Métodos Matemáticos de Bioingeniería
 Grado en Ingeniería Biomédica
 Lecture 9

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

22 de marzo de 2021

Outline

(1) The Chain Rule

Example 1 (One dimension)

- Let

$$
\begin{aligned}
f(x) & =\sin x \\
x(t) & =t^{3}+t
\end{aligned}
$$

- We may then construct the composite function

$$
(f \circ x)(t)=f(x(t))=\sin \left(t^{3}+t\right)
$$

- The chain rule tells us how to find the derivative of $f \circ x$ with respect to t

$$
(f \circ x)^{\prime}(t)=\frac{d}{d t}\left(\sin \left(t^{3}+t\right)\right)=\left(\cos \left(t^{3}+t\right)\right)\left(3 t^{2}+1\right)
$$

- Since $x=t^{3}+t$, we can see it as

$$
(f \circ x)^{\prime}(t)=\frac{d}{d x}(\sin x) \cdot \frac{d}{d t}\left(t^{3}+t\right)=f^{\prime}(x) \cdot x^{\prime}(t)
$$

The Chain Rule in One Variable

- In general, suppose X and T are open subsets of \mathbb{R}.
- Suppose we define functions

$$
\begin{aligned}
& f: X \subseteq \mathbb{R} \rightarrow \mathbb{R} \\
& x: T \subseteq \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

- Suppose that the composite function makes sense

$$
f \circ x: T \subseteq \mathbb{R} \rightarrow X \subseteq \mathbb{R} \rightarrow \mathbb{R}
$$

This means that the range of the function x must be contained in X, the domain of f

Theorem 5.1: The Chain Rule in One Variable

- Let X and T be open subsets of \mathbb{R}
- We define functions

$$
\begin{array}{r}
f: X \subseteq \mathbb{R} \rightarrow \mathbb{R} \\
x: T \subseteq \mathbb{R} \rightarrow \mathbb{R} \\
f \circ x: X \subseteq \mathbb{R} \rightarrow \mathbb{R}
\end{array}
$$

- Suppose x is differentiable at $t_{0} \in T$, and
- Suppose f is differentiable at $x_{0}=x\left(t_{0}\right) \in X$
- Then, the composite $f \circ x$ is differentiable at t_{0}, and

$$
(f \circ x)^{\prime}\left(t_{0}\right)=f^{\prime}\left(x_{0}\right) x^{\prime}\left(t_{0}\right)
$$

The Chain Rule in Two Variables

- Assume $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a \mathbf{C}^{1} function of two variables.
- Assume $\mathbf{x}: T \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a differentiable vector-valued function of a single variable and the range of \mathbf{x} is contained in X.
- Then the composition $f \circ \mathbf{x}: T \rightarrow \mathbb{R}$ is differentiable at any point t_{0}, and,

$$
\frac{d f}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right) \frac{d y}{d t}\left(t_{0}\right)
$$

where $x_{0}=x\left(t_{0}\right)$.
Notice the mixture of ordinary and partial derivatives appearing in the formula

The Chain Rule in Two Variables

- It helps to think of
- \mathbf{x} as describing a parametrized curve in \mathbb{R}^{2}, and
- f as a sort of "temperature function" on X
- The composite $f \circ \mathbf{x}$ is then the restriction of f to the curve.

Is the function that measures the temperature along just the curve.

Proposition 5.2

$$
\frac{d f}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right) \frac{d y}{d t}\left(t_{0}\right)
$$

- We can construct an appropriate "variable hierarchy" diagram

- At the intermediate level, f depends on two variables, x and y.
- On the final or composite level, f depends on just a single independent variable t.

Example 2

- Let,

$$
f(x, y)=\frac{\left(x+y^{2}\right)}{\left(2 x^{2}+1\right)}
$$

- Suppose f is a temperature function on \mathbb{R}^{2}, and

$$
\mathbf{x}(t)=(2 t, t+1)
$$

- that is a line given in parametric equations, \mathbf{x} :

Example 2

- Then

$$
f \circ \mathbf{x}(t)=f(\mathbf{x}(t))=\frac{2 t+(t+1)^{2}}{8 t^{2}+1}=\frac{t^{2}+4 t+1}{8 t^{2}+1}
$$

- $f \circ \mathbf{x}$ is the temperature function along the line, and by the quotient rule the rate of change of the temperature (per unit change in t) is:

$$
\frac{d f}{d t}=\frac{4-14 t-32 t^{2}}{\left(8 t^{2}+1\right)^{2}}
$$

Example 2 (board)

$$
\begin{gathered}
f(x, y)=\frac{\left(x+y^{2}\right)}{\left(2 x^{2}+1\right)} \\
\mathbf{x}(t)=(2 t, t+1)
\end{gathered}
$$

