Suppose that f is defined on an interval (a, b), except possibly for some point $\xi \in(a, b)$. We say that $f(x)$ tends (or converges) to a limit l as x tends to ξ and write

$$
f(x) \rightarrow \ell \text { as } x \rightarrow \xi
$$

or, alternatively,

$$
\lim _{x \rightarrow 5} f(x)=l
$$

if the following criterion is satisfied.
Given any $\varepsilon>0$, we can find a $\delta>0$ such that

$$
|f(x)-l|<\varepsilon \quad l-\varepsilon<f(x)<l+\varepsilon
$$

provided that $0<|x-\xi|<\delta$.

\qquad

Properties of limits
Let f and g be defined on an interval (a, b) except possibly at $\xi \in(a, b)$. Suppose that $f(x) \rightarrow l$ and $g(x) \rightarrow m$ as $x \rightarrow \xi$ and suppose that λ and μ are any real numbers.
Then

1. $\lambda f(x)+\mu g(x) \rightarrow \lambda l+\mu m$ as $x \rightarrow \xi$.
2. $f(x) g(x) \rightarrow \operatorname{lm}$ as $x \rightarrow \xi$.
3. $f(x) / g(x) \rightarrow l / m$ as $x \rightarrow \overline{5}$ (provided $m \neq 0$).

For any polynomial $P(x)$

$$
\lim _{x \rightarrow \xi} P(x)=P(\xi), \quad \forall \xi \in \mathbb{R}
$$

For any rational function $P(x) / Q(x)$

$$
\lim _{x \rightarrow \xi} \frac{P(x)}{Q(x)}=\frac{P(\xi)}{Q(\xi)} \quad \forall \xi \in \mathbb{R} \text { (provided } Q(\xi) \neq 0 \text {). }
$$

Example. Calculate the following limits.
a) $\lim _{x \rightarrow 1} \frac{x^{2}+4}{x^{2}-4}$
b) $\lim _{x \rightarrow 0} \frac{x^{73}+5 x^{42}+9}{3 x^{23}+7}$
c) $\lim _{x \rightarrow 0} \frac{1}{(1-x)^{3}}-1$
d) $\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$

For any function $g(x) \rightarrow 0$ as $x \rightarrow \xi$ we have

$$
\begin{aligned}
& \lim _{x \rightarrow 5} \frac{\sin g(x)}{g(x)}=1, \quad \lim _{x \rightarrow \xi} \frac{1-\cos g(x)}{g(x)^{2}}=\frac{1}{2} \\
& \lim _{x \rightarrow 5} \frac{e^{g(x)}-1}{g(x)}=1, \lim _{x \rightarrow \xi}(1+g(x))^{1 / g(x)}=e \\
& 1^{\infty} \neq 1
\end{aligned}
$$

a) $\lim _{x \rightarrow 1} \frac{x^{2}+4}{x^{2}-4}=\frac{5}{-3}=\frac{-5}{3}$

b) $\lim _{x \rightarrow 0} \frac{x^{73}+5 x^{42}+9}{3 x^{23}+7}=\frac{9}{7}$

$$
(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
$$

$$
\begin{aligned}
& \text { c) } \lim _{x \rightarrow 0} \frac{\frac{1}{(1-x)^{3}}-1=\lim _{x \rightarrow 0} \frac{1-(1-x)^{3}}{x(1-x)^{3}}}{x} \\
& =\lim _{x \rightarrow 0} \frac{1-\left(1-3 x+3 x^{2}-x^{3}\right)}{x(1-x)^{3}}=\lim _{x \rightarrow 0} \frac{3 x-3 x^{2}+x^{3}}{x(1-x)^{3}} \\
& =\lim _{x \rightarrow 0} \frac{x\left(3-3 x+x^{2}\right)}{x(1-x)^{3}}=3
\end{aligned}
$$

Geogebra

$$
(a-b)(a+b)=a^{2}-b^{2}
$$

d)

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \cdot \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}=\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{2 \sqrt{a}}
\end{aligned}
$$

$$
\begin{aligned}
(x-a)(x+a) & =x^{2}+a x-a x-a^{2} \\
& =x^{2}-a^{2}
\end{aligned}
$$

$$
\begin{aligned}
(x-a)^{2}=(x-a)(x-a) & =x^{2}-a x-a x+a^{2} \\
& =x^{2}-2 a x+a^{2} \\
& \neq x^{2}-a^{2}
\end{aligned}
$$

