia de dos para verificación/redundancia y el resto son bits de datos

```
Ejemplo: 1001000 -> 00110010000

1001000 -> 00110010000

1001000 -> 00110010000

1001000 -> 00110010000

1001000 -> 00110010000
```


- Detección y corrección de errores:
 - CRC (Código de Redundancia Cíclica): los códigos polinomiales se basan en el tratamiento de cadenas de bits como representaciones de polinomios con coeficientes 0 y 1
 - Las operaciones se realizan sobre un campo finito (Galois Field),
 por lo que no existe ningún tipo de acarreo
 - El polinomio generador G(x) es acordado por adelantado entre emisor y receptor
 - Se agregan r bits cero al final de la trama mensaje m
 - Se dividen los bits de G(x) entre el mensaje anterior
 - El resto de la división se resta al mensaje.
 - El resultado es la suma con verificación que debe transmitirse T(x)

Detección y corrección de errores:

```
Frame: 1 1 0 1 0 1 1 1 1 1
Generator: 1 0 0 1 1
               1 1 0 0 0 0 1 1 1 0 - Quotient (thrown away)
00001
            0 0 0 0 0
             0 0 0 1 1
             00000
                0 0 0 0 0
                                             Transmitted frame: 1 1 0 1 0 1 1 1 1 1 0 0 1 0 	← Frame with four zeros appended
                   1 1 0 1 0
                                                                                 minus remainder
                     1 0 0 1 0
                     1 0 0 1 1
                      0 0 0 1 0
```


- Detección y corrección de errores:
 - Ejercicio de corrección de errores: Buscar un código corrección de errores (p.e. Hamming) e implementar un circuito
 - Ejercicio detección de errores: Buscar el polinomio del estándar IEEE
 802 e implementar un circuito con registros de desplazamiento

- Protocolos de enlace de datos:
 - Normalmente los procesos de capa física y enlace de datos se ejecuta en un procesador dedicado (chip adicional) y los procesos de red se ejecutan en la CPU principal
 - Protocolo símplex:
 - Dos procesos:
 - Emisor: capa de enlace de datos de la máquina origen
 - Receptor: capa de enlace de datos de la máquina destino
 - Sin números de secuencia ni confirmaciones de recepción
 - Sólo eventos de llegada de trama
 - No hay control de flujo ni de errores
 - Para la recepción se elimina la trama del buffer hardware y se almacena en una variable que se pasa a la capa de red

- Protocolos de enlace de datos:
 - Protocolo símplex de parada y espera:
 - Evita que el emisor sature al receptor enviando datos a mayor velocidad de la que el receptor puede procesarlos
 - Una solución general es hacer que el receptor proporcione realimentación al emisor mediante una pequeña trama ficticia
 - A diferencia del símplex requiere un canal bidireccional
 - Requiere una alternancia estricta de flujo: primero una trama de información después una trama de control.
 - Se convierte el canal en semidúplex

- Protocolos de enlace de datos:
 - Protocolo símplex para canal con ruido:
 - Es necesario que el receptor sea capaz de distinguir entre una trama que esté viendo por primea vez y una retransmisión
 - Se podría introducir un número de secuencia en cada trama para ver si se duplica o se descarta, pero aumentaría el número de bits
 - Si el emisor recibe correctamente la confirmación de la trama m enviará la trama m+1. Sólo se necesitará un bit para saber si se trata de m (bit 0) o m+1 (bit 1)
 - Estos protocolos se denominan PAR (Confirmación de Recepción Positiva con Retransmisión) o ARQ (Solicitud Automática de Recepción)

- Protocolos de enlace de datos:
 - Protocolo símplex para canal con ruido:
 - El protocolo utiliza también un temporizador. Esto genera tres posibilidades:
 - Llega una trama de confirmación de recepción sin daño
 - Se vacía el buffer y se verifica el número de secuencia
 - Aumenta el número de secuencia
 - Llega una trama de confirmación de recepción dañada
 - No aumenta el número de secuencia hasta que no se reciba la trama correcta
 - Expira el temporizador
 - No aumenta el número de secuencia hasta que no se reciba la trama correcta

- Protocolos de enlace de datos:
 - Protocolo de ventana corrediza:
 - Utilizado para transmisiones dúplex existen varias opciones:
 - Utilizar dos circuitos físicos separados (desperdicia ancho de banda)
 - Utilizar un único circuito para datos en ambas direcciones
 - Sólo tramas de datos y control del mismo circuito
 - Se puede optimizar incluyendo la confirmación de recepción (control) en la siguiente trama de datos, piggybacking
 - Mejor ancho de banda (se ahorra encabeza y fin del ACK)
 - Menor ocupación del canal con tramas de control

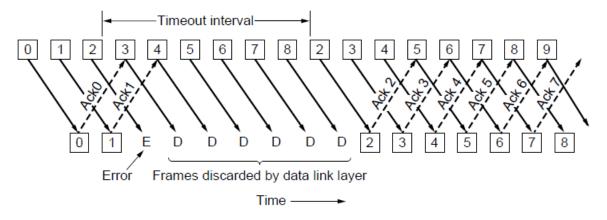
- Protocolos de enlace de datos:
 - Protocolo de ventana corrediza:
 - El piggybacking es un problema para tramas aisladas, surgen como alternativa los protocolos de ventana corrediza:
 - Ventana emisora y ventana receptora
 - Cada ventana mantiene un grupo de números de secuencia fijos (n)
 - Los números de secuencia en la ventana del emisor representan tramas enviadas o que pueden ser enviadas pero cuya recepción aún no se ha confirmado
 - Cuando llega un paquete nuevo de la capa de red se le da el siguiente número secuencia y la ventana avanza en uno
 - Al llegar una confirmación de recepción la ventana receptora avanza en uno

- Protocolos de enlace de datos:
 - Protocolo de ventana corrediza:
 - El emisor mantiene todas las tramas en la memoria para su posible retransmisión
 - Debido a lo anterior si el tamaño de la ventana es n, requiere n buffers para almacenar las tramas sin confirmación de recepción
 - La ventana receptora corresponde a las tramas que se pueden aceptar.
 - Las tramas fuera de la ventana se descartarán sin comentarios
 - La ventana receptora siempre tiene el mismo tamaño inicial
 - Si el tamaño es de 1 sólo admite tramas ordenadas.

- Protocolos de enlace de datos:
 - Protocolo de ventana corrediza:

Sender

Sender


First frame is sent is received

Sender

Tolographic toler tol

- Protocolos de enlace de datos:
 - Protocolo de retroceso N:
 - Cuando el tiempo de envío y confirmación de recepción de una trama no es insignificante (por ejemplo: satélite, retardo de ms)

