Electrical Systems

Lecture 8: Electrical power in three-phase circuits

Arnau Dòria-Cerezo
 \square arnau.doria@upc.edu

Dept. Electrical Engineering, and Inst. of Industrial and Control Engineering

Last revised: April 27, 2021

Outline

(1) Instantaneous electrical power

- Electrical power in three-phase circuits
© Electrical power in balanced three-phase loads
- Power factor correction in balanced three-phase circuits
© Exercises and solutions

Instantaneous electrical power

Power
Instantaneous three-phase electrical power

$$
p(t)=p_{A}(t)+p_{B}(t)+p_{C}(t)
$$

Given the three-phase load above, where

$$
\begin{aligned}
u_{A N}(t) & =U_{A N} \sqrt{2} \cos \left(\omega t+\phi_{A u}\right) & i_{A}(t) & =I_{A} \sqrt{2} \cos \left(\omega t+\phi_{A i}\right) \\
u_{B N}(t) & =U_{B N} \sqrt{2} \cos \left(\omega t+\phi_{B u}\right) & i_{B}(t) & =I_{B} \sqrt{2} \cos \left(\omega t+\phi_{B i}\right) \\
u_{C N}(t) & =U_{C N} \sqrt{2} \cos \left(\omega t+\phi_{C u}\right) & i_{C}(t) & =I_{C} \sqrt{2} \cos \left(\omega t+\phi_{C i}\right)
\end{aligned}
$$

electrical power is

$$
p(t)=u_{A N}(t) i_{A}(t)+u_{B N}(t) i_{B}(t)+u_{C N}(t) i_{C}(t)
$$

Instantaneous electrical power

Numeric example, with $\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\frac{3}{2} \angle 30^{\circ} \Omega$:

$$
\begin{aligned}
& u_{A N}(t)=\cos (100 \pi t) \mathrm{V} \\
& u_{B N}(t)=0.8 \cos (100 \pi t-2 \pi / 3) \mathrm{V} \\
& u_{C N}(t)=\cos (100 \pi t+2 \pi / 3) \mathrm{V}
\end{aligned}
$$

3-phase voltages

Instantaneous electrical power

Numeric example, with $\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\frac{3}{2} \angle 30^{\circ} \Omega$:

$$
\begin{aligned}
& u_{A N}(t)=\cos (100 \pi t) \mathrm{V} \\
& u_{B N}(t)=0.8 \cos (100 \pi t-2 \pi / 3) \mathrm{V} \\
& u_{C N}(t)=\cos (100 \pi t+2 \pi / 3) \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& i_{A}(t)=2 / 3 \cos (100 \pi t-\pi / 6) \mathrm{A} \\
& i_{B}(t)=0.8 \cdot 2 / 3 \cos (100 \pi t-2 \pi / 3-\pi / 6) \mathrm{A} \\
& i_{C}(t)=2 / 3 \cos (100 \pi t+2 \pi / 3-\pi / 6) \mathrm{A}
\end{aligned}
$$

Instantaneous electrical power

Numeric example, with $\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\frac{3}{2} \angle 30^{\circ} \Omega$:

$$
\begin{aligned}
p(t) & =p_{A}(t)+p_{B}(t)+p_{C}(t) \\
& =1 / 3(\cos (200 \pi t)+0.64 \cos (200 \pi t-2 \pi / 3)+\cos (200 \pi t+2 \pi / 3))+\sqrt{3} / 3(1.32) \\
& =0.762-0.12 \cos (200 \pi t-2 \pi / 3) \mathrm{W}
\end{aligned}
$$

Instantaneous electrical power

Consider now a balanced three-phase system

$$
\begin{array}{ll}
u_{A N}(t)=U_{\mathrm{P}} \sqrt{2} \cos (\omega t) & i_{A}(t)
\end{array}=I \sqrt{2} \cos (\omega t-\phi), ~ \begin{aligned}
& i_{B}(t) \\
& u_{B N}(t)=I \sqrt{2} \cos \left(\omega t-\phi-\frac{2 \pi}{3}\right) \\
& u_{C N}(t)=U_{\mathrm{P}} \sqrt{2} \cos \left(\omega t-\frac{2 \pi}{3}\right)
\end{aligned}
$$

