Electrical Systems

Lecture 6: General methods for the analysis of electric circuits

Arnau Dòria-Cerezo ⊠ arnau.doria@upc.edu

Dept. Electrical Engineering, and Inst. of Industrial and Control Engineering

Last revised: April 6, 2021

A >

- A - E - N

Branch Current Method

Mesh Current Method Node Voltage Method Extended Node Voltage Method Exercises and solutions

Outline

- Mesh Current Method
- Node Voltage Method
- Extended Node Voltage Method

- < 同 > < 三 > < 三 >

Branch Current Method

Goal

The goal of this method is to determine the currents through each essential branch of the circuit.

Steps

- Identify and label all the (essential) nodes, (essential branches) and meshes of the circuit.
- Assign directions of currents of each essential branch and voltage polarities of each element.
- Write the KCL for each node of the circuit.
- Write the KVL for each mesh of the circuit, using the element equations.
- Solve the obtained system equation. Note: the number of equations must be equal to the number of essential branches.

Branch Current Method

Exercise 1

Write the set of equations of applying the Branch Current Method that solves the circuit below.

3 B () S

Branch Current Method Mesh Current Method Node Voltage Method Extended Node Voltage Method

Outline

2 Mesh Current Method

- The Mesh Current Method
- MCM in a matrix form
- MCM in a matrix form for AC circuits.

Sode Voltage Method

Extended Node Voltage Method

Exercises and solutions

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

The Mesh Current Method

The goal of this method is to determine the unknown currents in a circuit.

This method...

- is also known as the Loop Current Method,
- it does not use Kirchhoff's Current Law,
- it is usually able to solve a circuit with less unknown variables and less simultaneous equations.
- Assumption: the circuit is planar.

Steps

- Identify and label all meshes (or loops) within the circuit encompassing all components.
- 2 Assign a mesh current for each mesh of the circuit (usually clockwise).
- Write the KVL for each mesh of the circuit, using the element equations.
- Solve the obtained system equation.

Note: the number of equations must be equal to the number of meshes.

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

The Mesh Current Method

Exercise 2

Write the set of equations of applying the Mesh Current Method that solves the circuit below.

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

MCM in a matrix form

$$\begin{pmatrix} R_{AA} & -R_{AB} & \dots & -R_{A,N-1} & -R_{AN} \\ -R_{BA} & \ddots & \vdots & \ddots & -R_{BN} \\ \dots & \vdots & R_{KK} & \dots & \vdots \\ -R_{N-1,A} & \ddots & \vdots & \ddots & -R_{N-1,N} \\ -R_{NA} & -R_{NB} & \dots & -R_{N,N-1} & R_{NN} \end{pmatrix} \underbrace{\begin{pmatrix} i_A \\ \vdots \\ i_K \\ \vdots \\ i_N \end{pmatrix}}_{I} = \underbrace{\begin{pmatrix} u_{sA} \\ \vdots \\ u_{sK} \\ \vdots \\ u_{sN} \end{pmatrix}}_{V}$$

where

- u_K : Sum of the voltage sources across the K mesh.
- R_{KK} : Sum of the resistances in the K mesh.
- R_{KL} : Sum of the resistances of the common resistors in the K and L meshes.

For a circuit without controlled sources...

- The resistance matrix is symmetric.
- The diagonal terms of the resistance matrix are positive.
- The non-diagonal terms of the resistance matrix are negative.

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

MCM in a matrix form

Exercise 3

Write, in a matrix form, the set of equations of applying the Mesh Current Method that solves the circuit below.

with $R_1 = 4\Omega$, $R_2 = 2\Omega$, $R_3 = 6\Omega$, $R_4 = 2\Omega$, $R_5 = 8\Omega$, and $u_s = 10V$.

- E - N

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

MCM in a matrix form for AC circuits

$$\underbrace{\begin{pmatrix} \overline{Z}_{AA} & -\overline{Z}_{AB} & \cdots & -\overline{Z}_{A,N-1} & -\overline{Z}_{AN} \\ -\overline{Z}_{BA} & \ddots & \vdots & \ddots & -\overline{Z}_{BN} \\ \cdots & \vdots & \overline{Z}_{KK} & \cdots & \vdots \\ -\overline{Z}_{N-1,A} & \ddots & \vdots & \ddots & -\overline{Z}_{N-1,N} \\ -\overline{Z}_{NA} & -\overline{Z}_{NB} & \cdots & -\overline{Z}_{N,N-1} & \overline{Z}_{NN} \end{pmatrix}}_{\mathbf{Z}} \underbrace{\begin{pmatrix} \overline{L}_{A} \\ \vdots \\ \overline{L}_{K} \\ \vdots \\ \overline{L}_{N} \end{pmatrix}}_{\mathbf{I}} = \underbrace{\begin{pmatrix} \overline{U}_{A} \\ \vdots \\ \overline{U}_{K} \\ \vdots \\ U_{N} \end{pmatrix}}_{\mathbf{U}}$$

