Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica
 Lecture 2

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

22 de febrero de 2021

Outline

(1) Geometry on Euclidean Space

- Dot Product
- Projection of vectors
- The Cross Product
- Summary of products involving vectors

Outline

(1) Geometry on Euclidean Space

- Dot Product
- Projection of vectors
- The Cross Product
- Summary of products involving vectors

Dot and Cross Product

- When we introduced the arithmetic operations,

Why the product of two vectors was not defined?

- Vector multiplication could be defined in a manner analogous to the vector addition:

By componentwise multiplication.

- However, such a definition is not very useful in our context.
- Instead, we shall define and use two different concepts of a product of two vectors:
- The Euclidean inner product, or dot product, defined for two vectors in \mathbb{R}^{n} (where n is arbitrary).
- The cross or vector product, defined only for vectors in \mathbb{R}^{3}.

Definition 3.1

- Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be two vectors.
- The dot (or inner or scalar) product of \mathbf{a} and \mathbf{b} is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Dot product takes two vectors and produces a single real number (not a vector)

Example 1

In \mathbb{R}^{3} we have

$$
\begin{aligned}
(1,-2,5) \cdot(2,1,3) & =(1)(2)+(-2)(1)+(5)(3)=15 \\
(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \cdot(\mathbf{i}-2 \mathbf{k}) & =(3)(1)+(2)(0)+(-1)(-2)=5
\end{aligned}
$$

Properties of Dot Products

If \mathbf{a}, \mathbf{b} and \mathbf{c} are any vectors in \mathbb{R}^{n}, and $k \in \mathbb{R}$ is any scalar:

1. $\mathbf{a} \cdot \mathbf{a} \geq 0$, and $\mathbf{a} \cdot \mathbf{a}=0$ if and only if $\mathbf{a}=\mathbf{0}$.
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} \quad$ (commutative property)
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c} \quad$ (distributive property)
4. $(k \mathbf{a}) \cdot \mathbf{b}=k(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(k \mathbf{b})$

Definition 3.2

- If $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ then the length of \mathbf{a} (also called the norm or magnitude) is

$$
\|\mathbf{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

- Using the distance formula, the length of the arrow from the origin to $\left(a_{1}, a_{2}, a_{3}\right)$ is

$$
\operatorname{dist}(\mathbf{a}, \mathbf{0})=\sqrt{\left(a_{1}-0\right)^{2}+\left(a_{2}-0\right)^{2}+\left(a_{3}-0\right)^{2}}
$$

- Thus,

$$
\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2} \text { or }\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}
$$

Theorem 3.3

Let \mathbf{a} and \mathbf{b} be two nonzero vectors in \mathbb{R}^{3} (or \mathbb{R}^{2}) drawn with their tails at the same point and let θ, where $0 \leq \theta \leq \pi$, be the angle between \mathbf{a} and \mathbf{b},

Then,

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Note

- If either \mathbf{a} or \mathbf{b} is the zero vector, then θ is indeterminate (i.e., can be any angle).

Demonstration on blackboard.

Corollary of Theorem 3.3

- Theorem 3.3 may be used to find the angle between two nonzero vectors \mathbf{a} and b

$$
\theta=\cos ^{-1} \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}
$$

- The use of the inverse cosine is unambiguous, since we take $0 \leq \theta \leq \pi$

Example 2

- If $\mathbf{a}=\mathbf{i}+\mathbf{j}$ and $\mathbf{b}=\mathbf{j}-\mathbf{k}$, then formula gives

$$
\theta=\cos ^{-1} \frac{(\mathbf{i}+\mathbf{j}) \cdot(\mathbf{j}-\mathbf{k})}{\|\mathbf{i}+\mathbf{j}\|\|\mathbf{j}-\mathbf{k}\|}=\cos ^{-1} \frac{1}{(\sqrt{2} \cdot \sqrt{2})}=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3}
$$