Instantaneous electrical power

Instantaneous electrical power in three-phase systems

$$
p(t)=p_{A}(t)+p_{B}(t)+p_{C}(t)
$$

$$
\begin{aligned}
p(t)= & 2 U_{\mathrm{P}} I\left(\cos (\omega t) \cos (\omega t-\phi)+\cos \left(\omega t-120^{\circ}\right) \cos \left(\omega t-\phi-120^{\circ}\right)\right. \\
& \left.+\cos \left(\omega t+120^{\circ}\right) \cos \left(\omega t-\phi+120^{\circ}\right)\right)
\end{aligned}
$$

Hint:

$$
\cos (a) \cos (b)=\frac{1}{2}(\cos (a+b)+\cos (a-b)) \quad \cos (a)+\cos \left(a-120^{\circ}\right)++\cos \left(a+120^{\circ}\right)=0
$$

Instantaneous electrical power in balanced three-phase systems

$$
p(t)=3 U_{\mathrm{P}} I \cos (\phi)
$$

Instantaneous electrical power

Numeric example, with $\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\frac{3}{2} \angle 30^{\circ} \Omega$:

$$
\begin{aligned}
u_{A N}(t) & =\cos (100 \pi t) \mathrm{V} \\
u_{B N}(t) & =\cos (100 \pi t-2 \pi / 3) \mathrm{V} \\
u_{C N}(t) & =\cos (100 \pi t+2 \pi / 3) \mathrm{V}
\end{aligned}
$$

3-phase voltages

Instantaneous electrical power

Numeric example, with $\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\frac{3}{2} \angle 30^{\circ} \Omega$:

$$
\begin{aligned}
& u_{A N}(t)=\cos (100 \pi t) \vee \\
& u_{B N}(t)=\cos (100 \pi t-2 \pi / 3) \mathrm{V} \\
& u_{C N}(t)=\cos (100 \pi t+2 \pi / 3) \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
i_{A}(t) & =2 / 3 \cos (100 \pi t-\pi / 6) \mathrm{A} \\
i_{B}(t) & =2 / 3 \cos (100 \pi t-2 \pi / 3-\pi / 6) \mathrm{A} \\
i_{C}(t) & =2 / 3 \cos (100 \pi t+2 \pi / 3-\pi / 6) \mathrm{A}
\end{aligned}
$$

Instantaneous electrical power

Numeric example, with $\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\frac{3}{2} \angle 30^{\circ} \Omega$:

$$
\begin{aligned}
p(t) & =1 / 3(\cos (200 \pi t)+\cos (\pi / 6)) \\
& +1 / 3(\cos (200 \pi t-2 \pi / 3)+\cos (\pi / 6)) \\
& +1 / 3(\cos (200 \pi t+2 \pi / 3)+\cos (\pi / 6))=0.86 \mathrm{~W}
\end{aligned}
$$

Instantaneous electrical power

Summarizing

- The instantaneous electrical power in three phase systems is the sum of the instantaneous powers in each phase.
- The instantaneous electrical power in balanced three phase systems is constant.

Outline

- Instantaneous electrical power

(2) Electrical power in three-phase circuits
(3) Electrical power in balanced three-phase loads

- Power factor correction in balanced three-phase circuits
- Exercises and solutions

Electrical power in three-phase circuits

Total active power and per phase powers
It can be shown that the total active power is the sum of the phase active powers

$$
P=P_{A}+P_{B}+P_{C}
$$

where

$$
P_{i}=\operatorname{Re}\left(\underline{U}_{i} I_{i} *\right)=U_{i} I_{i} \cos \phi_{i}, \quad i=A, B, C
$$

The per phase reactive powers are defined as

$$
Q_{i}=\operatorname{Im}\left(\underline{U}_{i} \underline{I}_{i} *\right)=U_{i} I_{i} \sin \phi_{i}, \quad i=A, B, C
$$

and the phase apparent powers become

$$
S_{i}=U_{i} I_{i}=\sqrt{P_{i}^{2}+Q_{i}^{2}}, \quad i=A, B, C
$$

Electrical power in three-phase circuits

Arithmetic apparent power

The arithmetic apparent power is defined as

$$
S_{A r}=S_{A}+S_{B}+S_{C}
$$

that implies

$$
P F_{A r}=\frac{P}{S_{A r}} .
$$

Vector apparent power

The vector apparent power is defined as

$$
S_{V}=\left|S_{V}\right|
$$

where

$$
\underline{S}_{V}=P_{A}+P_{B}+P_{C}+j\left(Q_{A}+Q_{B}+Q_{C}\right)=P+j Q
$$

that implies

$$
P F_{V}=\frac{P}{S_{V}} .
$$

Electrical power in three-phase circuits

A geometrical interpretation of arithemtic and vector apparent powers, $S_{A r}$ (labeled as S_{A} in the figure) and S_{V}, respectively. Figure extracted from IEEE Standard definitions 1459-2010.