where

- U_K : Sum of the voltage sources across the K mesh.
- Z_{KK} : Sum of the impedances in the K mesh.
- Z_{KL} : Sum of the impedances of the common resistors in the K and L meshes.

The impedance matrix, Z,...

- Is symmetric.
- The diagonal terms are positive.
- The non-diagonal terms are negative.

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

< D > < A >

MCM in a matrix form for AC circuits

Exercise 4

Determine the mesh currents of the circuit below by using the general form of the Mesh Current Method.

with $Z_1 = 4 + j\Omega$, $Z_2 = -j2\Omega$, $Z_3 = 1 + j6\Omega$, $Z_4 = j2\Omega$, $Z_5 = 8\Omega$, $U_{s1} = 10V$, and $U_{s2} = 10\angle 15^\circ V$.

4 E b

The Mesh Current Method MCM in a matrix form MCM in a matrix form for AC circuits

MCM in a matrix form for AC circuits

Solution: Matlab code

```
% Example MCM
1
 2
     clear all; close all; clc
 3
 4
    % Parameters
 5
    Z1=4+1i:
 6
    Z2 = -1i * 2;
 7
    Z3 = 1 + 1 i * 6;
 8
    7.4=1 i *2:
9
    75=8:
10
    U1 = 10 * exp(1i * 0);
11
    U2=10*exp(1i*deg2rad(15));
12
13
    % Impedance matrix
14
    Z = [Z2 - Z2 0 0;
15
         -Z2 Z1+Z2+Z3 -Z3 0;
16
         0 -Z3 Z3+Z4 -Z4;
17
         0 0 -74 74+751:
18
19
    % Voltage vector
20
    U = [U1 - U2; 0; U2; 0];
21
22
    % Currents
23
    I = Z \setminus U;
24
    disp(['I1=' num2str(abs(I(1))) ', ' num2str(rad2deg(angle(I(1)))) 'V'])
25
26
    disp(['12=' num2str(abs(I(2))) ', ' num2str(rad2deg(angle(I(2)))) 'V'])
27
    disp(['I3=' num2str(abs(I(3))) ',' num2str(rad2deg(angle(I(3)))) 'V'])
28
    disp(['I4='num2str(abs(I(4)))', 'num2str(rad2deg(angle(I(4))))')'))
```

< ロ > < 同 > < 三 > < 三 >

Branch Current Method Mesh Current Method Node Voltage Method Extended Node Voltage Method

Outline

Mesh Current Method

3 Node Voltage Method

- The Node Voltage Method
- NVM in a matrix form
- NVM in a matrix form for AC circuits

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

The Node Voltage Method

Goal

To determine the voltage nodes by using the KCL.

This method...

- it does not use Kirchhoff's Voltage Law,
- use the conductance definition of the resistors.
- Assumption: the circuit is planar.

Steps

- Identify and label all the essential nodes of the circuit.
- Assign a node as a reference node (zero potential).
- S Assign a potential label to the other nodes of the circuit.
- Write the KCL for each labeled node (the KCL at the reference node is not necessary), using the element equations.

Solve the obtained system equation.

Note: the number of equations must be equal to the number of essential nodes minus one.

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

The Node Voltage Method

Exercise 5

Write the set of equations of applying the Node Voltage Method that solves the circuit below.

< D > < A >

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

NVM in a matrix form

where

- i_{sK} : Sum of the currents sources connected to Node K.
- G_{KK}: Sum of the conductances of the resistors connected to Node K.
- G_{KL}: Sum of the conductances of the resistors between the nodes K and L.

The conductance matrix, G,...

- Is symmetric.
- The diagonal terms are positive.
- The non-diagonal terms are negative.

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

NVM in a matrix form

Exercise 6

Write, in a matrix form, the set of equations of applying the Node Voltage Method that solves the circuit below, with the values $R_1 = 4\Omega$, $R_2 = 2\Omega$, $R_3 = 6\Omega$, $R_4 = 2\Omega$, $R_5 = 8\Omega$, and $i_s = 10A$.

