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Geometry on Euclidean Space

Dot Product

Dot and Cross Product

When we introduced the arithmetic operations,

Why the product of two vectors
was not defined?

Vector multiplication could be defined in a manner
analogous to the vector addition:

By componentwise multiplication.

However, such a definition is not very useful in our context.

Instead, we shall define and use two different concepts of a
product of two vectors:

The Euclidean inner product, or dot product, defined for two
vectors in Rn (where n is arbitrary).
The cross or vector product, defined only for vectors in R3.
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Geometry on Euclidean Space

Dot Product

Definition 3.1

Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors.

The dot (or inner or scalar) product of a and b is

a · b = a1b1 + a2b2 + a3b3

Dot product takes two vectors
and produces a single real number

(not a vector)

Example 1

In R3 we have

(1,−2, 5) · (2, 1, 3) = (1)(2) + (−2)(1) + (5)(3) = 15

(3i + 2j− k) · (i− 2k) = (3)(1) + (2)(0) + (−1)(−2) = 5

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 5 / 76



Geometry on Euclidean Space

Dot Product

Properties of Dot Products

If a,b and c are any vectors in Rn, and k ∈ R is any scalar:

1. a · a ≥ 0, and a · a = 0 if and only if a = 0.

2. a · b = b · a (commutative property)

3. a · (b + c) = a · b + a · c (distributive property)

4. (ka)·b = k(a · b) = a·(kb)
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Geometry on Euclidean Space

Dot Product

Definition 3.2

If a = (a1, a2, a3) then the length of a (also called the norm
or magnitude) is

‖a‖ =
√
a2

1 + a2
2 + a2

3

Using the distance formula, the length of the arrow from the
origin to (a1, a2, a3) is

dist(a,0) =
√

(a1 − 0)2 + (a2 − 0)2 + (a3 − 0)2

Thus,
a · a = ‖a‖2 or ‖a‖ =

√
a · a

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 7 / 76



Geometry on Euclidean Space

Dot Product

Theorem 3.3

Let a and b be two nonzero vectors in R3 (or R2) drawn with their
tails at the same point and let θ, where 0 ≤ θ ≤ π, be the angle
between a and b ,

Then,
a · b = ‖a‖‖b‖ cos θ

Note

If either a or b is the zero vector, then θ is indeterminate (i.e.,
can be any angle).
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Geometry on Euclidean Space

Dot Product

Demonstration on blackboard. �

Corollary of Theorem 3.3

Theorem 3.3 may be used to find the angle between two
nonzero vectors a and b

θ = cos−1 a · b
‖a‖‖b‖

The use of the inverse cosine is unambiguous, since we take
0 ≤ θ ≤ π

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 9 / 76
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Dot Product

Example 2

If a = i + j and b = j− k, then formula gives

θ = cos−1 (i + j) · (j− k)

‖i + j‖‖j− k‖
= cos−1 1

(
√

2 ·
√

2)
= cos−1 1

2
=
π

3
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Dot Product

Orthogonality

If a and b are nonzero, v then Theorem 3.3 implies

cos θ = 0 if and only if a · b = 0

We have cos θ = 0 just in case θ = π
2

Remember that 0 ≤ θ ≤ π

We call a and b perpendicular (or orthogonal) when
a · b = 0

If either a or b is the zero vector, the angle θ is undefined

Since a · b = 0 if a or b is 0, we adopt the standard
convention

The zero vector
is perpendicular to every vector
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Dot Product

Example 3

The vector a = i + j is orthogonal to the vector b = i− j + k

(i + j) · (i− j + k) = (1)(1) + (1)(−1) + (0)(1) = 0
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Projection of vectors

Motivation example

Suppose that a 2 kg object is sliding down a ramp.

The ramp has a 30◦ inclination with the horizontal:

If we neglect friction, the only force acting on the object is
gravity.

What is the component of the gravitational force
in the direction of motion of the object?

To answer questions of this nature, we need to find the
projection of one vector on another.
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Projection of vectors

Projection of one vector on another: intuitive idea

Let a and b be two nonzero vectors. v

Imagine dropping a perpendicular line from the head of b to
the line through a.

