Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica Lecture 1

Marius A. Marinescu
Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

15 de febrero de 2021

Outline

(1) Introduction and Basic Notions

- Definition of Vectorial Space
- Vectors in two and three dimensions: \mathbb{R}^{2} and \mathbb{R}^{3}
- Standard basis and parametric equations
- Examples

Outline

(1) Introduction and Basic Notions

- Definition of Vectorial Space
- Vectors in two and three dimensions: \mathbb{R}^{2} and \mathbb{R}^{3}
- Standard basis and parametric equations
- Examples

Definition

A set is a collection of defined objects. . In other words a set is given by his elements and has a property that determines whatever is or not in the set.

Examples,

- The set of natural numbers less than 3 .
- The set of the prime numbers. ç

We denote $\mathbf{x} \in \mathbf{S}$ when a element x belongs to the set S. We can describe a set by showing explicitly his elements or we can describe the set using a condition it satisfies:
$S=\{x: x$ satisfies condition $P\}$. For example, $A=\{x: x \in \mathbb{N}$ and $x<3\}$.

Definition

A correspondence is any rule who associate elements of a set A with elements of a set B.

Definition

An application or function is a correspondence where any element of A is associated with an element of B and only one.

We call image or range to the set $f(A)=\{b \in B$: where exists a, such as $f(a)=b\}$.
An application can be:

- Injective. If different elements has different images. So $f(a)=f\left(a^{\prime}\right)$ means $a=a^{\prime}$.
- Surjective. If $f(A)=B$. That is that $\forall b \in B$, exists $a \in A$ such as $b=f(a)$.
- Bijective. If it is injective and Surjective.

Examples:

- $f(x)=x^{2}, x \in \mathbb{R}$ is just an application. But if we define x only in \mathbb{N} is injective and if we define x in \mathbb{R}^{+}is bijective.
- $g(x)=e^{x}$, is injective but not bijective.
- $h(x)=x$, is bijective.

As you see the notion doesn't depend only on the function f but also of the set where it is defined. If an application is bijective it has inverse $f^{-1}: B \rightarrow A$ and is also bijective.

Given two functions $f: A \rightarrow B$ and $g: C \rightarrow D$, with $f(A) \subseteq C$ his composition, $g \circ f$ is an app from $\mathrm{A} \rightarrow \mathrm{D}$ defined as $g(f(a))$.

It is easily verified that in general $g \circ f \neq f \circ g$ but is associative. Try for example: $f(x)=x^{2}$ and $g(x)=x / \sqrt{x^{2}+1}$.

Figura: Examples of functions.

To define a Vectorial Space mathematically, we would need to introduce the notion of group, ring, field and more. It is not the goal of this course.

It would look like,
Let be \mathbb{K} a field and V a non empty set, then V is a vectorial space over \mathbb{K} if...

It is not very tempting right?

The branches of maths that studies this are called linear algebra and algebraic structures. As a curios comment, for mathematician a vectorial space is more than our geometrically intuitive space \mathbb{R}^{2} or \mathbb{R}^{3}. Mathematically, the space of all matrices $\mathbb{M}_{m_{\times} n}$ or the space of the group of all real function are also Vectorial Spaces.

Definition

For us a vectorial space will be \mathbb{R}^{n} for $n=1,2,3, \ldots$ associated with two operations defined over the set \mathbb{R}^{n} : the sum and the scalar multiplication.

Figura: \mathbb{R}^{2} and \mathbb{R}^{3}.

Outline

(1) Introduction and Basic Notions

- Definition of Vectorial Space
- Vectors in two and three dimensions: \mathbb{R}^{2} and \mathbb{R}^{3}
- Standard basis and parametric equations
- Examples

Notation

- We will use boldface letters to denote vectors

$$
\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2} \quad \text { or } \quad \mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}
$$

- We will refer to single real numbers as scalars, $a \in \mathbb{R}$.

