Electrical Systems

Lecture 5: Electric power in AC systems II

Arnau Dòria-Cerezo ⊠ arnau.doria@upc.edu

Dept. Electrical Engineering, and Inst. of Industrial and Control Engineering

Last revised: March 15, 2021

Outline

1 Grid Thévenin equivalent and short-circuit power

- Power network and the Thévenin equivalent circuit
- Maximum average power transfer Theorem
- Counter-example on the reactive power definition

- 不同 とうき とうきょ

Grid Thévenin equivalent and short-circuit power

A power network is often described by its short-circuit power. Consider the power network (left) that can be represented by its Thévenin equivalent circuit (right)

Short-circuit power of a network

Short-circuit power is the maximum power that a network (or source) is able to supply. The short-circuit power is defined as

$$S_{sc} = U_{th}I_{sc}$$

From the Thévenin equivalent circuit, it can be obtained as

$$\label{eq:sc} S_{\rm sc} = U_{\rm th} I_{\rm sc}^* = \frac{U_{\rm th}^2}{Z_{\rm th}^*}$$

and

$$Z_{\rm th} = \frac{U_{\rm th}^2}{S_{\rm cc}} \quad \left(\text{or } X_{\rm th} = \frac{U_{\rm th}^2}{S_{\rm cc}} \text{ if only reactance is considered} \right)$$

Grid Thévenin equivalent and short-circuit power

Weak grids

A power grid is said to be weak if its equivalent impedance $Z_{\rm th}$ is high or, equivalently, if its short-circuit power is low.

In opposite...

Ideal power grid

An ideal power grid has zero equivalent impedance, $Z_{\rm th}=0,$ and infinity short-circuit power.

Grid Thévenin equivalent and short-circuit power

Exercise 1

A load described by an impedance $Z_L = 100 + j68\Omega$ is connected to a power grid 400V, with $S_{sc} = 16$ kVA and its equivalent impedance fulfils $R_{th} = X_{th}$.

- Calculate the voltage at the connection point, the dissipated power in the transmission lines and the efficiency of the electrical transmission.
- 2 Repeat the calculations of the previous question assuming that $Z_L = 100\Omega$.
- Solution Consider that power network is modified such that $S_{sc} = 32kVA$ and its equivalent impedance fulfils $R_{th} = X_{th}$. Calculate again the voltage at the end of the line, dissipated power and efficiency (assuming unitary power factor).

Outline

2 Power network and the Thévenin equivalent circuit

Maximum average power transfer Theorem

Counter-example on the reactive power definition

- 不同 とうき とうきょ

Power network and the Thévenin equivalent circuit

Thévenin equivalent scheme with a power defined load

Consider a load, operating at S = P + jQ, connected to a power grid represented by an Thévenin equivalent circuit with E and Z.

Which is the voltage across the load?

Power network and the Thévenin equivalent circuit

Writing the KVL, using that $\underline{S}^* = \underline{U}^* \underline{I}$, and after some algebra we get

The voltage across a load connected to a power grid can be calculated using...

$$U^{4} + (2RP + 2XQ - E^{2})U^{2} + (R^{2} + X^{2})(P^{2} + Q^{2}) = 0$$

or

$$U^{4} + \left(2\operatorname{Re}(\underline{Z}\underline{S}^{*}) - E^{2}\right)U^{2} + Z^{2}S^{2} = 0$$

Additionally, the equivalent impedance of the load, \mathbb{Z}_{PQ} , and its current and voltage (with respect to the voltage source) are, respectively,

$$\underline{Z}_{PQ} = \frac{U^2}{S^*}, \quad \underline{I} = \frac{\underline{E}}{Z + Z_{PQ}}, \quad \underline{U} = \frac{Z_{PQ}}{Z + Z_{PQ}} \underline{E} = \underline{Z}_{PQ} \underline{I}$$

Power network and the Thévenin equivalent circuit

Exercise 2 Power network $E \odot U U (P_{L, \cos \varphi_{L}})$

An electrical load is connected to a 230V power network.

- Sind the active power and power factor of the load if $X = 1.2\Omega$ and the power supplied by the generator is 2kW and a current measurement shows 10.87A.
- Find the reactance of the power network if the measured voltage across the load is 223V and the power consumed by the load is 2kW with 0.8(i) power factor.

Outline

Power network and the Thévenin equivalent circuit

3 Maximum average power transfer Theorem

Counter-example on the reactive power definition

- 不同 とうき とうきょ

Maximum average power transfer Theorem

How we can maximize the amount of power transferred from a source to a load?

Assume we have a load connected to a power network represented by its Thévening equivalent circuit. The goal is do determine the value of the load impedance (\mathbb{Z}_{load}) that permits the maximum power delivery to \mathbb{Z}_{load} .