The projection of b onto a , denoted projab, is the vector
represented by the tiny arrow in figure.
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Geometry on Euclidean Space

Projection of vectors

Projection of one vector on another: precise formula

Recall that

A vector is determined by
magnitude (length) and direction

The direction of projab is either

The same as that of a or
Opposite to a if the angle θ between a and b is more than π

2

Using trigonometry

| cos θ| = ‖projab‖
‖b‖

The absolute value sign around cos θ is needed in case

π

2
≤ θ ≤ π
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Projection of vectors

Projection of one vector on another: precise formula

Since,

| cos θ| = ‖projab‖
‖b‖

with a bit of algebra and using that |a · b| = ‖a‖‖b‖| cos θ|,
we have

‖projab‖ = ‖b‖| cos θ| = ‖a‖
‖a‖
‖b‖| cos θ| = |a · b|

‖a‖

Thus, we know the magnitude and
direction of projab
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Geometry on Euclidean Space

Projection of vectors

We know:

1 The direction of the projection is ±a. A unit vector on this
direction is ± a

‖a‖ .

2 Has norm |a·b|
‖a‖ .

So the projection vector projab is:

Formula for projab

projab = ±
(
|a · b|
‖a‖

)
a

‖a‖
= ±

(
±a · b
‖a‖

)
a

‖a‖
=

a · b
‖a‖2

a
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Geometry on Euclidean Space

Projection of vectors

Example 4

Suppose that a 2 kg object is sliding down a ramp

The ramp has a 30◦ incline with the horizontal

If we neglect friction, the only force acting on the object is
gravity

What is the component of the gravitational force
in the direction of motion of the object?
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Projection of vectors

Example 4

We need to calculate projaF

F is the gravitational force vector

a points along the ramp as shown in figure.
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Projection of vectors

Example 4

The coordinate situation is shown in figure

The vector a = a1i + a2j has the form,

a1 = ‖a‖ cos 210◦ and a2 = ‖a‖ sin 210◦
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Projection of vectors

Example 4

We are really only interested in the direction of a, because the
projection will be the same for any length of a.

There is no loss in assuming that a is a unit vector.

a = (cos 210◦, sin 210◦) = − cos 30◦i− sin 30◦j = −
√

3

2
i− 1

2
j
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Projection of vectors

Example 4

Taking g = 9.8m/sec2, we have F = −mg = −2gj = −19.6j

Therefore,

projaF =

(
a · F
a · a

)
a =

(
−
√

3
2 i− 1

2 j
)
· (−19.6j)

1

(
−
√

3

2
i− 1

2
j

)
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Projection of vectors

Example 4

projaF =

(
a · F
a · a

)
a =

(
−
√

3
2 i− 1

2 j
)
· (−19.6j)

1

(
−
√

3

2
i− 1

2
j

)

= 9.8

(
−
√

3

2
i− 1

2
j

)
≈ −8.49i− 4.9j

And the component of F in this direction is

‖projaF‖ = ‖−8.49i− 4.9j‖ = 9.8 N
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Projection of vectors

Normalization of a vector

Unit vectors, that is, vectors of length 1, are important in that
they capture the idea of direction

They all have the same length

Proposition 3.4 shows that every nonzero vector a can have
its length adjusted to give a unit vector

u =
a

‖a‖

u points in the same direction as a.

This operation is referred to as normalization of the vector. a
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Projection of vectors

Example 5

A fluid is flowing across a plane surface with uniform velocity
v.

Let n be a unit vector perpendicular to the plane surface:

Find (in terms of v and n) the volume of the fluid that passes
through a unit area of the plane in unit time.
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Projection of vectors

Example 5

Suppose one unit of time has elapsed,
v = space/time = space, for time=1.

Then, over a unit area of the plane (a unit square), the fluid
will have filled a “box” as in figure.

The box may be represented by a parallelepiped.

The volume we seek is the volume of this parallelepiped.
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Projection of vectors

Example 5

The volume of this parallelepiped is:

Volume = (area of base) (height)

The area of the base is 1 unit by construction.

The height is given by projnv.

Since n · n = ‖n‖2 = 1

projnv =
(n · v
n · n

)
n = (n · v)n

Hence

‖projnv‖ = ‖(n · v)n‖ = |n · v|‖n‖ = |n · v|
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Geometry on Euclidean Space

The Cross Product

Motivation

The cross product of two vectors in R3 is an “honest”
product,

it takes two vectors
and produces a third one

However, the cross product possesses less “natural” properties:

it cannot be defined for vectors in R2

without first embedding them in R3

Intuitively the cross product of two vectors gives another
vector perpendicular to both of them. It has norm
‖a‖‖b‖| sin θ|, the area of the parallelogram formed by the
vector a and b.