In balanced three-phase systems, both definitions give identical results. However, under unbalanced conditions one has $S_{A r} \geq S_{V}$ which implies $P F_{A r} \leq P F_{V}$.

Note:

IEEE Standard definitions 1459-2010 recommends to renounce to the arithmetic and vector apparent power definitions and replace them with the effective apparent power. However, for simplicity, the vector apparent power is adopted in this course.

Electrical power in three-phase circuits

Exercise 1

400 V
Power network

$$
\begin{aligned}
& Z_{1 A}=10 \Omega, \\
& Z_{1 B}=10-j 10 \Omega, \\
& Z_{1 C}=5+j 10 \Omega, \\
& Z_{A B}=20 \Omega, \\
& Z_{B C}=j 20 \sqrt{3} \Omega, \\
& \underline{Z}_{C A}=-j 20 \sqrt{3} \Omega .
\end{aligned}
$$

Given the circuit above, find:
(1) the power grid currents $\left(\underline{I}_{A}, \underline{I}_{B}, \underline{I}_{C}\right)$, and
(2) the grid powers $(P, Q$ and $S)$.

Outline

- Instantaneous electrical power

Electrical power in three-phase circuits(3) Electrical power in balanced three-phase loads

- Power factor correction in balanced three-phase circuits

0
 Exercises and solutions

Electrical power in balanced three-phase loads

The power for each i-phase (where $\alpha_{A}=0, \alpha_{B}=-120^{\circ}, \alpha_{C}=120^{\circ}$)

$$
p_{i}(t)=2 U_{\mathrm{P}} I\left(\cos \left(\omega t+\alpha_{i}\right) \cos \left(\omega t-\phi+\alpha_{i}\right)\right)
$$

can be split into a DC term plus and an oscillating term

$$
p_{i}(t)=U_{\mathrm{P}} I \cos (\phi)+U_{\mathrm{P}} I \cos \left(2 \omega t-\phi+2 \alpha_{i}\right),
$$

or, alternatively,

$$
p_{i}(t)=U_{\mathrm{P}} I \cos (\phi)\left(1+\cos \left(2 \omega t+2 \alpha_{i}\right)\right)+U_{\mathrm{P}} I \sin (\phi) \sin \left(2 \omega t+2 \alpha_{i}\right)
$$

Hint:

```
cos(a-b)=\operatorname{cos}(a)\operatorname{cos}(b)+\operatorname{sin}(a)\operatorname{sin}(b)
```

Then

$$
p(t)=3 U_{\mathrm{P}} I \cos (\phi)+U_{\mathrm{P}} I \sin (\phi) \underbrace{\left(\sin (2 \omega t)+\sin \left(2 \omega t+120^{\circ}\right)+\sin \left(2 \omega t-120^{\circ}\right)\right)}_{=0}
$$

Electrical power in balanced three-phase loads

Active power in balanced three-phase loads

$$
P=3 U_{\mathrm{P}} I \cos (\phi)
$$

where U_{P} is the phase voltage and I is the line current, or using the line voltage $U=\frac{1}{\sqrt{3}} U_{P}$,

$$
P=\sqrt{3} U I \cos (\phi) .
$$

Reactive power in balanced three-phase loads

$$
Q=3 U_{\mathrm{P}} I \sin (\phi)=\sqrt{3} U I \sin (\phi) .
$$

Apparent power in balanced three-phase loads

$$
S=3 U_{\mathrm{P}} I=\sqrt{3} U I
$$

Power factor in balanced three-phase loads

$$
P F=\frac{P}{S} .
$$

Electrical power in balanced three-phase loads

Exercise 2

From the electrical installation above, where $\underline{Z}=20+j 20 \Omega$, find:
(1) the power grid currents $\left(\underline{I}_{A}, \underline{I}_{B}, \underline{I}_{C}\right)$, and
(2) the grid powers $(P, Q$ and $S)$.

