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Introduction to Direct Digital Design Using State Space Methods 
 
In the previous set of notes we learnt how to design controllers using ‘classical methods’. In this set of 
notes we consider ‘modern methods’ of control system design i.e. state space. With state space 
design, we remain in the time domain and thus work directly with the differential equation model of our 
plant. It is important to realise that whether we work with transfer functions or with differential 
equations in state space form, the mathematics describes the same thing and the forms can be 
interchanged. The major advantage however of working with a state space model of a system is that 
the internal system state is explicitly maintained over time, where as with a transfer function, only the 
input output relationship is maintained. 
 
In these notes we consider only direct digital design and do not consider emulation in state space 
systems. However, emulation techniques could be equally well applied to state space derived 
controllers. 
 
For a direct digital design, it is necessary for us to convert our continuous time plant to a discrete 
equivalent that is capable of predicting the output of the plant at the sample instances, given that the 
control signal to the plant is updated every sample instance and held using a ZOH circuit in-between 
samples. In classical control we developed the formula for G(z) as a function of G(s). However, we 
now have a state space model of our plant and would like to derive a similar formula to convert this 
model to a discrete equivalent state space model. To do this, consider the continuous state space 
system, 
 
 x F x Gu= +�  
 y H x Ju= +  
 
The system equation describes a non-homogenous (there is a driving input) set of coupled linear 
differential equations with a state solution (for a derivation of this solution follow the mathematics in 
section 5.7 of Gopal – not required though), 
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The above equation allows you to calculate the state vector at any time t  given the state vector at the 
starting time 0t  and the control input signal between 0t  and t . Note that the first term in the above 
equation is the homogenous solution and the second term is the particular solution (convolution of the 
input with the system’s impulse response). Now, if we are looking for the discrete equivalent of the 
continuous state space model then we are interested in finding the state vector at the ‘next sample 
instance’ given the state vector at the ‘current sample instance’. So, let’s make t0 = kT (current sample 
instance) and look at the state vector T seconds later (next sample instance), 
 

 ( )( ) ( ) ( )
kT T

FT F kT T

kT

x kT T e x kT e Gu dτ τ τ
+

+ −+ = + ∫  

 
Since a ZOH circuit holds the control constant over the entire sample period, we can move the control 
input ( )u τ  and the input matrix G out of the integration (integration is only over one sample period). 
Then, after changing integration variables and simplifying we can write, 
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( 1) ( ) ( )

( ) ( )

T
FT Fx k e x k e d Gu k

x k u k

η η+ = + ⋅

= Φ +Γ

∫  

    
 where, 
 
  2 3( ) 2! ( ) 3!FTe I FT FT FTΦ = = + + + +…  

  
0

T
Fe d Gη ηΓ = ⋅∫  

 
If we write, 
 
 I FTΦ = + Ψ  
 
 where, 
 
  22! ( ) 3!I FT FTΨ = + + +…  
then, 
 

 1 1

0
0

( )
T

TF Fe d G F e G F I G T Gη ηη − −Γ = ⋅ = = Φ − = Ψ∫  

 
So the discrete equivalent state space model becomes, 
 
 ( 1) ( ) ( )x k x k u k+ = Φ +Γ  
 ( ) ( )y k H x k=  
 
where the direct feed through of the control into the output equations has been omitted (J = 0). 
MATLAB’s c2d.m function performs the above conversion, 
 
 >> sysC = ss(A,B,C,D); 
 >> sysD = c2d(sysC,T,’zoh’); 
 
The discrete equivalent state space model is obviously exactly the same as the discrete equivalent 
transfer function model G(z) that you are used to calculating. To show the relationship between the 
state space matrices and G(z), take the Z-transform of the state space equations, 
 
 ( ) ( ) ( )zI X z X z U z= Φ +Γ  
 ( ) ( )Y z H X z=  
 
=> 1( ) ( ) ( )X z zI U z−= −Φ Γ  
  
=> 1( ) ( ) ( )Y z H zI U z−= −Φ Γ  
 

=> 1( ) ( )( ) ( )
( ) det( )
Y z H adj zIG z H zI
U z zI

− ⋅ −Φ ⋅Γ= = −Φ Γ =
−Φ

 

 
where the adjoint operator is defined on page 319 of Gopal. Thus, equations to calculate the poles 
and the zeros of a state space system are, 
 
 Zeros at: ( ) 0H adj zI⋅ −Φ ⋅Γ =  
 Poles at: det( ) 0zI −Φ =  
 
The pole equation is the same equation used to calculate the eigenvalues of the system matrix Φ . To 
calculate the poles and zeros using MATLAB the commands are, 
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 >> poles = eig(Phi); 
 >> zeros = tzero(sysD); 
 
 
Two canonical form of interest for later on 
 
We will often have a continuous plant G(s) that we convert to a discrete equivalent G(z) (by hand say) 
and then want to convert G(z) to a particular state space form. Remember the choice of state vector 
for a particular system is arbitrary, as long as the vector can fully describe the state of a system. This 
means of course that there are an infinite number of state space representations that correspond to 
the same transfer function. Two special state space forms called the Control Canonical and Observer 
Canonical forms are of particular interest to us when it comes to reducing the calculation complexity 
when designing controllers and estimators. This is particularly useful if the controller or estimator 
needs to be designed by hand (as in during an exam!). 
 