To introduces the definition of cross product we need to remember
some Matrix Algebra.
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The Cross Product

Matrices

A matrix is a rectangular array of numbers.

Examples of matrices are

[
1 2 3
4 5 6

]
,

1 3
2 7
0 0

 , and


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


If a matrix has n rows and m columns, we write it n×m.

Thus, the three matrices just mentioned are, respectively,
2× 3, 3× 2 and 4× 4.

To some extent, matrices behave algebraically like vectors.

Mainly interesting for us is the the notion of a determinant.

It is a real number associated to an square matrix n× n.

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 31 / 76
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The Cross Product

Definition 4.2: Determinants

Let A be a 2× 2 or 3× 3 matrix.

Then the determinant of A, denoted det A or |A|, is the real
number computed from the individual entries of A as follows:

1. 2× 2 case

If

A =

[
a b
c d

]
,

then

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad− bc
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The Cross Product

Definition 4.2: Determinants

2. 3× 3 case

If,

A =

a b c
d e f
g h i

 ,
then,

|A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− ceg − afh− bdi
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Geometry on Euclidean Space

The Cross Product

Definition 4.2: Determinants

3. 3× 3 case in terms of 2× 2 determinants

If,

A =

a b c
d e f
g h i

 ,
then,

|A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
In this case we develop the matrix by minors. This is the general
form to calculate a determinant for an arbitrary square matrix A.
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The Cross Product

There are mnemonic rules for this

Diagonal Approach for 2× 2 and 3× 3 Determinants

We write (or imagine) diagonal lines running through the
matrix entries

It is not valid
for higher-order determinants

1. 2× 2 case

|A| = ad− bc
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The Cross Product

Diagonal Approach for 2× 2 and 3× 3 Determinants

2. 3× 3 case

We need to repeat the first two columns
for the method to work

|A| = aei+ bfg + cdh− ceg − afh− bdi
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The Cross Product

Definition of Cross Product

The cross product of two vectors a = a1i + a2j + a3k and
b = b1i + b2j + b3k is:

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ =

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ i− ∣∣∣∣a1 a3

b1 b3

∣∣∣∣ j +

∣∣∣∣a1 a2

b1 b2

∣∣∣∣k
Example 3

(3i + 2j− k)× (i− j + k) =

∣∣∣∣∣∣
i j k
3 2 −1
1 −1 1

∣∣∣∣∣∣
= i− 4j− 5k
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The Cross Product

Properties

The direction of a× b is such that a× b is perpendicular to
both a and b (when both a and b are nonzero). v

It is taken so that the ordered triple (a,b,a× b) is a
right-handed set of vectors.

The length of a× b is the area of the parallelogram spanned
by a and b or is zero if either a is parallel to b or if a or b is
0.

Alternatively, the following formula holds

‖a× b‖ = ‖a‖‖b‖ sin θ

where θ is the angle between a and b.
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The Cross Product

The norm and orientation of the cross product

The area of this parallelogram is,

‖a‖‖b‖ sin θ
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The Cross Product

Example

Compute the cross product of the standard basis vectors for
R3

First consider i× j as shown in figure

The vectors i and j determine a square of unit area.
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The Cross Product

Example

Compute the cross product of the standard basis vectors for
R3

The vectors i and j determine a square of unit area

Thus,
‖i× j‖ = 1

Any vector perpendicular to both i and j must be
perpendicular to the plane in which i and j lie.

Hence, i× j must point in the direction of ±k
The right-hand rule implies that i× j must point in the
positive k direction

Since ‖k‖ = 1, we conclude that,

i× j = k
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The Cross Product

Properties of the Cross Product

Let a,b and c be vectors in R3 and let k ∈ R be any scalar.
Then:

1. a× b = −b× a (anticommutativity)

2. a× (b + c) = a× b + a× c (distributivity)

3. (a + b)× c = a× c + b× c (distributivity)

4. k(a× b) = (ka)× b = a× (kb) (associative with scalars)

It is not associative with vectors as we’ll see in the next slide.
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The Cross Product

Properties the Cross Product Does Not Fulfil

Let a,b and c be vectors in R3 and let k ∈ R be any scalar.