< D > < A >

-

- E - N

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

NVM in a matrix form for AC circuits

where

- I_{sK} : Sum of the currents sources connected to Node K.
- Y_{KK} : Sum of the admittances of the impedances connected to Node K.
- Y_{KL} : Sum of the admittances of the impedances between the nodes K and L.

The admittance matrix, Y,...

- Is symmetric.
- The diagonal terms are positive.
- The non-diagonal terms are negative.

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

NVM in a matrix form for AC circuits

Thévenin equivalent circuit from the NVM

From the NVM in the general matrix form

$$YV = J$$
,

the equivalent Thévenin circuit between two any terminals p and q is given by

$$\begin{split} \underline{U}_{\mathsf{th}} &= \underline{V}_p - \underline{V}_q \\ Z_{\mathsf{th}} &= Z_{pp} + Z_{qq} - Z_{pq} - Z_{qq} \end{split}$$

where $\boldsymbol{Z} = \boldsymbol{Y}^{-1}$.

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

NVM in a matrix form for AC circuits

Exercise 7

Determine the node voltages of the circuit below using the general form of the Node Voltage Method, and find the equivalent Thévenin circuit between nodes A and B.

(E)

The Node Voltage Method NVM in a matrix form NVM in a matrix form for AC circuits

NVM in a matrix form for AC circuits

Solution: Matlab code

```
1
    % Example NVM
     clear all; close all; clc
 2
 3
 4
    % Parameters
 5
    R1 = 1 : R2 = 2 :
 6
    XC=2:XL=3:
7
    I1=1*exp(1i*deg2rad(0));
8
    I2=1*exp(1i*deg2rad(15));
9
    I3=1*exp(1i*deg2rad(-15));
10
11
    % Admittance matrix
12
    Y = [1/R1 + 1/R2 + 1/(1i * XL) - 1/R1 - 1/(1i * XL);
13
         -1/R1 1/R1+1/(-1i*XC) -1/(-1i*XC):
14
         -1/(1i*XL) -1/(-1i*XC) 1/(1i*XL)+1/(-1i*XC)];
15
16
    % Currents vector
17
    J = [I1; I2; I3];
18
19
    % Impedance matrix
20
    Z=inv(Y);
21
22
    % Voltages vector
23
    V = 7 * .1:
24
    disp(['V1=' num2str(abs(V(1))) ', ' num2str(rad2deg(angle(V(1)))) 'V'])
25
    disp(['V2=' num2str(abs(V(2))) ', ' num2str(rad2deg(angle(V(2)))) 'V'])
26
    disp(['V3='num2str(abs(V(3)))', 'num2str(rad2deg(angle(V(3))))'V'])
27
28
    % Thevenin equivalent circuit
29
    disp(['Uth=' num2str(abs(V(3))) 'V'])
30
    Zeg=Z(3.3);
31
    disp(['Zeg=' num2str(Zeg) ' Ohm'])
                                                                         (日) (同) (三) (三)
```

Branch Current Method Mesh Current Method Node Voltage Method Extended Node Voltage Method

Outline

Solution Node Voltage Method

4 Extended Node Voltage Method

- From circuits to graphs
- The Extended Node Voltage Method
- ENVM in a matrix form

Exercises and solutions

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

From circuits to graphs

The Kirchhoff laws can represented by a (directed) graph that retains all the information of the interconnection properties of the circuit (suppressing the information on the circuit elements).

< D > < A >

- ∢ ≣ →

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

From circuits to graphs

Brief notion on Graph Theory

A graph G is a pair $(\mathcal{N}, \mathcal{B})$ that consists of a set of nodes $\mathcal{N} = 1, 2..., n$ and m branches $\mathcal{B} \subseteq \{(i, j) : i, j \in \mathcal{N}\}.$

- The branch $(i, j) \in \mathcal{B}$ denotes that i (the *parent* node) is connected to j (the *child* node), and is indicated by an arrow from i to j.
- In a circuit graph
 - all weights are 1 for all $(i, j) \in \mathcal{B}$,
 - the graph is *strongly connected* (there is a directed path between every node to every node),
 - there is no self-loops (a branch starting and ending at the same node)

Example of a directed graph (digraph)

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

From circuits to graphs

Incidence matrix

Consider an arbitrary orientation of the branches. The (node-branch) *incidence matrix*, $A \in \mathbb{R}^{n \times m}$, is defined by the (k, l)-th elements as

$$a_{kl} = \begin{cases} 1 & \text{if branch } l \text{ leaves node } k \\ -1 & \text{if branch } l \text{ enters node } k \\ 0 & \text{otherwise.} \end{cases}$$

Fact: The column sum of \mathbf{A} is zero.