The control and observer canonical forms for a general third order transfer function are listed below. It 
should be clear how to adapt the results below for higher or lower order transfer function. Given, 
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+ + +
= =

+ + +
 

 
we have, 
 
Control Canonical Form 
 

 
1 1 2 3 1

2 2

3 3

( 1) ( ) 1
( 1) 1 0 0 ( ) 0 ( )
( 1) 0 1 0 ( ) 0

x k a a a x k
x k x k u k
x k x k

+ − − −       
       + = +       
       +       
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Observer Canonical Form 
 

 
1 1 1 1 1 0

2 2 2 2 2 0

3 3 3 3 3 0

( 1) 1 0 ( )
( 1) 0 1 ( ) ( )
( 1) 0 0 ( )

x k a x k b a b
x k a x k b a b u k
x k a x k b a b

+ − −       
       + = − + −       
       + − −       
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( ) 1 0 0 ( ) ( )

( )

x k
y k x k b u k

x k

 
 = + 
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In this course you will only be expected to write a transfer function in one of these two forms as well as 
recognise these forms to simplify the hand calculations of either your control law or estimator design 
(we will see the simplifications that result later). Note how the observer canonical form matrices are 
related to the control canonical matrices, 
 
 T

o cΦ = Φ   T
o cHΓ =   T

o cH = Γ   o cJ J=  
 
where, subscript ‘o’ represents observer form and ‘c’ represents control form. Finally, Gopal discusses 
Control Canonical and Observer Canonical forms on pages 433 to 435. However, they are referred to 
as First and Second Companion forms respectively and are derived with the states packed into the 
state vector in reverse order (the convention changes from book to book – the convention presented in 
these notes is more common however). 
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Control Law Design 
 
1Consider the state space system, 
 
 ( 1) ( ) ( )x k x k u k+ = Φ +Γ  
 ( ) ( )y k H x k=  
 
The open loop poles are at, 
 
 det( ) 0zI −Φ =  
 
We would like to design a controller such that the closed loop poles are at certain desired locations. 
Define the desired pole locations with the characteristic equation, 
 
 1

1 1( ) 0n n
c n nz z z zα α α α−

−= + + + + =…  
 
Our strategy is to use full state feedback, 
 
 ( ) ( )u k K x k= −  
 
For now we assume that the full state vector is available for feedback . The closed loop system 
becomes, 
 
 ( 1) ( ) ( ) ( ) ( )x k x k K x k K x k+ = Φ −Γ = Φ −Γ  
 ( ) ( )y k H x k=  
 
with poles at, 
 
 det( ( )) 0zI K− Φ −Γ =  
 
So, let 
 
 det( ( )) ( )czI K zα− Φ −Γ =  
 
and solve for K. Note K has as many elements (degrees of freedom) as there are poles. This means 
that we can place the closed loop poles anywhere as long as the system is controllable from the input 
u(k). To test for controllability, we need to ensure that the controllability matrix (see Section 6.6 of 
Gopal for details – not required though), 
 
 1nC − = Γ ΦΓ Φ Γ "  
 
where n is the order of the system, is of full rank. For SISO systems this is equivalent to the test, 
 
 det( ) 0C ≠  
 
Example: Full state feedback 
 
 

 
1.5 0.5 1

( 1) ( ) ( )
1 0 0

x k x k u k
−   

+ = +   
   

  0.2T s=  

 
 [ ]( ) 0 1 ( )y k x k=  
 

                                                     
1 Note that the rest of what is described in these notes is discussed in section 7.9 of Gopal. Chapter 7 
of Gopal looks at state space design for continuous time systems and section 7.9 simply applies these 
results to discrete time systems (since they are basically the same). 
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For the state space system above, design a full state feedback controller such that the closed loop 
system has equivalent s-plane poles at, 
 
 2 2CLs j jσ ω= − ± = − ±  
 
Also draw a block diagram of the closed loop system. 
 
 
Now, 
 [cos( ) sin( )] 0.62 0.26CLs T T

CLz e e T j T jσ ω ω−= = ± = ±  
=> 2 2 2( ) ( 0.62) (0.26) 1.24 0.45c z z z zα = − + = − +  
 
So, 
 det( ( )) ( )czI K zα− Φ −Γ =  

 [ ]1 2

0 1.5 0.5 1
det ( )

0 1 0 0 c

z
K K z

z
α

 −      
− + =      

      
 

 1 21.5 0.5
det ( )

1 c

z K K
z

z
α

 − + +  
=  −  

 

 2 2
1 2( 1.5 ) (0.5 ) ( ) 1.24 0.45cz K z K z z zα+ − + + + = = − +  

 
=> 1 0.26K =  
 2 0.05K = −  
 
=> [ ]0.26 0.05K = −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block diagram of system with full state feedback 
(Note that at this stage the system has no reference input and is simply a regulator) 