Outline

- Instantaneous electrical power

Electrical power in three-phase circuits(3) Electrical power in balanced three-phase loads

4 Power factor correction in balanced three-phase circuits

- Exercises and solutions

PF correction in balanced three-phase circuits

Exercise 3

Motivating example: A three-phase 4.5 kV transmission line connects a the power grid with a 5 MW load placed 100 m far from the power substation. If the resistivity of the line is $4.5 \cdot 10^{-4} \Omega m^{-1}$. Calculate for $P F=0.8$ and $P F=1$:

- the power losses, and
- the annual cost of the losses (Consider $5 \mathrm{c} € / \mathrm{kWh}$).

PF correction in balanced three-phase circuits

> P and Q of a 3-phase load $$
\begin{aligned} P_{\text {load }} & =3 U_{\mathrm{P}} I_{\text {load }} \cos \phi_{\text {load }} \\ Q_{\text {load }} & =3 U_{\mathrm{P}} I_{\text {load }} \sin \phi_{\text {load }}\end{aligned}
$$

The total 3-phase power

$$
\begin{aligned}
\underline{S}_{N} & =P_{N}+j Q_{N} \\
& =P_{\text {load }}+P_{C}+j\left(Q_{\text {load }}+Q_{C}\right)
\end{aligned}
$$

PF correction in balanced three-phase circuits

P and Q of a Y-bank of capacitors

$$
\begin{aligned}
P_{C Y} & =0 \\
Q_{C Y} & =-3 \omega C_{\mathrm{Y}} U_{\mathrm{P}}^{2}
\end{aligned}
$$

P and Q of a Δ-bank of capacitors

$$
\begin{aligned}
P_{C \Delta} & =0 \\
Q_{C \Delta} & =-3 \omega C_{\Delta} U_{\mathrm{L}}^{2}
\end{aligned}
$$

Total reactive power

$$
\begin{aligned}
Q_{N} & =Q_{\text {load }}+Q_{C Y} \\
& =Q_{\text {load }}-3 \omega C_{\mathrm{Y}} U_{\mathrm{P}}^{2}
\end{aligned}
$$

Capacitance of the Y -bank

$$
\begin{aligned}
C_{\mathrm{Y}} & =\frac{P\left(\tan \phi_{\text {load }}-\tan \phi_{N}\right)}{3 \omega U_{\mathrm{P}}^{2}} \\
& =\frac{P\left(\tan \phi_{\text {load }}-\tan \phi_{N}\right)}{\omega U_{\mathrm{L}}^{2}}
\end{aligned}
$$

Total reactive power

$$
\begin{aligned}
Q_{N} & =Q_{\text {load }}+Q_{C \Delta} \\
& =Q_{\text {load }}-3 \omega C_{\Delta} U_{\mathrm{L}}^{2}
\end{aligned}
$$

Capacitance of the Δ-bank

$$
\begin{aligned}
C_{\Delta} & =\frac{P\left(\tan \phi_{\text {load }}-\tan \phi_{N}\right)}{3 \omega U_{\mathrm{L}}^{2}} \\
& =\frac{P\left(\tan \phi_{\text {load }}-\tan \phi_{N}\right)}{9 \omega U_{\mathrm{P}}^{2}}
\end{aligned}
$$

Outline

- Instantaneous electrical power
- Electrical power in three-phase circuits
(3) Electrical power in balanced three-phase loads
- Power factor correction in balanced three-phase circuits
(5) Exercises and solutions

Exercises I

Exercise 4

CT1: An electrical installation with 18 devices is connected to a symmetric and balanced 400 V 50 Hz power network. See table below.

Num.	Conn.	Unitary P [kW]	Unitary $Q[k v a r]$	Unitary S [kVA]	$P F$
3	D	20	-	-	$0.6(i)$
10	Y	4	2.5	-	-
5	Y	-	-	4	1

(1) Calculate the line currents.
(2) Calculate the bank of capacitors required to set the power factor up to 0.96(i). Which is the new absorved current?

Exercises II

Exercise 5

CT2: A company has the following (balanced) three-phase loads connected to a 380 V power grid
a) $P=50 \mathrm{~kW}, \cos \varphi=0.8(i), Y$-connected load
b) $P=24 \mathrm{~kW}, Q=12 \mathrm{kvar}, \Delta$-connected load
c) $S=20 k V A, \cos \varphi=0.96(i), \Delta$-connected load
d) $P=20 \mathrm{~kW}, \cos \varphi=1, Y$-connected load
(1) Calculate the line currents.
(2) Calculate equivalent impedances for each load.
(3) With the obtained impedances, sketch the electrical circuit of the installation.