Grid Thévenin equivalent and short-circuit power Power network and the Thévenin equivalent circuit Maximum average power transfer Theorem

Maximum average power transfer Theorem

Where

$$\begin{split} \bar{Z}_L &= Z_L \angle \phi_L = R_L + j X_L \\ \bar{Z}_{th} &= Z_{th} \angle \phi_{th} = R_{th} + j X_{th} \\ \bar{U}_{th} &= U_{th} \angle 0^\circ \end{split}$$

< ロ > < 同 > < 回 > < 回 >

The average power, or the active power, equation is given by

$$P_L = U_{L rms} I_{L rms} \cos \phi_L$$

and using

wł

$$I_{Lrms} = \frac{1}{|Z_{th} + Z_L|} U_{th} \qquad U_{Lrms} = \frac{|Z_L|}{|Z_{th} + Z_L|} U_{th} \qquad \cos \phi_L = \frac{R_L}{|Z_L|}$$

where $|Z_L| = \sqrt{R_L^2 + X_L^2}$ and $|Z_{th} + Z_L| = \sqrt{(R_L + R_{th})^2 + (X_L + X_{th})^2}$

$$P_L = \frac{R_L}{(R_L + R_{\rm th})^2 + (X_L + X_{\rm th})^2} U_{\rm t}^2$$

Maximum average power transfer Theorem

For one hand, the power

$$P_L = \frac{R_L}{(R_L + R_{\rm th})^2 + (X_L + X_{\rm th})^2} U_{\rm th}^2$$

has a maximum if $X_L = -X_{\text{th}}$. Then

$$P_L = \frac{R_L}{(R_L + R_{\rm th})^2} U_{\rm th}^2$$

the maximum power transfer for resistive case is recovered, which has a maximum for $R_L=R_{\rm th}.$

The maximum average power transfer is given by

$$\underline{Z}_L = R_L + jX_L = R_{\mathsf{th}} - jX_{\mathsf{th}} = \underline{Z}_{\mathsf{th}}^*$$

If the load impedance is purely resistive, $Z_L=R_L$, the condition is obtained by computing $\frac{dP_L}{dR_L}$ to

$$P_L = \frac{R_L}{(R_L + R_{\rm th})^2 + (X_{\rm th})^2} U_{\rm th}^2$$

and

$$R_L = \sqrt{R_{\rm th}^2 + X_{\rm th}^2}$$

Maximum average power transfer Theorem

Exercise 3

From the circuit below with $R = 2\Omega$, $X_L = 4\Omega$, $X_C = 2\Omega$, U = 4V and $u_{cs}(t) = u_R(t)$,

Find the value of impedance load, Z_L , for maximum average power transfer, and the average power delivered to the load.

(日) (同) (三) (三)

Outline

Power network and the Thévenin equivalent circuit

Maximum average power transfer Theorem

4 Counter-example on the reactive power definition

- 4 回 5 - 4 三 5 - 4 三 5

Counter-example on the reactive power definition

Exercise 4

An RL load, with values $R = 1\Omega$ and L = 2H, is connected to a power grid with a voltage with the form $u(t) = 10\sqrt{2}\cos(t)V$.

- Calculate the active, apparent, reactive powers and power factor.
- Find a parallel capacitor that fully compensate the reactive power.
- If $u(t) = 10\sqrt{2}\cos(5t)V$, calculate, with the designed capacitor from the previous question, the new active, apparent, reactive powers and power factor.

Counter-example on the reactive power definition

Exercise 5

A series RLC load is connected to a power grid with a voltage source of the form $u(t) = 100\sqrt{2}\cos(t) + 100\sqrt{2}\cos(3t)V$. Calculate the active, apparent, reactive powers and power factor, for both Loads A and B.

Hint: Active and apparent powers are $S = \sqrt{\sum_k U_k^2} \sqrt{\sum_k I_k^2}$ and $P = \sum_k U_k I_k \cos \phi_k$, respectively. The reactive power, from Budeanu's definition, is $Q = \sum_k U_k I_k \sin \phi_k$.

Outline

Power network and the Thévenin equivalent circuit

Maximum average power transfer Theorem

Counter-example on the reactive power definition

- 不同 とうき とうきょ

Exercises I

Exercise 6

CM2: A bulb lamp with nominal values 150V, 1500W, is connected to a 250V power grid, in series with an inductive reactance such that the voltage across the lamp is 150V. Additionally, a capacitor is connected in parallel to achieve unitary power factor. Calculate:

- Reactive power of the inductor and capacitor.
- 2 Lamp and grid currents.