 
If our state space system is in control canonical form then the full state feedback calculations are 
simplified, 
 

 
1 2 3

1 0 0
0 1 0

a a a− − − 
 Φ =  
  

  
1
0
0

 
 Γ =  
  

  [ ]1 2 3K K K K=  

 

=> 
1 1 2 2 3 3( ) ( ) ( )
1 0 0
0 1 0

a K a K a K
K

− + − + − + 
 Φ −Γ =  
  

 

 
which corresponds to a characteristic equation of, 
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 3 2 3 2
1 1 2 2 3 3 1 2 3( ) ( ) ( ) ( )cz a K z a K z a K z z z zα α α α+ + + + + + = = + + +  

 
=> 1 1 1K aα= −  
 2 2 2K aα= −  
 3 3 3K aα= −  
 
Notice that in the previous example the state space system was in control canonical form and thus the 
above shortcut could have been used. Verify the feedback gains using the shortcut for yourself (be 
careful with the signs!).  
 
MATLAB: acker.m works by converting any state space model to control canonical form, calculating 
the feedback gain matrix and then converting the gain back so that it is applicable to the original state 
vector. place.m is more complicated and it works for systems with multiple inputs too! It uses the extra 
degrees of freedom provided by these inputs to not only place the eigenvalues of the closed loop 
system but to also ‘shape’ the eigenvectors such that the closed loop system is ‘well conditioned’. 
 
acker.m is suitable for low order (n < 10) systems and can handle repeated pole locations. place.m is 
better for high order systems but it can’t handle repeated poles. 
 
 >> K = acker(Phi,Gamma,poles); 
 >> K = place(Phi,Gamma,poles) 
 
 
Estimator Design 
 
Previously we designed controllers using full state feedback. The state vector however is not usually 
directly available through measurements. Thus, we need to estimate the state vector given 
measurements y(k). 
 
With reference to Figure 7.5 pg 496, the idea behind the estimator is to place a model of the plant in 
parallel with the actual plant and to drive them both with the same input. If the model’s initial state 
vector is set equal to the plant’s initial state vector then the state estimate (generated by the model) 
will track the actual state vector. However, there are always uncertainties in the plant model and in 
practice, without feedback, the state estimate would diverge from the true state. The solution is to use 
the measurement y(k) and to compare it with the model’s predicted measurement and use the 
difference between the two to modify the state estimate in such a way that it converges to the true 
state vector. 
 
Now for the maths of it, 
 
 ( 1) ( ) ( )x k x k u k+ = Φ +Γ       (Plant dynamics equation) 
 ( ) ( )y k H x k=        (Output equation) 
 
 ( 1) ( ) ( ) ( ( ) ( ))x k x k u k L y k H x k+ = Φ +Γ + −    (Estimator equation)  
 
where ( )x k  is the estimated state vector and L the estimator feedback gain. Define the state estimate 
error, 
 
 ( ) ( ) ( )x k x k x k≡ −�  
 
Then, 

 
( 1) ( ) ( ) ( ) ( ) ( ( ) ( ))

( ) ( )
x k x k u k x k u k L y k H x k

LH x k
+ = Φ +Γ −Φ −Γ − −

= Φ −
�

�
 

 
The final equation describes the state estimate error dynamics (i.e. how the difference between the 
true and estimated state vectors changes over time). We would like the error to die away to zero, 
typically as fast as possible, so we would like the poles of the error dynamics system matrix to be 
stable and fast (we will see when we do optimal estimation that there is a trade-off in choosing the 
speed of the estimator poles). Define the desired error dynamics poles with the characteristic 
equation, 
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 1

1 1( ) 0n n
e n nz z z zα α α α−

−= + + + + =…  
 
Now the actual error dynamics poles are at, 
 
 det( ( )) 0zI LH− Φ − =  
 
Thus the estimator design equation becomes, 
 
 det( ( )) ( )ezI LH zα− Φ − =  
 
Notes that L has as many elements as there are error dynamics poles which means that we can place 
the poles anywhere as long as the system is observable through the output y(k). For the system to be 
observable the observability matrix, 
 

 

1n

H
H

O

H −

 
 Φ =
 
 Φ 

#
 

 
where n is the order of the system, must be of full rank. For SISO systems, this is equivalent to the 
test, 
 
 det( ) 0O ≠  
 
Note that we can also use acker.m and place.m to calculate the estimator gain L. In the control 
problem our system matrix was, 
 
 KΦ −Γ  
 
and we found K to place the poles at desired locations. Now our system matrix is, 
 
 LHΦ −  
 
However, the eigenvalues of a matrix A are the same as the eigenvalues of AT. So, we could just as 
well find the gain L to make, 
 
 ( )TLHΦ−  
 
have the desired poles. But, 
 
 ( )T T T TLH H LΦ− = Φ −  
 
which is now in the same form as the control problem (i.e. with the unknown gain in the same place). 
So the commands are, 
 
 >> L = acker(PhiT,HT,poles)T; 
 >> L = place(PhiT,HT,poles)T; 
 
 
A second type of estimator 
 
The estimator we have designed so far is called a predictor estimator since the state estimate at k+1 is 
based on measurements up to time k, 
 
 ( 1) ( ) ( ) ( ( ) ( ))x k x k u k L y k H x k+ = Φ +Γ + −  
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If the computer we are using for control is fast enough then we can use a current estimator that 
provides us a state vector estimate at k based on measurements up to k. Intuitively we would expect 
this estimate to be better for feedback purposes since it minimises the delay in the system. 
 