Solutions I

Solution to Exercise 1

- $\underline{I}_{A 1}=5.13 \angle-49.36^{\circ} \mathrm{A}, \underline{I}_{A 2}=30.55 \angle 40.89^{\circ} \mathrm{A}, \underline{I}_{A}=30.95 \angle 31.36^{\circ} \mathrm{A}$
$\underline{I}_{B 1}=27.84 \angle-97.65^{\circ} \mathrm{A}, \underline{I}_{B 2}=30.55 \angle-160.89^{\circ} \mathrm{A}, \underline{I}_{B}=49.74 \angle-130.91^{\circ} \mathrm{A}$ $\underline{I}_{C 1}=31.49 \angle 89.33^{\circ} \mathrm{A}, \underline{I}_{C 2}=11.55 \angle-60^{\circ} \mathrm{A}, \underline{I}_{C}=22.35 \angle 74.05^{\circ} \mathrm{A}$
- $P_{1}=12.97 \mathrm{~kW}, Q_{1}=2.16 \mathrm{kvar}, S_{1}=13.15 \mathrm{kVA}$
$P_{2}=8 \mathrm{~kW}, Q_{2}=0 \mathrm{kvar}, S_{2}=8 \mathrm{kVA}$
$P=20.97 \mathrm{~kW}, Q=2.16 \mathrm{kvar}, S=21.08 \mathrm{kVA}$

Solutions II

Solution to Exercise 2

$$
\begin{aligned}
& \underline{I}_{A 1}=23.27 \angle-45^{\circ} \mathrm{A}, \underline{I}_{B 1}=23.27 \angle-165^{\circ} \mathrm{A}, \underline{I}_{C 1}=23.27 \angle 75^{\circ} \mathrm{A} \\
& \underline{I}_{A 2}=23.16 \angle-36.87^{\circ} \mathrm{A}, \underline{I}_{B 2}=23.16 \angle-156.87^{\circ} \mathrm{A}, \underline{I}_{C 2}=26.47 \angle 83.13^{\circ} \mathrm{A} \\
& \underline{I}_{A 3}=\underline{I}_{C 3}=10.52 \angle-30^{\circ} \mathrm{A}, \underline{I}_{B 3}=0 \mathrm{~A} \\
& \underline{I}_{A}=56.68 \angle-38.92^{\circ} \mathrm{A}, \underline{I}_{B}=46.31 \angle-160.94^{\circ} \mathrm{A}, \underline{I}_{C}=50.74 \angle 90.36^{\circ} \mathrm{A} \\
& \\
& P_{1}=10.83 \mathrm{~kW}, Q_{1}=10.83 \mathrm{kvar}, S_{1}=15.3159 \mathrm{kVA}, \\
& P_{2}=12.1951 \mathrm{~kW}, Q_{2}=9.1463 \mathrm{kvar}, S_{2}=15.2439 \mathrm{kVA}, \\
& P_{3}=4 \mathrm{~kW}, Q_{3}=0 \mathrm{kvar}, S_{3}=4 \mathrm{kVA} \\
& P=27.0251 \mathrm{~kW}, Q=19.9763 \mathrm{kvar}, S=33.6067 \mathrm{kVA}
\end{aligned}
$$

Solution to Exercise 3

	Current [A]	Losses [kW]	Annual cost [€]
$\mathrm{PF}=0.8$	801.9	86.8	38021.2
$\mathrm{PF}=1$	641.5	55.6	24333.3

Solutions III

Solution to Exercise 4

(1) $I=230 \mathrm{~A}$
(2) $Q_{c}=70 \mathrm{kvar}, I=180.4 \mathrm{~A}$

Solution to Exercise 5

(1) $\underline{I}_{A}=191.28 \angle-25.95^{\circ} \mathrm{A}, \underline{I}_{B}=a^{2} \underline{I}_{A} \mathrm{~A}, \underline{I}_{C}=a \underline{I}_{A} \mathrm{~A}$,
(2) $\underline{Z}_{a}=1.848+j 1.386 \Omega, \underline{Z}_{b}=14.440+j 7.220 \Omega, \underline{Z}_{c}=20.794+j 6.065 \Omega$, $\underline{Z}_{d}=7.220 \Omega$

Electrical Systems

Lecture 8: Electrical power in three-phase circuits

Arnau Dòria-Cerezo
 \square arnau.doria@upc.edu

Dept. Electrical Engineering, and Inst. of Industrial and Control Engineering

Last revised: April 27, 2021