Orthogonality

- If \mathbf{a} and \mathbf{b} are nonzero, v then Theorem 3.3 implies

$$
\cos \theta=0 \text { if and only if } \mathbf{a} \cdot \mathbf{b}=0
$$

- We have $\cos \theta=0$ just in case $\theta=\frac{\pi}{2}$

$$
\text { Remember that } 0 \leq \theta \leq \pi
$$

- We call \mathbf{a} and \mathbf{b} perpendicular (or orthogonal) when $\mathbf{a} \cdot \mathbf{b}=0$
- If either \mathbf{a} or \mathbf{b} is the zero vector, the angle θ is undefined
- Since $\mathbf{a} \cdot \mathbf{b}=0$ if \mathbf{a} or \mathbf{b} is $\mathbf{0}$, we adopt the standard convention

The zero vector is perpendicular to every vector

Example 3

- The vector $\mathbf{a}=\mathbf{i}+\mathbf{j}$ is orthogonal to the vector $\mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}$

$$
(\mathbf{i}+\mathbf{j}) \cdot(\mathbf{i}-\mathbf{j}+\mathbf{k})=(1)(1)+(1)(-1)+(0)(1)=0
$$

Outline

(1) Geometry on Euclidean Space

- Dot Product
- Projection of vectors
- The Cross Product
- Summary of products involving vectors

Motivation example

- Suppose that a 2 kg object is sliding down a ramp.
- The ramp has a 30° inclination with the horizontal:

- If we neglect friction, the only force acting on the object is gravity.

What is the component of the gravitational force in the direction of motion of the object?

- To answer questions of this nature, we need to find the projection of one vector on another.

Projection of one vector on another: intuitive idea

- Let \mathbf{a} and \mathbf{b} be two nonzero vectors. v
- Imagine dropping a perpendicular line from the head of \mathbf{b} to the line through a.

- The projection of \mathbf{b} onto \mathbf{a}, denoted $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$, is the vector represented by the tiny arrow in figure.

Projection of one vector on another: precise formula

- Recall that

A vector is determined by magnitude (length) and direction

- The direction of $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is either
- The same as that of a or
- Opposite to \mathbf{a} if the angle θ between \mathbf{a} and \mathbf{b} is more than $\frac{\pi}{2}$
- Using trigonometry

$$
|\cos \theta|=\frac{\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|}{\|\mathbf{b}\|}
$$

- The absolute value sign around $\cos \theta$ is needed in case

$$
\frac{\pi}{2} \leq \theta \leq \pi
$$

Projection of one vector on another: precise formula

- Since,

$$
|\cos \theta|=\frac{\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|}{\|\mathbf{b}\|}
$$

- with a bit of algebra and using that $|\mathbf{a} \cdot \mathbf{b}|=\|\mathbf{a}\|\|\mathbf{b}\||\cos \theta|$, we have

$$
\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|=\|\mathbf{b}\||\cos \theta|=\frac{\|\mathbf{a}\|}{\|\mathbf{a}\|}\|\mathbf{b}\||\cos \theta|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}
$$

Thus, we know the magnitude and direction of $\operatorname{proj}_{\mathbf{a}} \mathrm{b}$

We know:
(1) The direction of the projection is $\pm \mathbf{a}$. A unit vector on this direction is $\pm \frac{\mathbf{a}}{\|\mathbf{a}\|}$.
(2) Has norm $\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}$.

So the projection vector $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is:

Formula for $\operatorname{proj}_{\mathrm{a}} \mathrm{b}$

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}= \pm\left(\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}\right) \frac{\mathbf{a}}{\|\mathbf{a}\|}= \pm\left(\frac{ \pm \mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}\right) \frac{\mathbf{a}}{\|\mathbf{a}\|}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

Example 4

- Suppose that a 2 kg object is sliding down a ramp
- The ramp has a 30° incline with the horizontal

- If we neglect friction, the only force acting on the object is gravity

What is the component of the gravitational force in the direction of motion of the object?