The strategy is as follows. Begin with our old predictor estimate of the state vector ( )x k . When we get 
to time k we update the estimate using measurement y(k) as follows, 
 
 ˆ( ) ( ) ( ( ) ( ))cx k x k L y k H x k= + −         (1) 
 
where, ˆ( )x k  is now the estimate of the state vector at k using measurements up to k and Lc is the 
current estimator feedback gain. This estimate could be used for feedback purposes. We now need to 
predict the state vector at time k+1 so that we can repeat the whole process. To do this, we use the 
system’s dynamic model, 
 
 ˆ( 1) ( ) ( )x k x k u k+ = Φ +Γ          (2) 
 
Note again that ( 1)x k +  is our same old ‘prediction’ estimate of the state vector since it is based on 
measurements up to k only. If we substitute equation (1) into equation (2) then we can relate the 
current estimator gain to the predictor estimator gain (we will call the predictor estimator gain Lp from 
now on to differentiate it from the current estimator gain Lc). 
 

 
( 1) [ ( ) ( ( ) ( ))] ( )

( ) ( ) ( ( ) ( ))
c

c

x k x k L y k H x k u k
x k u k L y k H x k

+ = Φ ⋅ + − + Γ
= Φ +Γ +Φ −

 

 
=> p cL L= Φ  

=> 1
c pL L−= Φ           (3) 

 
So the question now is, if we want a current estimator with certain error dynamics (i.e. poles) then 
where should the predictor estimator poles be placed (we want to solve for Lp first and then calculate 
Lc)? If we look at equation (1) we see that the predictor and current estimates are related through a 
static equation (no dynamics). Thus, the two estimates are just different outputs of the same system 
i.e. they must have the same poles. 
 
So the design procedure becomes, 
 - Decide on desired estimator error pole locations 
 - Calculate the predictor estimator gain Lp 
 - Calculate the current estimator gain Lc using equation (3) above 
 
This will allow us to implement the estimator using equations (1) and (2) and thus make the current 
estimate available for feedback. There is however a price to pay for using the current estimate for 
feedback purposes. The measurement update equation (1) can only take place when we actually get 
to time k. Thus we need to take the measurement, update the state as quickly as possible and then 
calculate the control input to the plant based on the updated state. These calculations will take a finite 
amount of time and if that time is a significant fraction of the sample period, then we will introduce a 
significant un-modelled delay into our system. The predictor estimator always has a full sample period 
to calculate the control. 
 
Example: Predictor and Current Estimator 
 
 

1.5 0.5 1
( 1) ( ) ( )

1 0 0
x k x k u k

−   
+ = +   

   
  0.2T s=  

 
 [ ]( ) 0 1 ( )y k x k=  
 
a)  Design a predictor estimator. Place both error dynamics poles at z = 0. Draw the plant and 

estimator block diagrams. 
b) Do as in (a) but now design a current estimator. 
 



 9

Design the predictor estimator, 
 
 det( ( )) ( )p ezI L H zα− Φ − =  

 [ ]1

2

0 1.5 0.5
det 0 1 ( )

0 1 0 e

Lz
z

Lz
α

 −     
− + =     

      
 

 1

2

1.5 0.5
det ( )

1 e

z L
z

z L
α

 − +  
=  − +  

 

 2 2
2 1 2( 1.5 ) (0.5 1.5 ) ( )cz L z L L z zα+ − + + + − = =  

 
=> 2 1.5L =  
 1 1.75L =  
 

=> 
1.75
1.5pL

 
=  
 

 

 

 
 

Block diagram of predictor estimator 
 
 
Design the current estimator, 
 

 

1

11.5 0.5 1.75 0 0.5 1.751
1 0 1.5 1 1.5 1.50.5
1.5
1

c pL L−

−

= Φ

−       
= =       −       
 =  
 
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Block diagram of current estimator 

 
Finally, if the system is in observer canonical form then the calculation of Lp becomes very simple, 
 

1

2

3

1 0
0 1
0 0

a
a
a

− 
 Φ = − 
 − 

  [ ]1 0 0H =    
1

2

3

p

L
L L

L

 
 =  
  

 

 

=> 
1 1

2 2

3 3

( ) 1 0
( ) 0 1
( ) 0 0

p

a L
L H a L

a L

− + 
 Φ − = − + 
 − + 

 

 
which corresponds to a characteristic equation of, 
 
 3 2 3 2

1 1 2 2 3 3 1 2 3( ) ( ) ( ) ( )ez a L z a L z a L z z z zα α α α+ + + + + + = = + + +  
 