In general, the cross product is not commutative

a× b 6= b× a

In general, the cross product does not fulfill associativity

a× (b× c) 6= (a× b)× c

Example

Let a = b = i and c = j

a× (b× c) = i× (i× j) = i× k = −k× i = −j

(a× b)× c = (i× i)× j = 0× j = 0
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The Cross Product

Example

Use vectors to calculate the area of the triangle whose vertices are
A(3, 1), B(2,−1), and C(0, 2) as shown in figure:

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 44 / 76



Geometry on Euclidean Space

The Cross Product

Example

The trick is to recognise that any triangle can be thought of
as half of a parallelogram,

Now, the area of a parallelogram is obtained from a cross
product.
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The Cross Product

Example

−−→
AB ×

−→
AC is a vector whose length measures the area of the

parallelogram determined by
−−→
AB and

−→
AC

Area of ∇ABC =
1

2
‖
−−→
AB ×

−→
AC‖
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Geometry on Euclidean Space

The Cross Product

Example

To use the cross product, we must consider
−−→
AB,

−→
AC ∈ R3

We simply take the k-components to be zero

−−→
AB = −i− 2j = −i− 2j− 0k
−→
AC = −3i + j = −3i + j + 0k

Therefore

−−→
AB ×

−→
AC =

∣∣∣∣∣∣
i j k
−1 −2 0
−3 1 0

∣∣∣∣∣∣ = −7k

Area of ∇ABC =
1

2
‖−7k‖ =

7

2

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 47 / 76
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The Cross Product

Example

There is nothing sacred about using A as the common vertex

We could just as easily have used B or C, as shown in figure

Area of ∇ABC =
1

2
‖
−−→
BA×

−−→
BC‖ =

1

2
‖(i + 2j)× (−2i + 3j)‖

=
1

2
‖7k‖ =

7

2
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The Cross Product

Example

Find a formula for the volume of the parallelepiped determined by
the vectors a,b, and c:
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The Cross Product

Example

The volume of a parallelepiped is equal to the product of the
area of the base and the height.

The base is the parallelogram determined by a and b.

Its area is ‖a× b‖.
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The Cross Product

Example

The vector a× b is perpendicular to this parallelogram.

The height of the parallelepiped is ‖c‖| cos θ|.
θ is the angle between a× b and c.

The absolute value is needed in case θ > π
2
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The Cross Product

Example

Volume of parallelepiped = (area of base)(height)

= ‖a× b‖‖c‖| cos θ| = |(a× b) · c|
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The Cross Product

Example

Volume of parallelepiped =

(area of base)(height)

= ‖a× b‖‖c‖| cos θ| = |(a× b) · c|

For example, the parallelepiped determined by the vectors

a = i + 5j, b = −4i + 2j and c = i + j + 6k

Volume of parallelepiped = |((i + 5j)× (−4i + 2j)) · (i + j + 6k)|
= |22k · (i + j + 6k)| = |22(6)| = 132
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The Cross Product

Turning a bolt with a wrench

Suppose you use a wrench to turn a bolt:

To measure exactly how much the bolt moves, we need the
notion of torque (or twisting force).

Letting F denote the force you apply to the wrench. Then:

Amount of torque = (wrench length)(component of F ⊥ wrench)
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The Cross Product

Turning a bolt with a wrench

Suppose you use a wrench to turn a bolt

Let r be the vector from the center of the bolt head to the
end of the wrench handle

Then
Amount of torque = ‖r‖‖F‖sinθ

where θ is the angle between r and F .
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The Cross Product

Turning a bolt with a wrench

Suppose you use a wrench to turn a bolt

That is, the amount of torque is

‖r× F‖

And the direction of r× F is the same as the direction in
which the bolt moves.
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The Cross Product

Turning a bolt with a wrench

Suppose you use a wrench to turn a bolt

Hence, it is quite natural to define the torque vector T to be

T = r× F
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The Cross Product

Turning a bolt with a wrench

Suppose you use a wrench to turn a bolt

Note that if F is parallel to r, then T = 0

If you try to push or pull the wrench,
the bolt does not turn
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The Cross Product

Spinning an object about an axis

Assume the rotation of a rigid body about an axis as shown in
figure

What is the relation between
the (linear) velocity of a point of the object

and the rotational velocity?
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The Cross Product