Example 4

- We need to calculate $\operatorname{proj}_{\mathbf{a}} \mathbf{F}$
- \mathbf{F} is the gravitational force vector
- a points along the ramp as shown in figure.

Example 4

- The coordinate situation is shown in figure

- The vector $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ has the form,

$$
a_{1}=\|\mathbf{a}\| \cos 210^{\circ} \text { and } a_{2}=\|\mathbf{a}\| \sin 210^{\circ}
$$

Example 4

- We are really only interested in the direction of a, because the projection will be the same for any length of a.
- There is no loss in assuming that \mathbf{a} is a unit vector.
$\mathbf{a}=\left(\cos 210^{\circ}, \sin 210^{\circ}\right)=-\cos 30^{\circ} \mathbf{i}-\sin 30^{\circ} \mathbf{j}=-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}$

Example 4

- Taking $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$, we have $\mathbf{F}=-m g=-2 g \mathbf{j}=-19.6 \mathbf{j}$
- Therefore,

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{F}=\left(\frac{\mathbf{a} \cdot \mathbf{F}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\frac{\left(-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}\right) \cdot(-19.6 \mathbf{j})}{1}\left(-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}\right)
$$

Example 4

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{a}} \mathbf{F} & =\left(\frac{\mathbf{a} \cdot \mathbf{F}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}=\frac{\left(-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}\right) \cdot(-19.6 \mathbf{j})}{1}\left(-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}\right) \\
& =9.8\left(-\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}\right) \approx-8.49 \mathbf{i}-4.9 \mathbf{j}
\end{aligned}
$$

- And the component of \mathbf{F} in this direction is

$$
\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{F}\right\|=\|-8.49 \mathbf{i}-4.9 \mathbf{j}\|=9.8 \mathrm{~N}
$$

Normalization of a vector

- Unit vectors, that is, vectors of length 1 , are important in that they capture the idea of direction

```
They all have the same length
```

- Proposition 3.4 shows that every nonzero vector a can have its length adjusted to give a unit vector

$$
\mathbf{u}=\frac{\mathbf{a}}{\|\mathbf{a}\|}
$$

- u points in the same direction as a.
- This operation is referred to as normalization of the vector. a

Example 5

- A fluid is flowing across a plane surface with uniform velocity v.
- Let \mathbf{n} be a unit vector perpendicular to the plane surface:

- Find (in terms of \mathbf{v} and \mathbf{n}) the volume of the fluid that passes through a unit area of the plane in unit time.

Example 5

- Suppose one unit of time has elapsed, $v=$ space/time $=$ space, for time $=1$.
- Then, over a unit area of the plane (a unit square), the fluid will have filled a "box" as in figure.

- The box may be represented by a parallelepiped.
- The volume we seek is the volume of this parallelepiped.

Example 5

- The volume of this parallelepiped is:

$$
\text { Volume }=(\text { area of base })(\text { height })
$$

- The area of the base is 1 unit by construction.
- The height is given by $\operatorname{proj}_{\mathbf{n}} \mathbf{v}$.
- Since $\mathbf{n} \cdot \mathbf{n}=\|\mathbf{n}\|^{2}=1$

$$
\operatorname{proj}_{\mathbf{n}} \mathbf{v}=\left(\frac{\mathbf{n} \cdot \mathbf{v}}{\mathbf{n} \cdot \mathbf{n}}\right) \mathbf{n}=(\mathbf{n} \cdot \mathbf{v}) \mathbf{n}
$$

- Hence

$$
\left\|\operatorname{proj}_{\mathbf{n}} \mathbf{v}\right\|=\|(\mathbf{n} \cdot \mathbf{v}) \mathbf{n}\|=|\mathbf{n} \cdot \mathbf{v}|\|\mathbf{n}\|=|\mathbf{n} \cdot \mathbf{v}|
$$