=> 1 1 1L aα= −  
 2 2 2L aα= −  
 3 3 3L aα= −  
 
 
Combining the Controller and Estimator 
 
In this section I am only going to consider the predictor estimator case. The results are the same for 
the current estimator case. Let’s write down all of the equations describing our closed loop system so 
far, 
 
 ( 1) ( ) ( )x k x k u k+ = Φ +Γ       (Plant equation) 
 ( 1) ( ) ( ) ( ( ) ( ))px k x k u k L y k H x k+ = Φ +Γ + −    (Estimator equation) 
 
 ( ) ( )u k K x k= −        (Feedback equation) 
 ( ) ( )y k H x k=        (Output equation) 
 
Our closed loop system now has 2n states (and thus 2n poles) – n plant states and n estimator states. 
Since, 
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 ( ) ( ) ( )x k x k x k= −�  => ( ) ( ) ( )x k x k x k= − �  
 
we can choose our state vector as, 
 

 
( )
( )
x k
x k
 
 
 �

 

 
and still uniquely define the system. Remember, the estimator error dynamics are, 
 
 ( 1) ( ) ( )px k L H x k+ = Φ −� �  
 
and the control law can be written as, 
 
 ( ) ( ) ( )u k K x k K x k= − + �  
 
So the entire closed loop system can be described by, 
 

 
( 1) ( )

0( 1) ( )p

K Kx k x k
L Hx k x k

Φ −Γ Γ+     
=     Φ−+    � �

 

 
with poles at, 
 

 
0

det 0
00 p

K KzI
L HzI

 Φ −Γ Γ   
− =    Φ−    

 

 
( )

det 0
0 ( )p

zI K K
zI L H

 − Φ −Γ −Γ  
=   − Φ −  

 

 
 det( ( )) det( ( )) 0pzI K zI L H− Φ −Γ ⋅ − Φ − =  
 ( ) ( ) 0c ez zα α⋅ =  
 
This result is called the separation principle and shows that we can design the controller and estimator 
independently of each other and when we put it all together (i.e. use the estimated state vector for 
feedback and not the actual state vector), we will still end up with the same poles! If we wanted to see 
what our combined controller/estimator compensator looked like as a transfer function D(z) we could 
write, 
 
 ( 1) ( ) ( ) ( ( ) ( ))px k x k u k L y k H x k+ = Φ +Γ + −  
 ( ) ( )u k K x k= −  
 
which simplifies to, 
 
 ( 1) [ ] ( ) ( )p px k K L H x k L y k+ = Φ −Γ − +  

( ) ( )u k K x k= −  
 
These are the compensator state space equations, with input y(k) and output u(k). By taking the Z-
transform of both equations we get, 
 
 ( ) [ ] ( ) ( )p pzI X z K L H X z L Y z= Φ −Γ − +  

 ( ) ( )U z K X z= −  
 
=> 1( ) [ ] ( )p pX z zI K L H L Y z−= −Φ + Γ +  

 ( ) ( )U z K X z= −  
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=> 1 [ ]( ) [ ]
( ) det( )

p p
p p

p

K adj zI K L H LU z K zI K L H L
Y z zI K L H

− − ⋅ −Φ + Γ + ⋅
= − −Φ + Γ + =

−Φ +Γ +
 

 
with poles and zeros at, 
 
 Zeros at: [ ] 0p pK adj zI K L H L− ⋅ −Φ +Γ + =  
 Poles at: det( ) 0pzI K L H−Φ +Γ + =  
 
Note: Other than for interest, there is no real need to calculate D(z) when we do a state space design. 
 
Guidelines for pole placement 
 
Most of the time we are given time response specifications (or something similar) for a system which 
define where 2 of the closed loop poles need to be. But what if we have a 4th order system? Where do 
we put the other 2 poles? Here are some guidelines. 
 
 - Place 2 dominant closed loop poles to meet the specifications 

- Place the rest of them at a higher frequency so that they have little effect on the response 
- Don’t move open loop poles unnecessarily (uses control effort!) 
- Don’t change the frequency of high frequency poles. Just add some damping if necessary 
- Estimator poles are typically placed 2 to 6 times faster than controller poles 
- Optimal control/estimation techniques relieve the burden of deciding where to place poles 

 
 
Introducing the Reference Input 
 
We now want to introduce a reference input r(k) into our system. We would like to do this in such a 
way that the system output y(k) is equal to the reference input in the steady state (i.e. design for unity 
DC gain). In the steady state the state vector will be constant at xSS and so will the control input at uSS. 
For a system with one or more free integrators, uSS = 0 but for a system with no free integrators, uSS = 
constant. Consider the reference input structure shown below, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

State command reference input structure (Draw in class) 
 
This structure is called the state command structure. 
 
Note:  Nu = 0 for system with one or more free integrators 

No control is provided to the plant via the state feedback path in the steady state since xr is 
defined to be equal to xSS. 