Definition

- A vector in \mathbb{R}^{2} is an ordered pair of real numbers

$$
\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}, \quad \text { e.g., } \quad(\pi, 17) \in \mathbb{R}^{2}
$$

- A vector in \mathbb{R}^{3} is an ordered triple of real numbers

$$
\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}, \quad \text { e.g., } \quad(\pi, e, \sqrt{2}) \in \mathbb{R}^{3}
$$

Algebraic and Geometric Perspectives

- The Notions of a vector is fundamental for calculus of several variables.
- There are always two points of view: algebraic (above definition) and geometric (visual interpretation).
- Both perspectives are necessary in order to solve problems effectively.

Definition

- Two vectors $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{R}^{3} are equal if their corresponding components are equal

$$
\begin{aligned}
& a_{1}=b_{1} \\
& a_{2}=b_{2} \\
& a_{3}=b_{3}
\end{aligned}
$$

- The same definition holds for vectors in \mathbb{R}^{2}.

Example

- Vectors $\mathbf{a}=(1,2)$ and $\mathbf{b}=\left(\frac{3}{3}, \frac{6}{3}\right)$ are equal in \mathbb{R}^{2}.
- Vectors $\mathbf{c}=(1,2,3)$ and $\mathbf{d}=(2,3,1)$ are not equal in \mathbb{R}^{3}.

Definition: Vector Addition

- Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be two vectors in \mathbb{R}^{3}
- The vector sum $\mathbf{a}+\mathbf{b}$ is the vector in \mathbb{R}^{3} obtained via componentwise addition:

$$
\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

Example

- $(0,1,3)+(7,-2,10)=(7,-1,13)$ in \mathbb{R}^{3}
- $(1,1)+(\pi, \sqrt{2})=(1+\pi, 1+\sqrt{2})$ in \mathbb{R}^{2}

Sum properties:
Properties of Vector Addition

1. Commutativity: $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$
2. Associativity: $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$
3. Zero Vector or neutral element: a special vector $\mathbf{0}=(0,0,0)$ with the property that $\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in \mathbb{R}^{3}$.

Now we define the scalar multiplication:

Scalar Multiplication

- Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ be a vector in \mathbb{R}^{3}.
- Let $k \in \mathbb{R}$ be a scalar (real number).
- The scalar product k a is the vector in \mathbb{R}^{3} given by multiplying each component of a by k

$$
k \mathbf{a}=\left(k a_{1}, k a_{2}, k a_{3}\right)
$$

Example

- If $\mathbf{a}=(2,0, \sqrt{2})$ and $k=7$ then $k \mathbf{a}=(14,0,7 \sqrt{2})$.

Properties of Scalar Multiplication

For all vectors a and \mathbf{b} in \mathbb{R}^{3} and scalars k and I in \mathbb{R}, we have

1. $(k+l) \mathbf{a}=k \mathbf{a}+l \mathbf{a}$ (distributivity)
2. $k(\mathbf{a}+\mathbf{b})=k \mathbf{a}+k \mathbf{b}$ (distributivity)
3. $k(l \mathbf{a})=(k l) \mathbf{a}=I(k \mathbf{a})$

First Interpretation: Vectors as points

- A vector a in \mathbb{R}^{2} may be thought of as a point in plane \mathbb{R}^{2} and a vector a in \mathbb{R}^{3} may be thought of as a point in space \mathbb{R}^{3} :

- This interpretation in terms of points has not meaningful geometric interpretation.

Second Interpretation: Vectors as Positions

- We can visualise a vector in \mathbb{R}^{2} or \mathbb{R}^{3} as an arrow that begins at the origin and ends at the point. We associate a vector with the point where it ends (bijective application). In this way the elements of \mathbb{R}^{n} are points but also vectors.
- Such a description is often referred to as the position vector of the point $\left(a_{1}, a_{2}\right)$ or $\left(a_{1}, a_{2}, a_{3}\right)$.

As we usually have been told, vectors have magnitude and direction:

Second Interpretation: Vectors as Positions

- We take magnitude to mean length of the arrow.
- We take direction to be the orientation or sense of the arrow.

Note

- There is an exception to this approach, the zero vector.
- It just sits at the origin, like a point.
- It has no magnitude and, therefore, an indeterminate direction.

Second Interpretation: Vectors as Positions

- In physics, not all vectors are represented by arrows having their tails bound to the origin.
- We need "the freedom" to parallel translate vectors throughout \mathbb{R}^{2} and \mathbb{R}^{3}.
- One may represent the vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ by an arrow with its tail at any point.