Spinning an object about an axis

Assume the rotation of a rigid body about an axis as shown in
figure

First, we need to define a vector ω, the angular velocity
vector of the rotation

This vector points along the axis of rotation, and its direction
is determined by the right-hand rule
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Assume the rotation of a rigid body about an axis as shown in
figure

The magnitude of ω is the angular speed (measured in radians
per unit time) at which the object spins

Assume that the angular speed is constant in this discussion
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Assume the rotation of a rigid body about an axis as shown in
figure

Fix a point O (the origin) on the axis of rotation

Let r(t) =
−−→
OP be the position vector of a point P of the

body, measured as a function of time
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Assume the rotation of a rigid body about an axis as shown in
figure

The velocity v of P is defined by

v = ĺım
∆t→0

∆r

∆t
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Assume the rotation of a rigid body about an axis as shown in
figure

∆r = r(t+ ∆t)− r(t)

The vector change in position
between times t and t+ ∆t

Our goal is to relate v and ω
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

As the body rotates, the point P (at the tip of the vector r)
moves in a circle whose plane is perpendicular to ω

The radius of this circle is

‖r(t)‖ sin θ

where θ is the angle between ω and r
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Both ‖r(t)‖ and θ must be constant for this rotation

The direction of r(t)
may change with t, however

Marius A. Marinescu Métodos Matemáticos de Bioingenieŕıa 66 / 76



Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

If t ≈ 0, then ‖∆r‖ is approximately the length of the circular
arc swept by P between t and t+ ∆t

That is,

‖∆r‖ ≈ (radius of circle)(angle swept through by P )

= (‖r‖ sin θ)(∆φ)
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Thus ∥∥∥∥∆r

∆t

∥∥∥∥ ≈ ‖r‖ sin θ
∆φ

∆t
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Now, let ∆t→ 0

Then ∆r
∆t → v and ∆φ

∆t → ‖ω‖ by definition of the angular
velocity vector ω

Thus, we have

‖v‖ = ‖ω‖‖r‖ sin θ = ‖ω × r‖
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

‖v‖ = ‖ω‖‖r‖ sin θ = ‖ω × r‖

It’s not difficult to see intuitively that v must be
perpendicular to both ω and r

Right-hand rule should enable you to establish the vector
equation

v = ω × r
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

Apply to a bicycle wheel formula

‖v‖ = ‖ω‖‖r‖ sin θ = ‖ω × r‖
It tells us that the speed of a point on the edge of the wheel
is equal to the product of

The radius of the wheel, and
The angular speed

θ is π
2 in this case

If the rate of rotation is kept constant, a point on the rim of a
large wheel goes faster than a point on the rim of a small one
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Geometry on Euclidean Space

The Cross Product

Spinning an object about an axis

In the case of a carousel wheel, this result tells you to sit on
an outside horse if you want a more exciting ride.
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Summary of products involving vectors

Outline

1 Geometry on Euclidean Space
Dot Product
Projection of vectors
The Cross Product
Summary of products involving vectors
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Geometry on Euclidean Space

Summary of products involving vectors

Here we resume the properties:

Scalar Multiplication: ka

Result is a vector in the direction of a

Magnitude is ‖ka‖ = |k|‖a‖

Zero if k = 0 or a = 0

Commutative: ka = ak

Associative: k(la) = (kl)a

Distributive: k(a + b) = ka + kb and (k + l)a = ka + la
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Summary of products involving vectors

Dot Product: a · b
Result is a scalar

Magnitude is a · b = ‖a‖‖b‖ cos θ; θ is the angle between a
and b

Magnitude is maximized if a ‖ b

Zero if a ⊥ b, a = 0 or b = 0

Commutative: a · b = b · a

Associativity is irrelevant, since (a · b) · c doesn’t make sense

Distributive: a · (b + c) = a · b + a · c

If a = b then a · a = ‖a‖2
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Summary of products involving vectors

Cross Product: a× b

Result is a vector perpendicular to both a and b

Magnitude is ‖a× b‖ = ‖a‖‖b‖ sin θ; θ is the angle between
a and b

Magnitude is maximized if a ⊥ b

Zero if a ‖ b, a = 0 or b = 0

Anticommutative: a× b = −b× a

Not associative: In general a× (b× c) 6= (a× b)× c

Distributive: a× (b + c) = a× b + a× c and
(a + b)× c = a× c + b× c

If a ⊥ b then ‖a× b‖ = ‖a‖‖b‖
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