 
Now how do we calculate Nx and Nu such that ySS = r? Go to the maths! 
 
 ss ss ssx x u= Φ +Γ  
 ss ssy H x=  
with, 
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 ss xx N r=  
 ss uu N r=  
 
So, 
 
 x x uN r N r N r= Φ + Γ  
 xr HN r=  
 

=> 
0
1 0

x

u

NI
NH

Φ − Γ     
=     

     
 

 

=> 
1 0

0 1
x

u

N I
N H

−Φ − Γ     
=     
    

 

 
Note that our control law has now become, 
 

 
( ) [ ( ) ( )] ( )

( ) ( ) ( )

( ) ( )

x u

x u

u k K x k N r k N r k
Kx k KN N r k

Kx k Nr k

= − − +
= − + +

= − +

 

 
where, 
 
 x uN KN N= +  
 
Example: Closed loop system without estimator 
 
 ( 1) ( ) ( )x k x k u k+ = Φ + Γ       (Open loop system) 

 ( ) ( ) ( )u k Kx k Nr k= − +       (Control Law) 
 

=> ( 1) ( ) ( ) ( )
( ) ( )CL CL

x k K x k Nr k
x k r k

+ = Φ −Γ + Γ
= Φ +Γ

     (Closed loop system) 

 
When you have an estimator you introduce the reference in the same way. This ensures that the 
estimator gets the same control input as the plant does. Thus, reference changes will not excite 
estimator error dynamics. With the reference introduced in this way the closed loop system will have 
the n controller poles and the n estimator poles but the n estimator poles will all have zeros on top of 
them (this is only the case for the reference input, not for the disturbance input). Thus a reference step 
response of the closed loop system will only display the controller pole dynamics. 
 
Example: Putting it all together 
 
Consider the continuous state space system below, 
 

0 1 0
( ) ( ) ( )

0 0 1
x t x t u t   

= +   
   

�  

 
 [ ]( ) 1 0 ( )y t x t=  
 
Design a discrete controller using state space methods such that the closed loop system has unity DC 
gain, an overshoot of 5% and a rise time of approximately 1.8s. Use a current estimator and place the 
estimator poles at z = 0. Use a sample period T of 0.2s. 
 
Specs: 
 5%pM =  => 0.7ζ =  
 1.8rt s=  => 1nω =  /rad s  



 14

  
 21 0.7 0.7CL n ns j jζω ω ζ= − ± − = − ±  
 
 0.86 0.12CLs T

CLz e j= = ±  
 
System: 
 

 

2

2

2! ( ) 3!
1 0 0 1 0 1 0 11 1
0 1 0 0 0 0 0 02 6
1 2
0 1

I FT FT

T T

T

Ψ = + + +

       
= + + +       
       
 

=  
 

…

…   (Note: series truncates after term 2) 

 

 
1
0 1
T

I FT
 

Φ = − Ψ =  
 

 

 

 
2 2T

T G
T

 
Γ = Ψ =  

 
 

 
which gives the discrete equivalent system, 
 

1 0.2 0.02
( 1) ( ) ( )

0 1 0.2
x k x k u k   

+ = +   
   

  0.2T s=  

 
 [ ]( ) 1 0 ( )y k x k=  
 
Control: 
 2 2 2( ) ( 0.86) (0.12) 1.72 0.754c z z z zα = − + = − +  
 
 det( ( )) ( )czI K zα− Φ −Γ =  
 
=> [ ]0.85 1.31K =  
 
Estimator: 
 2( )e z zα =  
 
 det( ( )) ( )p ezI L H zα− Φ − =  
 

=> 
2
5pL
 

=  
 

 

 

=> 1 1
5c pL L−  

= Φ =  
 

 

 
Reference: 
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1

1

0
0 1

0 0.2 0.02 0
0 0 0.2 0
1 0 0 1

0 0 0.04 0
1 0.2 0.02 0 0
0.04

0 0.2 0 1

1
0
0

x

u

N I
N H

−

−

Φ − Γ     =     
    

   
   =    
      

   
   = −   
      

 
 =  
  

 

 

=> 
1
0xN
 

=  
 

 0uN =    (Note: Plant has 2 free integrators) 

 

=> [ ] 10.85 1.31 0 0.85
0x uN KN N
 

= + = + = 
 

 

 
Simulation results, 
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The simulation begins with a difference between the true and estimated state vectors. Note how the 
estimator tracks the plant exactly after two cycles (because both estimator poles are at z=0). A unit 
step command is applied at 4s. The closed loop specifications have been met. 
 
 
Integral Control 
 
At this stage the reference input is introduced through the gain N . However, the value of N  is 
sensitive to the parameters of the plant and thus the DC gain of the closed loop system will not be 
robust to plant uncertainties. Practically this presents a big problem because there are always 
uncertainties in the plant parameters but it is often very important that the output track the reference 
exactly in the steady state (unity DC gain). 
 