For this we need the following definition:

Definition

A free vector is a vector with an start not necessarily at the origin. Two of this vectors are the same if we can obtain one from another with a movement of translation.

Note

The previous intuitive definition of free vectors, can be mathematically defined as a so-called affine space. Not necessary for this course.

Second Interpretation: Vectors as Positions

- If we wish to represent $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ by an arrow with its tail at the point

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

- Then, the head of the arrow would be at the point

$$
\left(x_{1}+a_{1}, x_{2}+a_{2}, x_{3}+a_{3}\right)
$$

Vector Addition: geometric interpretation

- It is the so-called parallelogram law.
- Assume \mathbf{a} and \mathbf{b} are nonparallel vectors drawn with their tails emanating from the same point.
- Then $\mathbf{a}+\mathbf{b}$ may be represented by the arrow that runs along a diagonal of the parallelogram.

Vector Addition: algebraic and geometric

- We check that geometric constructions agree with algebraic definitions.
- Let $\mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)$ be two vectors in \mathbb{R}^{2}.
- The arrow obtained from the parallelogram law addition is the one whose tail is at the origin and whose head is at the point:

$$
P=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)
$$

Scalar multiplication: algebraic vs geometric

- Scalar multiplication is easier to visualise.
- The vector ka may be represented. by an arrow whose:
- length is $|k|$ times the length of \mathbf{a}.
- direction is the same as that of a when $k>0$ and the opposite when $k<0$.

Vector subtraction: algebraic Notions and geometric visualization

- The difference $\mathbf{a}-\mathbf{b}$ between two vectors is defined as

$$
\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})
$$

- It may be represented by an arrow pointing from the head of \mathbf{b} toward the head of \mathbf{a}

- Such an arrow is also a diagonal of the parallelogram determined by \mathbf{a} and \mathbf{b}.

Definition 1.5: the displacement vector

- Given two points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ in \mathbb{R}^{3}, the displacement vector from P_{1} to P_{2} is

$$
\overrightarrow{P_{1} P_{2}}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
$$

Example: position and velocity of a particle

- Suppose a particle in space is at the point $\left(a_{1}, a_{2}, a_{3}\right)$.
- Then, the particle has position vector

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)
$$

- Assume that the particle travels with constant velocity $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ for t seconds

Which is the particle's displacement from its original position?

Which is its new coordinate position?

Example: position and velocity of a particle

- The particle's displacement from its original position is $t \mathbf{v}$
- Its new coordinate position is $\mathbf{a}+t \mathbf{v}$

Example 5

- The S.S. Calculus is cruising due south at a rate of 15 knots (nautical miles per hour) with respect to still water.
- However, there is also a current of $5 \sqrt{2}$ knots southeast.

What is the total velocity of the ship?

If the ship is initially at the origin and a lobster pot is at position $(20,-79)$, will the ship collide with the lobster pot?

Example 5

- Since velocities are vectors, the total velocity of the ship is

$$
\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}
$$

- $\mathbf{v}_{\mathbf{1}}$ is the velocity of the ship with respect to still water
- $\mathbf{v}_{\mathbf{2}}$ is the southeast-pointing velocity of the current

Example 5

- We easily know that $\mathbf{v}_{\mathbf{1}}=(0,-15)$
- Since $\mathbf{v}_{\mathbf{2}}$ points southeastward, its direction must be along the line

$$
y=-x
$$

- Therefore, $\mathbf{v}_{\mathbf{2}}$ can be written as $\mathbf{v}_{\mathbf{2}}=(v,-v)$, where v is a positive real number
- By the Pythagorean theorem, if the length of $\mathbf{v}_{\mathbf{2}}$ is $5 \sqrt{2}$, then

$$
v^{2}+(-v)^{2}=(5 \sqrt{2})^{2} \Rightarrow 2 v^{2}=50 \Rightarrow v=5 \Rightarrow \mathbf{v}_{2}=(5,-5)
$$

- Hence, the net velocity is

$$
(0,-15)+(5,-5)=(5,-20)
$$

Example 5

- After 4 hours, therefore, the ship will be at position

$$
(0,0)+4(5,-20)=(20,-80)
$$

- Thus, it will miss the lobster pot.