Outline

(1) Geometry on Euclidean Space

- Dot Product
- Projection of vectors
- The Cross Product
- Summary of products involving vectors

Motivation

- The cross product of two vectors in \mathbb{R}^{3} is an "honest" product,

it takes two vectors and produces a third one

- However, the cross product possesses less "natural" properties: it cannot be defined for vectors in \mathbb{R}^{2} without first embedding them in \mathbb{R}^{3}
- Intuitively the cross product of two vectors gives another vector perpendicular to both of them. It has norm $\|\mathbf{a}|\|||\mathbf{b} \||\sin \theta|$, the area of the parallelogram formed by the vector \mathbf{a} and \mathbf{b}.

To introduces the definition of cross product we need to remember some Matrix Algebra.

Matrices

- A matrix is a rectangular array of numbers.
- Examples of matrices are

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right],\left[\begin{array}{ll}
1 & 3 \\
2 & 7 \\
0 & 0
\end{array}\right] \text {, and }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- If a matrix has n rows and m columns, we write it $n \times m$.
- Thus, the three matrices just mentioned are, respectively, $2 \times 3,3 \times 2$ and 4×4.
- To some extent, matrices behave algebraically like vectors.
- Mainly interesting for us is the the notion of a determinant.
- It is a real number associated to an square matrix $n \times n$.

Definition 4.2: Determinants

- Let A be a 2×2 or 3×3 matrix.
- Then the determinant of A, denoted $\operatorname{det} \mathbf{A}$ or $|A|$, is the real number computed from the individual entries of A as follows:

1. 2×2 case

If

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Definition 4.2: Determinants

2. 3×3 case

If,

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right],
$$

then,

$$
|A|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a e i+b f g+c d h-c e g-a f h-b d i
$$

Definition 4.2: Determinants

3. 3×3 case in terms of 2×2 determinants

If,

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right],
$$

then,

$$
|A|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

In this case we develop the matrix by minors. This is the general form to calculate a determinant for an arbitrary square matrix A .

There are mnemonic rules for this

Diagonal Approach for 2×2 and 3×3 Determinants

- We write (or imagine) diagonal lines running through the matrix entries

It is not valid
for higher-order determinants

1. 2×2 case

$$
|A|=a d-b c
$$

Diagonal Approach for 2×2 and 3×3 Determinants

2. 3×3 case

We need to repeat the first two columns for the method to work

Definition of Cross Product

The cross product of two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ is:

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}
$$

Example 3

$$
\begin{aligned}
(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \times(\mathbf{i}-\mathbf{j}+\mathbf{k})= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 2 & -1 \\
1 & -1 & 1
\end{array}\right| \\
& =\mathbf{i}-4 \mathbf{j}-5 \mathbf{k}
\end{aligned}
$$

Properties

- The direction of $\mathbf{a} \times \mathbf{b}$ is such that $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} (when both \mathbf{a} and \mathbf{b} are nonzero). v
- It is taken so that the ordered triple ($\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$) is a right-handed set of vectors.
- The length of $\mathbf{a} \times \mathbf{b}$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} or is zero if either \mathbf{a} is parallel to \mathbf{b} or if \mathbf{a} or \mathbf{b} is 0.
- Alternatively, the following formula holds

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the angle between \mathbf{a} and \mathbf{b}.

The norm and orientation of the cross product

- The area of this parallelogram is, $\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$

Example

- Compute the cross product of the standard basis vectors for \mathbb{R}^{3}
- First consider $\mathbf{i} \times \mathbf{j}$ as shown in figure

- The vectors \mathbf{i} and \mathbf{j} determine a square of unit area.