Reduced incidence matrix

As A contains exactly two nonzero elements (one 1, and one -1), we can delete any row of A without losing information. The matrix A_r obtained from deleting any row of A is called *the reduced matrix* of A.

Incidence columns

Incidence columns of the reduced matrix \mathbf{A}_r are the columns corresponding to a certain branches.

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

From circuits to graphs

Exercise 8

Write the incidence matrix of the following circuit:

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

From circuits to graphs

Write the both KVL and KCL and the incidence matrix corresponding to the circuit

and check that

Kirchhoff laws from the incidence matrix

 $\mathbf{A}i = 0 \quad \Leftrightarrow \quad (\mathsf{KCL})$ $u = \mathbf{A}^T v \quad \Leftrightarrow \quad (\mathsf{KVL})$

where $u \in \mathbb{R}^m$ is the branch voltage vector and $v \in \mathbb{R}^n$ is the node potential vector.

Any row of the incidence matrix contains redundant information and one can use a *reduced* Incidence matrix just removing one row.

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

The Extended Node Voltage Method

The Extended Node Voltage Method

The aim of the Extended Node Voltage Method is to include ideal voltage sources and magnetic coupling in the general description using the matrix form.

Exercise 9

Analyse the circuit below applying the Extended Node Voltage Method.

From circuits to graphs The Extended Node Voltage Method ENVM in a matrix form

ENVM in a matrix form

The ENVM results in the following matrix equation

$$\underbrace{\begin{pmatrix} \boldsymbol{Y} & \boldsymbol{A}_m & \boldsymbol{A}_s \\ \boldsymbol{A}_m^T & -\boldsymbol{Z}_m & \boldsymbol{0} \\ \boldsymbol{A}_s^T & \boldsymbol{0} & \boldsymbol{0} \end{pmatrix}}_{\boldsymbol{H}} \underbrace{\begin{pmatrix} \boldsymbol{V} \\ \boldsymbol{I}_m \\ \boldsymbol{I}_s \end{pmatrix}}_{\boldsymbol{X}} = \underbrace{\begin{pmatrix} \boldsymbol{J} \\ \boldsymbol{0} \\ \boldsymbol{U}_s \end{pmatrix}}_{\boldsymbol{W}}$$

where $\boldsymbol{Y},\,\boldsymbol{V}$ and \boldsymbol{J} are the admittance matrix, the potentials vector and the vector containing the current sources, respectively, and

- Im, vector containing the currents in the magnetic coupling,
- ${m Z}_m$, magnetic coupling matrix. In the case of coupling of two inductances,

$$\boldsymbol{Z}_m = \begin{pmatrix} \boldsymbol{Z}_1 + j\boldsymbol{X}_1 & j\boldsymbol{X}_m \\ j\boldsymbol{X}_m & \boldsymbol{Z}_2 + j\boldsymbol{X}_2 \end{pmatrix}$$

- $A_m = (A_1 \ A_2)$, incidence columns of branches where magnetic coupling are connected,
- I_s, vector containing the currents of the voltage sources,
- U_s, vector containing the values of the voltage sources,
- A_s, incidence columns of branches where voltage sources are connected,

Outline

- Node Voltage Method
- Extended Node Voltage Method
- **5** Exercises and solutions

Exercises I

Exercise 10

Find the equivalent impedance of the circuit below

(日) (同) (三) (三)

Exercises II

Exercise 11

MN1: Find the Extended Node Voltage Method to calculate the voltages in the circuit below, and find the Thévenin equivalent circuit between terminals A and B.

Image: Image:

(*) *) *) *)

Exercises III

Exercise 12

MN2: Find the Extended Node Voltage Method to calculate the voltages in the circuit below, and find the Thévenin equivalent circuit between terminals A and B.

< D > < A >

- E - N

Exercises IV

Exercise 13

MN3: Find the Extended Node Voltage Method to calculate the voltages in the circuit below, and find the Thévenin equivalent circuit between terminals A and B.