Integral control can be used to solve this problem. More specifically, we seek to integrate the error 
between the reference input and the output and use the integrated state as part of our feedback. 
Doing this will ensure that our closed loop system (if stable) will have unity DC gain. To better 
understand this, consider an error signal that enters an integrator. For the output of the integrator to 
settle (i.e. reach steady state) then the error signal MUST go to zero. Let’s look at the maths of this. 
Consider the open loop state space system, 
 
 ( 1) ( ) ( )x k x k u k+ = Φ +Γ  
 ( ) ( )y k H x k=  
 
It is desired that the output y(k) track a reference input signal r(k) with zero steady state error in spite 
of uncertainties in the plant parameters. To this end, we define a new state ( )Ix k  that is the integral of 
the error between the reference and the output of the plant. We could use a number of discrete 
integration processes here - they all have the important property that the integration state reaches 
steady state when the input signal to the integrator goes to zero. Thus, it makes sense to use the 
simplest numerical integration routine i.e. forward rectangular integration. Thus, 
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( )
( )

( 1) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

I I

I

I

x k x k T r k y k

x k T r k H x k
x k TH x k Tr k

+ = + −

= + −
= − +

 

 
We now have an extra dynamic equation describing what is now an extra state in the system. We thus 
augment this equation to the original dynamics to for the complete open loop system dynamics with a 
block diagram as shown below, 
 

 
( 1) ( )0 0

( ) ( )
( 1) ( )1 0I I

x k x k
u k r k

x k x kTH T
+ Φ Γ        

= + +        + −        
 

 

 [ ] ( )
( ) 0

( )I

x k
y k H

x k
 

=  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block diagram of the compete augmented open loop system (Draw in class) 
 
Now the rest of the problem is easy. We have a new open loop system and we simply perform full 
state feedback to stabilise it (where the last state happens to be our integral state). Writing the open 
loop system as follows, 
 
 ( 1) ( ) ( ) ( )a a a a ax k x k u k r k′+ = Φ + Γ + Γ  
 ( ) ( )a ay k H x k=  
 
where the definition of the matrices with subscript a  is clear. Define the control law, 
 

 [ ] ( )
( ) ( )

( )a a I
I

x k
u k K x k K K

x k
 

= − = −  
 

 

 
The closed loop system is thus, 
 

 [ ]
( 1) ( ) ( ) ( )

( ) ( )
a a a a a a a

a a a a a

x k x k K x k r k
K x k r k

′+ = Φ −Γ + Γ
′= Φ −Γ + Γ

 

 
Given the desired characteristic equation ( )c zα  for all of the closed loop poles (including the integrator 
pole now) we complete the design by setting, 
 
 det( ( )) ( )a a a czI K zα− Φ −Γ =  
 



 18

and solving for aK . A block diagram of the closed loop system is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block diagram of closed loop system with integral control (Draw in class) 
 
Note that there is no need to explicitly go through the process of introducing a reference input 
anymore – the reference input is already introduced through a′Γ  as shown by the closed loop 
dynamics. However, there is one final trick we can pull with integral control. If we adapt the control law 
slightly to be, 
 
 ( ) ( ) ( )a au k K x k Nr k= − +  
 
then it can be shown (not shown here nor is the derivation in the book – just accept for now!), that the 
closed loop system has a zero at, 
 

 1 I
I

TK
z

N
= +  

 
Thus, if we choose N  such that the zero lies on the closed loop integrator pole then we will not see 
the effect of the integrator dynamics in the closed loop system. This is very useful because we often 
want our integrator to have slow dynamics since it is only meant to strongly influence the steady state 
response. With this adaptation to the control law, the block diagram of the closed loop system looks as 
follows, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block diagram of closed loop system with integral control and feed-forward (Draw in class) 
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In state space form the closed loop system is then, 
 

 
( )

[ ]
( 1) ( ) ( ) ( ) ( )

( ) ( )
a a a a a a a

a a a a a a

x k x k K x k Nr k r k

K x k N r k

′+ = Φ +Γ − + + Γ

′ = Φ −Γ + Γ + Γ 
 

 
 ( ) ( )a ay k H x k=  
 
To summarise the design procedure then, 
 
 1) Augment the original nth order open loop system with the integrator dynamics 
 2) This in now your new open loop system 
 3) Place all n+1 poles of your new open loop system as desired using full state feedback 
 4) Calculate N  such that the closed loop has a zero on the integrator pole 
 
Finally, note that if you have designed an integral controller then it is not necessary to design an 
estimator to estimate the integrator state. This is because the integrator state exists inside your 
controller and is thus know 100% accurately. If you were to estimate it you would only loose accuracy! 
Thus you simply design an estimator as before for the original open loop system. The following 
example should clarify integral control further. 
 
Example: Integral Control of a Satellite 
 
Consider the following discrete state space model of a satellite, 
 

 
( 1) 1 0.2 ( ) 0.2

( )
( 1) 0 1 ( ) 2
k k

u k
k k

θ θ
ω ω

+       
= +       +       

  0.2T s=  

 

 [ ] [ ] ( )
( 1) 1 0

( )
k

k
k

θ
θ

ω
 

+ =  
 

 

 
Note that the model is the same as that used in your notes on classical control (when we did the root 
locus example). Design a control system for the satellite to regulate the angle output with the same 
specifications as before i.e. 0.5Hz bandwidth and a peak overshoot of less than 20%. The steady state 
performance of the controller should not be sensitive to uncertainties in the plant gain. Furthermore, 
only the output angle of the satellite can be measured. Use a predictor estimator to estimate the state 
vector. 
 