Example

- Compute the cross product of the standard basis vectors for \mathbb{R}^{3}
- The vectors \mathbf{i} and \mathbf{j} determine a square of unit area
- Thus,

$$
\|\mathbf{i} \times \mathbf{j}\|=1
$$

- Any vector perpendicular to both \mathbf{i} and \mathbf{j} must be perpendicular to the plane in which \mathbf{i} and \mathbf{j} lie.
- Hence, $\mathbf{i} \times \mathbf{j}$ must point in the direction of $\pm k$
- The right-hand rule implies that $\mathbf{i} \times \mathbf{j}$ must point in the positive k direction
- Since $\|\mathbf{k}\|=1$, we conclude that,

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}
$$

Properties of the Cross Product

- Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors in \mathbb{R}^{3} and let $k \in \mathbb{R}$ be any scalar. Then:

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$ (anticommutativity)
2. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$ (distributivity)
3. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$ (distributivity)
4. $k(\mathbf{a} \times \mathbf{b})=(k \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(k \mathbf{b})$ (associative with scalars)

It is not associative with vectors as we'll see in the next slide.

Properties the Cross Product Does Not Fulfil

- Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors in \mathbb{R}^{3} and let $k \in \mathbb{R}$ be any scalar.
- In general, the cross product is not commutative

$$
\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}
$$

- In general, the cross product does not fulfill associativity

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}
$$

Example

$$
\text { Let } \mathbf{a}=\mathbf{b}=\mathbf{i} \text { and } \mathbf{c}=\mathbf{j}
$$

$$
\begin{gathered}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{k} \times \mathbf{i}=-\mathbf{j} \\
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=\mathbf{0} \times \mathbf{j}=\mathbf{0}
\end{gathered}
$$

Example

Use vectors to calculate the area of the triangle whose vertices are $A(3,1), B(2,-1)$, and $C(0,2)$ as shown in figure:

Example

- The trick is to recognise that any triangle can be thought of as half of a parallelogram,

- Now, the area of a parallelogram is obtained from a cross product.

Example

- $\overrightarrow{A B} \times \overrightarrow{A C}$ is a vector whose length measures the area of the parallelogram determined by $\overrightarrow{A B}$ and $\overrightarrow{A C}$

$$
\text { Area of } \nabla A B C=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|
$$

Example

- To use the cross product, we must consider $\overrightarrow{A B}, \overrightarrow{A C} \in \mathbb{R}^{3}$
- We simply take the k-components to be zero

$$
\begin{aligned}
& \overrightarrow{A B}=-\mathbf{i}-2 \mathbf{j}=-\mathbf{i}-2 \mathbf{j}-0 \mathbf{k} \\
& \overrightarrow{A C}=-3 \mathbf{i}+\mathbf{j}=-3 \mathbf{i}+\mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
& \overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & -2 & 0 \\
-3 & 1 & 0
\end{array}\right|=-7 \mathbf{k} \\
& \text { Area of } \nabla A B C=\frac{1}{2}\|-7 \mathbf{k}\|=\frac{7}{2}
\end{aligned}
$$

Example

- There is nothing sacred about using A as the common vertex
- We could just as easily have used B or C, as shown in figure

Area of $\nabla A B C=\frac{1}{2}\|\overrightarrow{B A} \times \overrightarrow{B C}\|=\frac{1}{2}\|(\mathbf{i}+2 \mathbf{j}) \times(-2 \mathbf{i}+3 \mathbf{j})\|$

$$
=\frac{1}{2}\|7 \mathbf{k}\|=\frac{7}{2}
$$

Example

Find a formula for the volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} :

Example

- The volume of a parallelepiped is equal to the product of the area of the base and the height.
- The base is the parallelogram determined by \mathbf{a} and \mathbf{b}.
- Its area is $\|\mathbf{a} \times \mathbf{b}\|$.

Example

- The vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to this parallelogram.
- The height of the parallelepiped is $\|\mathbf{c}\||\cos \theta|$.
- θ is the angle between $\mathbf{a} \times \mathbf{b}$ and \mathbf{c}.