- On the other hand, all the hypotheses of Proposition 5.2 are satisfied, and so

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{1-2 x^{2}-4 x y^{2}}{\left(2 x^{2}+1\right)^{2}} \\
\frac{\partial f}{\partial y} & =\frac{2 y}{2 x^{2}+1} \\
\mathbf{x}^{\prime}(t) & =\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=(2,1)
\end{aligned}
$$

Example 2

$$
\begin{aligned}
f(x, y) & =\frac{\left(x+y^{2}\right)}{\left(2 x^{2}+1\right)}, \quad \mathbf{x}(t)=(2 t, t+1) \\
\frac{\partial f}{\partial x} & =\frac{1-2 x^{2}-4 x y^{2}}{\left(2 x^{2}+1\right)^{2}}, \quad \frac{\partial f}{\partial y}=\frac{2 y}{2 x^{2}+1} \\
\mathbf{x}^{\prime}(t) & =\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=(2,1)
\end{aligned}
$$

- Therefore, applying the chain rule and substituting (x, y) by $(2 t, t+1)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\frac{1-2 x^{2}-4 x y^{2}}{\left(2 x^{2}+1\right)^{2}} \cdot 2+\frac{2 y}{2 x^{2}+1} \cdot 1 \\
& =\frac{2\left(1-8 t^{2}-8 t(t+1)^{2}\right)}{\left(8 t^{2}+1\right)^{2}}+\frac{2(t+1)}{8 t^{2}+1}=\frac{2\left(2-7 t-16 t^{2}\right)}{\left(8 t^{2}+1\right)^{2}}
\end{aligned}
$$

The Chain Rule when \mathbf{x} is a multidimensional path

- Proposition 5.2 is easy to generalize to the case where f is a function of n variables.
- Suppose $\mathbf{x}: T \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- The appropriate chain rule formula in this case is,
$\frac{d f}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}_{0}\right) \frac{d x_{1}}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial x_{2}}\left(\mathbf{x}_{0}\right) \frac{d x_{2}}{d t}\left(t_{0}\right)+\cdots+\frac{\partial f}{\partial x_{n}}\left(\mathbf{x}_{0}\right) \frac{d x_{n}}{d t}\left(t_{0}\right)$
- It can also be written by using matrix notation,

$$
\frac{d f}{d t}\left(t_{0}\right)=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}_{0}\right) & \frac{\partial f}{\partial x_{2}}\left(\mathbf{x}_{0}\right) & \cdots & \frac{\partial f}{\partial x_{n}}\left(\mathbf{x}_{0}\right)
\end{array}\right]\left[\begin{array}{c}
\frac{d x_{1}}{d t}\left(t_{0}\right) \\
\frac{d x_{2}}{d t}\left(t_{0}\right) \\
\vdots \\
\frac{d x_{n}}{d t}\left(t_{0}\right)
\end{array}\right]
$$

The Chain Rule when \mathbf{x} is a multidimensional path

- It can also be written by using matrix notation

$$
\frac{d f}{d t}\left(t_{0}\right)=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}_{0}\right) & \frac{\partial f}{\partial x_{2}}\left(\mathbf{x}_{0}\right) & \cdots & \frac{\partial f}{\partial x_{n}}\left(\mathbf{x}_{0}\right)
\end{array}\right]\left[\begin{array}{c}
\frac{d x_{2}}{d t}\left(t_{0}\right) \\
\vdots \\
\frac{d x_{n}}{d t}\left(t_{0}\right)
\end{array}\right]
$$

- Thus, we have shown

$$
\frac{d f}{d t}\left(t_{0}\right)=D f\left(\mathbf{x}_{0}\right) D \mathbf{x}\left(t_{0}\right)=\nabla f\left(\mathbf{x}_{0}\right) \cdot \mathbf{x}^{\prime}\left(t_{0}\right)
$$

The Chain Rule when \mathbf{x} is a surface

- Suppose X is open in \mathbb{R}^{3} and T is open in \mathbb{R}^{2}.
- Suppose $f: X \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\mathbf{x}: T \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ are such that the range of \mathbf{x} is contained in X.
- Then, the composite $f \circ \mathbf{x}: T \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ can be formed:

- The range of $\mathbf{x}, \mathbf{x}(T)$, is just a surface in \mathbb{R}^{3}.
- So $f \circ \mathbf{x}$ can be thought of as an appropriate "temperature function" restricted to this surface.