Example 6

- The theory behind the art of judo is an excellent example of vector addition.
- If two people, one relatively strong and the other relatively weak, have a shoving match, it is clear who will prevail.
- Someone pushing one way with 200 lb of force will succeed in overpowering another pushing the oppositeway with 100 lb .
- Indeed, the net force will be 100 lb in the direction in which the stronger person is pushing.

Example

- The weaker participant applies his or her 100 lb of force in a direction only slightly different from that of the stronger.
- He or she will effect a vector sum of length large enough to surprise the opponent.

$$
>200 \mathrm{lb}
$$

- This is the basis for essentially all of the throws of judo.
- This is why judo is described as:

The art of using a person's strength against himself or herself

Outline

(1) Introduction and Basic Notions

- Definition of Vectorial Space
- Vectors in two and three dimensions: \mathbb{R}^{2} and \mathbb{R}^{3}
- Standard basis and parametric equations
- Examples

The Standard Basis Vectors in \mathbb{R}^{2}

- In \mathbb{R}^{2}, a special notational role is played by the vectors

$$
e_{1}=\mathbf{i}=(1,0) \text { and } e_{2}=\mathbf{j}=(0,1)
$$

- In mathematics is more common to use $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$ notation and in engineering the \mathbf{i}, \mathbf{j} notation. These vector form what is called the standard or canonical base.
- They form a basis because any vector $\mathbf{a}=\left(a_{1}, a_{2}\right)$ may be written in terms of them via vector addition and scalar multiplication:

$$
\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right)+\left(0, a_{2}\right)=a_{1}(1,0)+a_{2}(0,1)=a_{1} \mathbf{i}+a_{2} \mathbf{j}
$$

- They are called canonical because is the natural and most common basis. Nevertheless, any two linear independent vectors can be a base.

The Standard Basis Vectors in \mathbb{R}^{2}

- Geometrically, there is a straightforward significance of the standard basis vectors \mathbf{i} and \mathbf{j}.
- An arbitrary vector $\mathbf{a} \in \mathbb{R}^{2}$ can be decomposed into appropriate vector components along the x - and y-axes.

The Standard Basis Vectors in \mathbb{R}^{3}

- Analogously, the standard basis in \mathbb{R}^{3} is

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0) \text { and } \mathbf{k}=(0,0,1)
$$

The Standard Basis Vectors in \mathbb{R}^{3}

- Any vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ may also be written as

$$
a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

Straight lines in \mathbb{R}^{2}

- In \mathbb{R}^{2}, straight lines are described by equations of the form

$$
y=m x+b
$$

or

$$
A x+B y=C
$$

Straight lines in \mathbb{R}^{3}

- One might expect the same sort of equation for a line in \mathbb{R}^{3} However, a single such linear equation describes a plane, not a line

- A pair of simultaneous equations in x, y and z is required to define a line.

Parametric equations of a curve in \mathbb{R}^{2}

- A curve in the plane may be described analytically by points (x, y) where
- x and y are given as functions of a third independent variable. t
- variable t is known as the parameter.
- These functions give rise to parametric equations for the curve.

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

Example

- Consider the set of equations

$$
\left\{\begin{array}{l}
x=2 \cos t \\
y=2 \sin t
\end{array} \quad 0 \leq t<2 \pi\right.
$$

- They describe a circle of radius 2 , since we may check that

$$
x^{2}+y^{2}=(2 \cos t)^{2}+\left(2 \sin t^{2}\right)=4=2^{2}
$$

Parametric equations of a curve in \mathbb{R}^{3}

- Parametric equations may be used as readily to describe curves in \mathbb{R}^{3}.
- A curve in \mathbb{R}^{3} is the set of points (x, y, z) whose coordinates x, y and z are each given by a function of t,

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t) \\
z=h(t)
\end{array}\right.
$$

Parametric equations: Advantages

- The advantages of using parametric equations are twofold:
- First, they offer a uniform way of describing curves in any number of dimensions.
- Second, they allow you to get a dynamic sense of a curve.