The absolute value is needed in case $\theta>\frac{\pi}{2}$

Example

Volume of parallelepiped $=$ (area of base)(height)
 $=\|\mathbf{a} \times \mathbf{b}\|\|\mathbf{c}\||\cos \theta|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$

Example

Volume of parallelepiped $=$

$$
\begin{array}{r}
\text { (area of base)(height) } \\
=\|\mathbf{a} \times \mathbf{b}\|\|\mathbf{c}\||\cos \theta|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|
\end{array}
$$

For example, the parallelepiped determined by the vectors

$$
\mathbf{a}=\mathbf{i}+5 \mathbf{j}, \quad \mathbf{b}=-4 \mathbf{i}+2 \mathbf{j} \text { and } \mathbf{c}=\mathbf{i}+\mathbf{j}+6 \mathbf{k}
$$

Volume of parallelepiped $=|((\mathbf{i}+5 \mathbf{j}) \times(-4 \mathbf{i}+2 \mathbf{j})) \cdot(\mathbf{i}+\mathbf{j}+6 \mathbf{k})|$

$$
=|22 \mathbf{k} \cdot(\mathbf{i}+\mathbf{j}+6 \mathbf{k})|=|22(6)|=132
$$

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt:

- To measure exactly how much the bolt moves, we need the notion of torque (or twisting force).
- Letting F denote the force you apply to the wrench. Then:

Amount of torque $=($ wrench length $)($ component of $F \perp$ wrench $)$

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- Let \mathbf{r} be the vector from the center of the bolt head to the end of the wrench handle
- Then

$$
\text { Amount of torque }=\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta
$$

where θ is the angle between \mathbf{r} and \mathbf{F}.

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- That is, the amount of torque is

$$
\|\mathbf{r} \times \mathbf{F}\|
$$

- And the direction of $\mathbf{r} \times \mathbf{F}$ is the same as the direction in which the bolt moves.

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- Hence, it is quite natural to define the torque vector \mathbf{T} to be

$$
\mathbf{T}=\mathbf{r} \times \mathbf{F}
$$

Turning a bolt with a wrench

- Suppose you use a wrench to turn a bolt

- Note that if \mathbf{F} is parallel to \mathbf{r}, then $\mathbf{T}=\mathbf{0}$

If you try to push or pull the wrench, the bolt does not turn

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

What is the relation between the (linear) velocity of a point of the object and the rotational velocity?

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- First, we need to define a vector ω, the angular velocity vector of the rotation
- This vector points along the axis of rotation, and its direction is determined by the right-hand rule

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- The magnitude of ω is the angular speed (measured in radians per unit time) at which the object spins
- Assume that the angular speed is constant in this discussion

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- Fix a point O (the origin) on the axis of rotation
- Let $\mathbf{r}(t)=\overrightarrow{O P}$ be the position vector of a point P of the body, measured as a function of time

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- The velocity \mathbf{v} of P is defined by

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}
$$

Spinning an object about an axis

- Assume the rotation of a rigid body about an axis as shown in figure

- $\Delta \mathbf{r}=\mathbf{r}(t+\Delta t)-\mathbf{r}(t)$

The vector change in position between times t and $t+\Delta t$

- Our goal is to relate \mathbf{v} and ω

Spinning an object about an axis

- As the body rotates, the point P (at the tip of the vector \mathbf{r}) moves in a circle whose plane is perpendicular to ω
- The radius of this circle is

$$
\|\mathbf{r}(t)\| \sin \theta
$$

where θ is the angle between ω and \mathbf{r}

Spinning an object about an axis

- Both $\|\mathbf{r}(t)\|$ and θ must be constant for this rotation

The direction of $\mathbf{r}(t)$ may change with t, however

Spinning an object about an axis

- If $t \approx 0$, then $\|\Delta \mathbf{r}\|$ is approximately the length of the circular arc swept by P between t and $t+\Delta t$
- That is,
$\|\Delta \mathbf{r}\| \approx \quad($ radius of circle) $($ angle swept through by $P)$
$=(\|\mathbf{r}\| \sin \theta)(\Delta \phi)$