The Chain Rule when x is a surface

- Let use $\mathbf{x}=(x, y, z)$ to denote the vector variable in \mathbb{R}^{3} and $\mathbf{t}=(s, t)$ for the vector variable in \mathbb{R}^{2}.
- We can write a chain rule formula from the next hierarchy diagram:

The Chain Rule when \mathbf{x} is a surface

- The following formulas holds:

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
\frac{\partial f}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
\end{aligned}
$$

Example 3

- Suppose

$$
f(x, y, z)=x^{2}+y^{2}+z^{2} \quad \text { and } \quad \mathbf{x}(s, t)=\left(s \cos t, e^{s t}, s^{2}-t^{2}\right)
$$

- Then

$$
\begin{aligned}
h(s, t) & =f \circ \mathbf{x}(s, t)=s^{2} \cos ^{2} t+e^{2 s t}+\left(s^{2}-t^{2}\right)^{2} \\
\frac{\partial h}{\partial s} & =\frac{\partial(f \circ \mathbf{x})}{\partial s}=2 s \cos ^{2} t+2 t e^{2 s t}+4 s\left(s^{2}-t^{2}\right) \\
\frac{\partial h}{\partial t} & =\frac{\partial(f \circ \mathbf{x})}{\partial t}=-2 s^{2} \cos t \sin t+2 s e^{2 s t}-4 t\left(s^{2}-t^{2}\right)
\end{aligned}
$$

Example 3

$f(x, y, z)=x^{2}+y^{2}+z^{2} \quad$ and $\quad \mathbf{x}(s, t)=\left(s \cos t, e^{s t}, s^{2}-t^{2}\right)$

- On the other hand

$$
\begin{array}{rlrl}
\frac{\partial f}{\partial x} & =2 x, & & \frac{\partial f}{\partial y}=2 y, \\
& & \frac{\partial f}{\partial z}=2 z \\
\frac{\partial x}{\partial s} & =\cos t, & & \frac{\partial y}{\partial s}=t e^{s t},
\end{array} \begin{array}{ll}
\frac{\partial z}{\partial s}=2 s \\
\frac{\partial x}{\partial t} & =-s \sin t,
\end{array} \begin{array}{ll}
\partial y & \frac{\partial y}{\partial t}=s e^{s t},
\end{array}
$$

- So for example,

$$
\begin{aligned}
& \frac{\partial h}{\partial s}=\frac{\partial(f \circ \mathbf{x})}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
& =2 x(\cos t)+2 y\left(t e^{s t}\right)+2 z(2 s) \\
& =2 s \cos t(\cos t)+2 e^{s t}\left(t e^{s t}\right)+2\left(s^{2}-t^{2}\right)(2 s) \\
& =2 s \cos ^{2} t+2 t e^{2 s t}+4 s\left(s^{2}-t^{2}\right)
\end{aligned}
$$

The Chain Rule in Multiple Variables

$\mathbf{f}: X \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, \mathbf{x}: T \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad h=\mathbf{f} \circ \mathbf{x}: T \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$
Then, $\frac{\partial h_{i}}{\partial t_{j}}=\sum_{k=1}^{m} \frac{\partial f_{i}}{\partial x_{k}} \frac{\partial x_{k}}{\partial t_{j}}, \quad$ for $i=1,2, \ldots, p$ and $j=1, \ldots, n$

- Knowing that:
- the ijth entry of the matrix $D \mathbf{h}(\mathbf{t})$ is $\partial h_{i} / \partial t_{j}$
- the ikth entry of the matrix $D \mathbf{f}(\mathbf{x})$ is $\partial f_{i} / \partial x_{k}$
- the $k j$ th entry of the matrix $D \mathbf{x}(\mathbf{t})$ is $\partial x_{k} / \partial t_{j}$
- We see that this formula expresses the following equation of matrices

$$
D \mathbf{h}(\mathbf{t})=D(\mathbf{f} \circ \mathbf{x})(\mathbf{t})=D \mathbf{f}(\mathbf{x}) D \mathbf{x}(\mathbf{t})
$$

A very similar expression to the chain rule in one variable

Example 4

- Suppose $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ are given by

$$
\begin{aligned}
\mathbf{f}\left(x_{1}, x_{2}, x_{3}\right) & =\left(x_{1}-x_{2}, x_{1} x_{2} x_{3}\right) \\
\mathbf{x}\left(t_{1}, t_{2}\right) & =\left(t_{1} t_{2}, t_{1}^{2}, t_{2}^{2}\right)
\end{aligned}
$$

- Then $\mathbf{f} \circ \mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
\mathbf{f} \circ \mathbf{x}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}-t_{1}^{2}, t_{1}^{3} t_{2}^{3}\right)
$$

- So that

$$
D(\mathbf{f} \circ \mathbf{x})(\mathbf{t})=\left[\begin{array}{cc}
t_{2}-2 t_{1} & t_{1} \\
3 t_{1}^{2} t_{2}^{3} & 3 t_{1}^{3} t_{2}^{2}
\end{array}\right]
$$