Consider the parameter variable t to represent time and imagine that a particle is travelling along the curve with time

Parametric equations: geometric visualization

- Geometrically we can assign a direction to the curve to signify increasing t
- Notice the arrow:

Parametric equations of lines in \mathbb{R}^{n}

As we know from high-school, a line in \mathbb{R}^{2} or \mathbb{R}^{3} is uniquely determined by two pieces of geometric information:
(1) A vector whose direction is parallel to that of the line.
(2) Any particular point lying on the line.

Parametric equations of lines in \mathbb{R}^{n}

- We call the vector

$$
\mathbf{r}=\overrightarrow{O P} \text { the position vector of } P(x, y, z)
$$

Parametric equations of lines in \mathbb{R}^{n}

- $\mathbf{r}=\overrightarrow{O P}$ can be seen as sum of:
- The position vector \mathbf{b} of the point P_{0} (i.e., $\overrightarrow{O P_{0}}$), and - A vector parallel to a.

Parametric equations of lines in \mathbb{R}^{n}

- Any vector parallel to a must be a scalar multiple of a.
- Letting this scalar be the parameter variable t, we have

$$
\mathbf{r}=\overrightarrow{O P}=\overrightarrow{O P_{0}}+t \mathbf{a}
$$

Proposition

The vector parametric equation for the line through the point $P_{0}=\left(b_{1}, b_{2}, b_{3}\right)$, whose position vector is

$$
\overrightarrow{O P_{0}}=\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
$$

and parallel to

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

is:

$$
\mathbf{r}(t)=\mathbf{b}+t \mathbf{a}
$$

Proposition

- Expanding formula $\mathbf{r}(t)=\mathbf{b}+t \mathbf{a}$

$$
\begin{aligned}
\mathbf{r}(t) & =\overrightarrow{O P}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}+t\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \\
& =\left(a_{1} t+b_{1}\right) \mathbf{i}+\left(a_{2} t+b_{2}\right) \mathbf{j}+\left(a_{3} t+b_{3}\right) \mathbf{k}
\end{aligned}
$$

- Let P has coordinates (x, y, z)

$$
\overrightarrow{O P}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

- Thus, our parametric equations are

$$
\left\{\begin{array}{l}
x=a_{1} t+b_{1} \\
y=a_{2} t+b_{2} \\
z=a_{3} t+b_{3}
\end{array} \quad t \in \mathbb{R}\right.
$$

Proposition

- These parametric equations work just as well in \mathbb{R}^{n}
- We take $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
- The resulting parametric equations are

$$
\left\{\begin{array}{l}
x_{1}=a_{1} t+b_{1} \\
x_{2}=a_{2} t+b_{2} \\
\vdots \\
x_{n}=a_{n} t+b_{n}
\end{array} \quad t \in \mathbb{R}\right.
$$

Examples

Outline

(1) Introduction and Basic Notions

- Definition of Vectorial Space
- Vectors in two and three dimensions: \mathbb{R}^{2} and \mathbb{R}^{3}
- Standard basis and parametric equations
- Examples

Example

- Find the parametric equations of the line through $(1,-2,3)$ and parallel to the vector $\pi \mathbf{i}-3 \mathbf{j}+\mathbf{k}$
- $\mathbf{a}=\pi \mathbf{i}-3 \mathbf{j}+\mathbf{k}$
- $\mathbf{b}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$
- $\mathbf{r}(t)=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}+t(\pi \mathbf{i}-3 \mathbf{j}+\mathbf{k})=(1+\pi t) \mathbf{i}+(-2-3 t) \mathbf{j}+(3+t) \mathbf{k}$
- The parametric equations may be read as

$$
\left\{\begin{array}{l}
x=\pi t+1 \\
y=-3 t-2 \quad t \in \mathbb{R} \\
z=t+3
\end{array}\right.
$$

Example

From Euclidean geometry, two distinct points determine a unique line in \mathbb{R}^{2} or \mathbb{R}^{3}

Find the parametric equations of the line through the points
$P_{0}(1,-2,3)$ and $P_{1}(0,5,-1)$