프 () () () (

Solutions I

Solution to Exercise 1

$$-i_1 + i_2 + i_3 = 0$$

$$u_{s1} - R_1 i_1 - R_2 i_2 = 0$$

$$R_2 i_2 - R_3 i_3 - u_{s2} = 0$$

Solution to Exercise 2

$$u_{s1} - R_1 i_A - R_2 (i_A - i_B) = 0$$

- R_2 (i_B - i_A) - R_3 i_B - u_{s2} = 0

Solution to Exercise 3

$$\begin{pmatrix} 12 & -2 & -6 \\ -2 & 4 & -2 \\ -6 & -2 & 16 \end{pmatrix} \begin{pmatrix} i_A \\ i_B \\ i_C \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ 0 \end{pmatrix}$$

Electrical Systems

Solutions II

Solution to Exercise 4

 $I_A=2.67 \angle -14.47^\circ {\sf A}, \ I_B=1.54 \angle -32.98^\circ {\sf A}, \ I_C=2.32 \angle -48.70^\circ {\sf A}, \ I_D=0.56 \angle 27.26^\circ {\sf A}$

Solution to Exercise 5

$$i_{s1} - \frac{1}{R_1}v_A + \frac{1}{R_2}(v_B - v_A) = 0$$

$$-\frac{1}{R_3}v_B + \frac{1}{R_3}(v_A - v_B) + i_{s2} = 0$$

Solution to Exercise 6

$$\begin{array}{cccc} \frac{3}{4} & -\frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{7}{6} & -\frac{1}{6} \\ -\frac{1}{4} & -\frac{1}{6} & \frac{13}{24} \end{array} \right) \begin{pmatrix} v_A \\ v_B \\ v_C \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 >

Solutions III

Solution to Exercise 7

$$\begin{pmatrix} 1.5 - j0.33 & -1 & j0.33 \\ -1 & 1 + j0.5 & -j0.5 \\ j0.33 & -j0.5 & j0.17 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \angle 15^{\circ} \\ 1 \angle -15^{\circ} \end{pmatrix}$$

•
$$V_1 = 5.86 \angle 0^{\circ} V$$
, $V_2 = 8.23 \angle 11.73^{\circ} V$, $V_3 = 10.91 \angle -4.08^{\circ} V$

•
$$U_{\text{th}} = 10.91 \text{V}, \quad \underline{Z}_{\text{th}} = 6.5 - j 1.5 \Omega$$

Solution to Exercise 8

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

æ

(日) (同) (三) (三)

Solutions IV

Solution to Exercise 9

$$\begin{pmatrix} G_2 & 0 & 0 & -1 & 0 & 1 \\ 0 & G_5 & -G_5 & 1 & 1 & 0 \\ 0 & -G_5 & G_5 & 0 & 0 & -1 \\ -1 & 1 & 0 & -jX_2 & jX_m & 0 \\ 0 & 1 & 0 & -jX_m & jX_4 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ I_2 \\ I_4 \\ I_s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ U_s \end{pmatrix}$$

Solution to Exercise 10

$$X_{\rm eq} = 15.42\Omega$$

Solution to Exercise 11

• $V_1 = 15 \angle 0^{\circ} \text{kV}, V_2 = 15.19 \angle -0.001^{\circ} \text{kV}, V_3 = 15.305 \angle -0.145^{\circ} \text{kV}$

•
$$U_{\rm th} = 15.305 {\rm kV}, \ \underline{Z}_{\rm th} = 1.03 + j5.59 \Omega$$

< ロ > < 同 > < 回 > < 回 >

Solutions V

Solution to Exercise 12

- $V_1 = 100 \angle 0^{\circ} V$, $V_2 = 25.05 \angle -25.08^{\circ} V$, $V_3 = 13.89 \angle 31.22^{\circ} V$, $V_4 = 12.43 \angle 35.17^{\circ} V$
- $U_{\rm th} = 1.72 \text{V}, \ \underline{Z}_{\rm th} = 15.59 + j 10.49 \Omega$

Solution to Exercise 13

- $V_1 = 100 \angle 0^{\circ} V$, $V_2 = 74.86 \angle -6.77^{\circ} V$, $V_3 = 18.73 \angle -77.43^{\circ} V$, $V_4 = 36.66 \angle 46.85^{\circ} V$
- $U_{\text{th}} = 74.85 \text{V}, \ \underline{Z}_{\text{th}} = 1.569 + j2.623 \Omega$

(日)

Electrical Systems

Lecture 6: General methods for the analysis of electric circuits

Arnau Dòria-Cerezo ⊠ arnau.doria@upc.edu

Dept. Electrical Engineering, and Inst. of Industrial and Control Engineering

Last revised: April 6, 2021

< D > < A >