< < >>

Exercises II

Exercise 7

CM10: The voltage source in the Figure on the right has a series reactance of 1Ω . The load is consuming $P_L = 10kW$ with PF = 0.8 (inductive) and the voltage across the load terminals is 220V. The parallel capacitor is designed such that the source current is minimal.

Calculate:

- The short circuit power of the voltage source.
- The value of the capacitor that ensures minimal current supplied by the voltage source.
- If the load is disconnected, which is the voltage across the capacitor?

Exercises III

Exercise 8

CM16: A 2.4MW, 7.5kV load is connected to two voltage sources in parallel with the following properties:

- Voltage source 1: $U_{01} = 7.5 \angle 0^{\circ} kV$, $Z_{th1} = 8 + j15\Omega$
- Voltage source 2: $U_{02} = 7.0 \angle 10^{\circ} kV$, $Z_{th2} = 5.6 + j19.2\Omega$

Find:

- The Thévenin equivalent circuit of the parallel voltage sources.
- If the load voltage is 7.5kV, which is the total reactive power supplied by the sources?
- In the complex power supplied by each source.

Image: Image:

Exercises IV

Exercise 9

CM56: The circuit above represents an induction motor connected to a voltage source $U_s = 220$ V, where s is the slip relating the current speed with the synchronous one. If the motor parameters are $R_s = R_s = X_s = X_r = 1 \ \Omega$, $R_m = 50 \ \Omega$ and $X_m = 100 \ \Omega$, find:

- **1** Stator and rotor currents (I_r, I_s) when starting (s = 1).
- 2 Consumed active and reactive powers when starting (s = 1).
- **()** The power consumed in the resistor R'_r is proportional to the torque produced by the motor. Calculate this power when starting (s = 1).

One wants to reduce the consumed current by reducing the supplied voltage Ug. Which is the required voltage if the desired current is 5 times less than the nominal one?

Solutions I

Solution to Exercise 1

1
$$U = 369.91$$
V, $P_{\text{los}} = 66.16$ W, $\eta = 93.39\%$

2)
$$U = 372.77$$
V, $P_{\sf los} = 98.25$ W, $\eta = 93.39\%$

3
$$U = 386.12$$
V, $P_{\sf los} = 52.70$ W, $\eta = 96.58\%$

Solution to Exercise 2

1
$$P = 2$$
kW, $PF = 0.827$

2
$$X = 1.014\Omega$$

Solution to Exercise 3

The equivalent Thévenin/Norton circuits are defined by

$$U_{\text{th}} = 3 + j \mathsf{V}, I_N = 1 + j 2\mathsf{A}, Z_{\text{th}} = 1 - j 1 \Omega$$

Then, the load that maximises the consumed power is $Z_L = 1 + j1\Omega$.

(a)

Solutions II

Solution to Exercise 4

1
$$P = 20$$
W, $S = 44.72$ VA, $Q = 40$ var, $PF = 0.4472$

2 C = 0.4F

() P = 0.99W, S = 190.1VA, Q = -190.1var, PF = 0.005

Solution to Exercise 5

1 Load A:
$$P = 10$$
kW, $S = 14.14$ kVA, $PF = 0.7071$, $Q = 0$ var

2 Load B: P = 10kW, S = 14.14kVA, PF = 0.7071, Q = 0var

Solution to Exercise 6

1
$$Q_L = Q_C = 2000$$
val

2)
$$I_R = 10 \text{A}, I_g = 6 \text{A}$$

(日) (同) (三) (三)

Solutions III

Solution to Exercise 7

1 $S_{sc} = 50.467 \text{kVA}$

2
$$C = 493.25 \mu F, E = 22.465 V$$

 $\bigcirc U_C = 265.85 V$

Solution to Exercise 8

1
$$U_{\text{th}} = 7.308 \text{kV}, \ \underline{Z}_{\text{th}} = 3.557 + j8.526 \Omega$$

2 Q = -2.057 Mvar

3 $S_1 = 1.117 - j0.970$ MVA, $S_2 = 1.283 - j1.087$ MVA

э.

Solutions IV

Solution to Exercise 9

1
$$I_r = 76.631 \text{A}, I_s = 78.934 \text{A}$$

2
$$P = 12.338$$
kW, $Q = 12.22$ kvar, $PF = 0.7105$

3
$$P = 5.872 \text{kW}$$

$$U_s = 44V$$

(日) (同) (三) (三)

Electrical Systems

Lecture 5: Electric power in AC systems II

Arnau Dòria-Cerezo ⊠ arnau.doria@upc.edu

Dept. Electrical Engineering, and Inst. of Industrial and Control Engineering

Last revised: March 15, 2021

Image: A matrix