Example 4

- Suppose $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $\mathbf{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ are given by

$$
\begin{aligned}
\mathbf{f}\left(x_{1}, x_{2}, x_{3}\right) & =\left(x_{1}-x_{2}, x_{1} x_{2} x_{3}\right) \\
\mathbf{x}\left(t_{1}, t_{2}\right) & =\left(t_{1} t_{2}, t_{1}^{2}, t_{2}^{2}\right)
\end{aligned}
$$

- On the other hand

$$
D \mathbf{f}(\mathbf{x})=\left[\begin{array}{ccc}
1 & -1 & 0 \\
x_{2} x_{3} & x_{1} x_{3} & x_{1} x_{2}
\end{array}\right] \quad \text { and } \quad D \mathbf{x}(\mathbf{t})=\left[\begin{array}{cc}
t_{2} & t_{1} \\
2 t_{1} & 0 \\
0 & 2 t_{2}
\end{array}\right]
$$

- So that, after substituting for x_{1}, x_{2}, and x_{3}, the product matrix is

$$
\begin{array}{r}
D \mathbf{f}(\mathbf{x}) D \mathbf{x}(\mathbf{t})=\left[\begin{array}{cc}
t_{2}-2 t_{1} & t_{1} \\
x_{2} x_{3} t_{2}+2 x_{1} x_{3} t_{1} & x_{2} x_{3} t_{1}+2 x_{1} x_{2} t_{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
t_{2}-2 t_{1} & t_{1} \\
t_{1}^{2} t_{2}^{3}+2 t_{1}^{2} t_{2}^{3} & t_{1}^{3} t_{2}^{2}+2 t_{1}^{3} t_{2}^{2}
\end{array}\right]
\end{array}
$$

Theorem 5.3: The (general) Chain Rule

- Suppose X is an open set in \mathbb{R}^{m} and T is an open set in \mathbb{R}^{n}.
- Suppose functions $\mathbf{f}: X \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ and $\mathbf{x}: T \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are defined so that range $\mathbf{x} \subseteq X$.
- Suppose \mathbf{x} is differentiable at $\mathbf{t}_{0} \in T$ and \mathbf{f} is differentiable at $\mathbf{x}_{0}=\mathbf{x}\left(\mathbf{t}_{0}\right)$.
- Then, the composite $\mathbf{f} \circ \mathbf{x}$ is differentiable at \mathbf{t}_{0}, and

$$
D(\mathbf{f} \circ \mathbf{x})\left(\mathbf{t}_{0}\right)=D \mathbf{f}\left(\mathbf{x}_{0}\right) D \mathbf{x}\left(\mathbf{t}_{0}\right)
$$

Remark

- Theorem 5.3 requires \mathbf{f} only to be differentiable at the point in question, not to be of class C^{1}.
- Theorem 5.3 includes all the special cases of the chain rule we have discussed.

Example 5

- Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(x, y)=\left(x-2 y+7,3 x y^{2}\right)
$$

- Suppose that $\mathbf{g}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is differentiable at $(0,0,0)$.
- Suppose also that we know that

$$
\mathbf{g}(0,0,0)=(-2,1) \text { and } D \mathbf{g}(0,0,0)=\left[\begin{array}{ccc}
2 & 4 & 5 \\
-1 & 0 & 1
\end{array}\right]
$$

- We use this information to determine $D(\mathbf{f} \circ \mathbf{g})(0,0,0)$.
- Regarding Theorem 5.3, fog must be differentiable at $(0,0,0)$, and
$D(\mathbf{f} \circ \mathbf{g})(0,0,0)=D \mathbf{f}(\mathbf{g}(0,0,0)) D \mathbf{g}(0,0,0)=D \mathbf{f}(-2,1) D \mathbf{g}(0,0,0)$

Example 5

$$
\begin{aligned}
\mathbf{f}(x, y) & =\left(x-2 y+7,3 x y^{2}\right) \\
\mathbf{g}(0,0,0) & =(-2,1) \text { and } D \mathbf{g}(0,0,0)=\left[\begin{array}{ccc}
2 & 4 & 5 \\
-1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- Since we know \mathbf{f} completely, it is easy to compute that

$$
D f(x, y)=\left[\begin{array}{cc}
1 & -2 \\
3 y^{2} & 6 x y
\end{array}\right] \text { so that } D \mathbf{f}(-2,1)=\left[\begin{array}{cc}
1 & -2 \\
3 & -12
\end{array}\right]
$$

- Thus

$$
D(\mathbf{f} \circ \mathbf{g})(0,0,0)=\left[\begin{array}{cc}
1 & -2 \\
3 & -12
\end{array}\right]\left[\begin{array}{ccc}
2 & 4 & 5 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
4 & 4 & 3 \\
18 & 12 & 3
\end{array}\right]
$$

We did not need to know anything about the differentiability of \mathbf{g} other than at the point $(0,0,0)$