Examples
a) $\lim _{x \rightarrow 0} \frac{\left(\sin 2 x^{3}\right)^{2}}{x^{6}}$
b) $\lim _{x \rightarrow 0} \frac{\tan x^{2}+2 x}{x+x^{2}}$
c) $\lim _{x \rightarrow 0} \frac{\ln (1-2 x)}{\sin x}$
d) $\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)^{\frac{\sin x}{\sin x-x}}$
e) $\lim _{x \rightarrow 0}(1+\sin x)^{2 / x}$
f) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}}$

One-sided limits

- We say that the left-handed limit of a function $f: A \rightarrow \mathbb{R}$ when x approaches $\bar{\xi}$ is ℓ, and denote it

$$
\lim _{x \rightarrow \xi^{-}} f(x)=l \text { or } f(x) \rightarrow l \text { as } x \rightarrow \overline{5}
$$

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
\lim _{x \rightarrow 0} \frac{\left(\sin 2 x^{3}\right)^{2}}{x^{6}}=\frac{0}{0} \quad \lim _{x \rightarrow 3} \frac{\sin g(x)=1}{g(x)} \\
=\lim _{x \rightarrow 0}\left(\frac{2}{2} \frac{\sin 2 x^{3}}{x^{3}}\right)^{2} \\
=\lim _{x \rightarrow 0}\left(2 \frac{\sin / 2 x^{3}}{2 x^{3}}\right)^{2}=2^{2}=4
\end{array}, \quad \begin{array}{l}
g \rightarrow 0 \text { when } x \rightarrow 0
\end{array}
\end{aligned}
$$

응

$$
\begin{aligned}
& \text { b) } \lim _{x \rightarrow 0} \frac{\tan x^{2}+2 x}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\tan x^{2}+2 x}{x(1+x)} \\
&=\lim _{x \rightarrow 0} \frac{\frac{\tan x^{2}}{x}+2}{1+x}=\lim _{x \rightarrow 0} \frac{\frac{\sin x^{2}}{x \cos x^{2}}+2}{1+x} \\
&=\lim _{x \rightarrow 0} \frac{x}{x} \frac{\frac{\sin x^{2}}{x} \frac{1}{\cos x^{2}}+2}{1+x}=\lim _{x \rightarrow 0} \frac{\frac{x^{2 \sin x^{21}} \frac{1}{x^{2}} \cos ^{2}}{1+2}+x}{1+x} \\
&=2
\end{aligned}
$$

if for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-l|<\varepsilon
$$

provided that $\xi-\delta<x<\xi$

Similarly, we say that the right-handed limit of a function $f: A \rightarrow \mathbb{R}$ when x approaches ξ is ℓ, and denote it $\lim _{x \rightarrow \xi^{+}} f(x)=\ell$ or $f(x) \rightarrow \ell$ as $x \rightarrow \xi^{+}$

If for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-\ell|<\varepsilon
$$

provided that $\xi<x<\xi+\delta$.

\qquad

Proposition

$$
\lim _{x \rightarrow \xi} f(x)=l \Longleftrightarrow \lim _{x \rightarrow \xi^{-}} f(x)=\lim _{x \rightarrow \xi^{+}} f(x)=l
$$

Infinite Limits

We write sample definitions. The student will have little difficulty in supplying the definitions in other cases.

We say that $f(x) \rightarrow+\infty$ as $x \rightarrow \xi^{+}$if, given any $H>0$, we can find a $\delta>0$ such that

$$
f(x)>H
$$

provided that $\bar{j}<x<\xi+\delta$.

We say that $f(x) \rightarrow \ell$ as $x \rightarrow \infty$ if, given any $\varepsilon>0$, we can find an X such that

$$
|f(x)-\ell|<\varepsilon
$$

provided that $x>X$.

\qquad

Examples.
a.) $\lim _{x \rightarrow \infty} \sin x$
b) $\lim _{x \rightarrow \infty} \frac{x^{3}+4 x-7}{7 x^{2}-\sqrt{2 x^{6}+x^{5}}}$
c). $\lim _{x \rightarrow \pm \infty} \frac{x-2}{\sqrt{4 x^{2}+1}}$

Sandwich Rule
If $\lim _{x \rightarrow \xi} g(x)=\lim _{x \rightarrow \xi} h(x)=\ell$, and if $g(x) \leq f(x) \leq h(x)$ holds for all x in an interval containing 3 , then $\lim _{x \rightarrow \xi} f(x)=\ell$

Example

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

$$
\lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}
$$