Our strategy is to design a full state feedback controller with integral control to make the system 
insensitive to the plant gain in the steady state. We will then design an estimator to estimate the 
satellite angle and angular rate from an angle measurement alone. 
 
Let, 
 
 ( )( 1) ( ) ( ) ( )I I rx k x k T k kθ θ+ = + −    0.2T s=  
 
where ( )r kθ  is the reference angle for the satellite control system. Augmenting the integrator 
dynamics to the plant dynamics, 
 

 

( 1) 1 0.2 0 ( ) 0.2 0
( 1) 0 1 0 ( ) 2 ( ) 0 ( )
( 1) 0.2 0 1 ( ) 0 0.2

( ) ( ) ( )

r

I I

a a a a r

k k
k k u k k

x k x k

x k u k k

θ θ
ω ω θ

θ

+         
         + = + +         
         + −         

′= Φ + Γ +Γ
 

 
This is now our new open loop system and we simply place all the poles (note, there are three poles 
now) as desired using a full state feedback control law, 
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 [ ]( ) ( ) ( )a a I au k K x k K K x k= − = −  
 
This control law gives closed loop poles at, 
 
 det( ( )) ( )a a a czI K zα− Φ −Γ =  
 
Now, the closed loop specifications determine where two of the three system poles go. One option is 
for us to place the third pole at a much higher frequency than the two dominant poles to minimise its 
effect. However, we know that we can place a real zero arbitrarily by changing the control law to, 
 
 ( ) ( ) ( )a au k K x k Nr k= − +  
 
Thus our strategy is to place two of the poles to meet the specifications and place the third (the 
integrator) pole at z = 0.9. We choose this value because it moves the integrator pole very little (it 
starts at z = 1), which will require little control effort. Without a zero, this pole would have a dominant 
effect. However, we will then choose N  to place the zero on the pole at z = 0.9 to cancel its effect. 
From the example in your classical control notes, the two dominant poles should be placed at, 
 
 1,2 0.62 0.38z j= ±  
 
Thus, the characteristic equation is, 
 

  

( )( )
( )( )

2 2

2

3 2

( ) 0.9 ( 0.62) (0.38)

0.9 1.24 0.529

2.14 1.645 0.476

c z z z

z z z

z z z

α = − − +

= − − +

= − + −

 

 
Now, 
 

 [ ]
0 0 1 0.2 0 0.2

det 0 0 0 1 0 2 ( )
0 0 0.2 0 1 0

I c

z
z K K K z
z

θ ω α
       
       − − =       

       −       

 

 

=> 
1 0.2 0.2 0.2 0.2

det 2 1 2 2 ( )
0.2 0 1

I

I c

z K K K
K z K K z

z

θ ω

θ ω α
 − + − +  
  − + =  
  −  

 

 
The weave method for calculating the determinant for a three by three matrix could then be used and 
the coefficients of the characteristic equation matched up to solve for the gains. I am too lazy to do this 
(!) and am going to use MATLAB instead (this is what you would do in practice). In the exam I will not 
send you down a ‘brute force’ maths road. The questions will either be designed to work out a little 
easier or you will be asked to work up to a point such as I have done above and then explain how you 
would continue by hand and how you would do it with MATLAB. In MATLAB, 
 
 >> zp = [0.9, 0.62 + j*0.38, 0.62 – j*0.38]; 
 >> K = acker(Phi_a, Gamma_a, zp); 
 
This gives a feedback gain of, 
 
 [ ]0.8759 0.3424 0.3610aK = −  
 
Thus, 
 
 [ ]0.8759 0.3424K =  
 0.3610IK = −  
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The equation for placing the zero is, 
 

 1 I
I

TK
z

N
= +  

 
Calculating N  such that the zero lies at z = 0.9 gives, 
 

 

1
(0.2)( 0.3610)

0.9 1
0.722

I

I

TK
N

z
=

−
−=
−

=

 

 
We need only estimate the original un-augmented state vector since the integral state is always 
exactly know (it exists inside the control computer). For a predictor estimator with poles at the origin 
set, 
 
 2det( ( ))pzI L H z− Φ − =  
 
with, 
 

 
1 0.2
0 1
 

Φ =  
 

  [ ]1 0H =  

 
and solve for pL . This could easily be done by hand. Using MATLAB gives, 
 

 
2
5pL
 

=  
 

 

 
A block diagram of the controller is given below with the step response shown. Note that the transient 
response specifications are easily met without the need for iteration as we had to when we designed 
the lead network in the classical control notes. A simulation is also run with the plant input gain varied 
by 10%. We see that although the transient response is disturbed, the DC gain of the closed loop 
system remains unity. Finally, the effect of leaving out the feed-forward gain N  is also shown. Of 
course if you knew you were going to leave out this gain then you could design for a faster closed loop 
integrator pole. 
 
 

 
 

Simulink block diagram of the closed loop system 
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Step response of the closed loop system 