Example

- We need to find a vector a parallel to the desired line
- The vector with tail at P_{0} and head at P_{1} is such a vector

$$
\overrightarrow{P_{0} P_{1}}=(0-1,5-(-2),-1-3)=-\mathbf{i}+7 \mathbf{j}-4 \mathbf{k}
$$

- For \mathbf{b}, t he position vector of a particular point on the line, we have the choice of taking either

$$
\mathbf{b}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k} \quad \text { or } \quad \mathbf{b}=5 \mathbf{j}-\mathbf{k}
$$

- Hence, the parametric equations

$$
\left\{\begin{array} { l }
{ x = 1 - t } \\
{ y = - 2 + 7 t } \\
{ z = 3 - 4 t }
\end{array} \quad t \in \mathbb { R } \quad \text { or } \quad \left\{\begin{array}{l}
x=-t \\
y=5+7 t \\
z=-1-4 t
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

Parametric Equations of Lines Through Two Distinct Points

- Given two arbitrary points $P_{0}\left(a_{1}, a_{2}, a_{3}\right)$ and $P_{1}\left(b_{1}, b_{2}, b_{3}\right)$
- The line joining them has vector parametric equation

$$
\mathbf{r}(t)=\overrightarrow{P_{0}}+t \overrightarrow{P_{0} P_{1}}
$$

- Which gives parametric equations

$$
\left\{\begin{array}{l}
x=a_{1}+\left(b_{1}-a_{1}\right) t \\
y=a_{2}+\left(b_{2}-a_{2}\right) t \quad t \in \mathbb{R} \\
z=a_{3}+\left(b_{3}-a_{3}\right) t
\end{array}\right.
$$

Note

Parametric equations for a line (or, more generally, for any curve) are never unique.

From Parametric Equations To Symmetric Form of a Line

- Assume that each $a_{i}, i=1,2,3$ is nonzero.
- One can eliminate the parameter variable t in each equation

$$
\left\{\begin{array} { l }
{ x = a _ { 1 } t + b _ { 1 } } \\
{ y = a _ { 2 } t + b _ { 2 } } \\
{ z = a _ { 3 } t + b _ { 3 } }
\end{array} \quad t \in \mathbb { R } \Rightarrow \left\{\begin{array}{l}
t=\frac{x-b_{1}}{a_{1}} \\
t=\frac{y-b_{2}}{a_{2}} \\
t=\frac{z-b_{3}}{a_{3}}
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

- Thus, the symmetric form is

$$
\frac{x-b_{1}}{a_{1}}=\frac{y-b_{2}}{a_{2}}=\frac{z-b_{3}}{a_{3}}
$$

Example 4

- The first set of parametric equations give rise to the corresponding symmetric form

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x = 1 - t } \\
{ y = - 2 + 7 t } \\
{ z = 3 - 4 t }
\end{array} \quad t \in \mathbb { R } \Rightarrow \left\{\begin{array}{l}
t=\frac{x-1}{-1} \\
t=\frac{y+2}{7} \\
t=\frac{z-3}{-4}
\end{array} t \in \mathbb{R}\right.\right. \\
& \qquad \frac{x-1}{-1}=\frac{y+2}{7}=\frac{z-3}{-4}
\end{aligned}
$$

Example

Find where the line with parametric equations

$$
\left\{\begin{array}{l}
x=t+5 \\
y=-2 t-4 \quad t \in \mathbb{R} \\
z=3 t+7
\end{array}\right.
$$

intersects the plane $3 x+2 y-7 z=2$

- We must locate the point of intersection.
- One way is to find what value of the parameter t gives a point on the line that also lies in the plane

Example

Find where the line with parametric equations

$$
\left\{\begin{array}{l}
x=t+5 \\
y=-2 t-4 \quad t \in \mathbb{R} \\
z=3 t+7
\end{array}\right.
$$

intersects the plane $3 x+2 y-7 z=2$

- This is accomplished by substituting the parametric values for x, y, and z from the line into the equation for the plane.

$$
3(t+5)+2(-2 t-4)-7(3 t+7)=2
$$

- Solving the equation for t, we find that $t=-2$.