Spinning an object about an axis

- Thus

$$
\left\|\frac{\Delta \mathbf{r}}{\Delta t}\right\| \approx\|\mathbf{r}\| \sin \theta \frac{\Delta \phi}{\Delta t}
$$

Spinning an object about an axis

- Now, let $\Delta t \rightarrow 0$
- Then $\frac{\Delta \mathbf{r}}{\Delta t} \rightarrow \mathbf{v}$ and $\frac{\Delta \phi}{\Delta t} \rightarrow\|\omega\|$ by definition of the angular velocity vector ω
- Thus, we have

$$
\|\mathbf{v}\|=\|\omega\|\|\mathbf{r}\| \sin \theta=\|\omega \times \mathbf{r}\|
$$

Spinning an object about an axis

$$
\|\mathbf{v}\|=\|\omega\|\|\mathbf{r}\| \sin \theta=\|\omega \times \mathbf{r}\|
$$

- It's not difficult to see intuitively that \mathbf{v} must be perpendicular to both ω and \mathbf{r}
- Right-hand rule should enable you to establish the vector equation

$$
\mathbf{v}=\omega \times \mathbf{r}
$$

Spinning an object about an axis

- Apply to a bicycle wheel formula

$$
\|\mathbf{v}\|=\|\omega\|\|\mathbf{r}\| \sin \theta=\|\omega \times \mathbf{r}\|
$$

- It tells us that the speed of a point on the edge of the wheel is equal to the product of
- The radius of the wheel, and
- The angular speed

$$
\theta \text { is } \frac{\pi}{2} \text { in this case }
$$

- If the rate of rotation is kept constant, a point on the rim of a large wheel goes faster than a point on the rim of a small one

Spinning an object about an axis

- In the case of a carousel wheel, this result tells you to sit on an outside horse if you want a more exciting ride.

Outline

(1) Geometry on Euclidean Space

- Dot Product
- Projection of vectors
- The Cross Product
- Summary of products involving vectors

Here we resume the properties:

Scalar Multiplication: $k \mathbf{a}$

- Result is a vector in the direction of a
- Magnitude is $\|k \mathbf{a}\|=|k| \mid \mathbf{a} \|$
- Zero if $k=0$ or $\mathbf{a}=\mathbf{0}$
- Commutative: $k \mathbf{a}=\mathbf{a} k$
- Associative: $k(l \mathbf{a})=(k l) \mathbf{a}$
- Distributive: $k(\mathbf{a}+\mathbf{b})=k \mathbf{a}+k \mathbf{b}$ and $(k+l) \mathbf{a}=k \mathbf{a}+l \mathbf{a}$

Dot Product: $\mathbf{a} \cdot \mathbf{b}$

- Result is a scalar
- Magnitude is $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta ; \theta$ is the angle between \mathbf{a} and \mathbf{b}
- Magnitude is maximized if $\mathbf{a} \| \mathbf{b}$
- Zero if $\mathbf{a} \perp \mathbf{b}, \mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$
- Commutative: $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
- Associativity is irrelevant, since $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$ doesn't make sense
- Distributive: $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
- If $\mathbf{a}=\mathbf{b}$ then $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$

Cross Product: $\mathbf{a} \times \mathbf{b}$

- Result is a vector perpendicular to both \mathbf{a} and \mathbf{b}
- Magnitude is $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta ; \theta$ is the angle between \mathbf{a} and \mathbf{b}
- Magnitude is maximized if $\mathbf{a} \perp \mathbf{b}$
- Zero if $\mathbf{a} \| \mathbf{b}, \mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$
- Anticommutative: $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
- Not associative: In general $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
- Distributive: $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$ and $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
- If $\mathbf{a} \perp \mathbf{b}$ then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\|$