Example

Find where the line with parametric equations

$$
\left\{\begin{array}{l}
x=t+5 \\
y=-2 t-4 \\
z=3 t+7
\end{array} \quad t \in \mathbb{R}\right.
$$

intersects the plane $3 x+2 y-7 z=2$.

- Setting t equal to -2 in the parametric equations for the line yields the point $(3,0,1)$.
- Point $(3,0,1)$, indeed, lies in the plane as well.

How should we do this if we start with the symmetric form of the line?

Example 6

Determine whether and where the two lines

$$
\left\{\begin{array} { l }
{ x = t + 1 } \\
{ y = 5 t + 6 } \\
{ z = - 2 t }
\end{array} \quad t \in \mathbb { R } \text { and } \left\{\begin{array}{l}
x=3 t-3 \\
y=t \\
z=t+1
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

intersect

- We must be able to find t_{1} and t_{2} so that, by equating the respective parametric expressions for x, y and z we have

$$
\left\{\begin{array}{l}
t_{1}+1=3 t_{2}-3 \\
5 t_{1}+6=t_{2} \\
-2 t_{1}=t_{2}+1
\end{array} \quad t \in \mathbb{R}\right.
$$

Example 6

Determine whether and where the two lines

$$
\left\{\begin{array} { l }
{ x = t + 1 } \\
{ y = 5 t + 6 } \\
{ z = - 2 t }
\end{array} \quad t \in \mathbb { R } \text { and } \left\{\begin{array}{l}
x=3 t-3 \\
y=t \\
z=t+1
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

intersect

$$
\left\{\begin{array}{l}
t_{1}+1=3 t_{2}-3 \\
5 t_{1}+6=t_{2} \\
-2 t_{1}=t_{2}+1
\end{array} \quad t \in \mathbb{R}\right.
$$

- Using the last two equations

$$
t_{2}=5 t_{1}+6=-2 t_{1}-1 \Rightarrow t_{1}=-1
$$

Example 6

Determine whether and where the two lines

$$
\left\{\begin{array} { l }
{ x = t + 1 } \\
{ y = 5 t + 6 } \\
{ z = - 2 t }
\end{array} \quad t \in \mathbb { R } \text { and } \left\{\begin{array}{l}
x=3 t-3 \\
y=t \\
z=t+1
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

intersect

$$
\left\{\begin{array}{l}
t_{1}+1=3 t_{2}-3 \\
5 t_{1}+6=t_{2} \\
-2 t_{1}=t_{2}+1
\end{array} \quad t \in \mathbb{R}\right.
$$

- Using $t_{1}=-1$ in the second equation, we find that $t_{2}=1$
- Note that the values $t_{1}=-1$ and $t_{2}=1$ also satisfy the first equation

Example 6

Determine whether and where the two lines

$$
\left\{\begin{array} { l }
{ x = t + 1 } \\
{ y = 5 t + 6 } \\
{ z = - 2 t }
\end{array} \quad t \in \mathbb { R } \text { and } \left\{\begin{array}{l}
x=3 t-3 \\
y=t \\
z=t+1
\end{array} \quad t \in \mathbb{R}\right.\right.
$$

intersect

$$
\left\{\begin{array}{l}
t_{1}+1=3 t_{2}-3 \\
5 t_{1}+6=t_{2} \\
-2 t_{1}=t_{2}+1
\end{array} \quad t \in \mathbb{R}\right.
$$

- Setting $t=1$ in the set of parametric equations for the first line gives the desired intersection point, namely, $(0,1,2)$.

Example 7

- Assume a wheel rolls along a flat surface without slipping
- A point on the rim of the wheel traces a curve called a cycloid

- Vector geometry makes it relatively easy to find parametric equations

Example 7

- Suppose that the wheel has radius a
- Suppose that coordinates in \mathbb{R}^{2} are chosen so that the point of interest on the wheel is initially at the origin

Example 7

- After the wheel has rolled through a central angle of t radians, the situation is as shown in figure

Examples

Example 7

- The parametric equations are

$$
\left\{\begin{array}{l}
x=a(t-\sin t) \\
y=a(1-\cos t)
\end{array} \quad t \in \mathbb{R}\right.
$$

