Fundamental Concepts of Statistics Exercise session 1

1. Derive the following inequality (Bonferroni inequality)

$$
P(A \cap B) \geq 1-P\left(A^{c}\right)-P\left(B^{c}\right)
$$

Can you generalize for more than 2 events?
2. A fire insurance company has high-risk, medium-risk and low-risk clients who have, respectively, probabilities $0.02,0.01$ and 0.0025 of filing claims within a given year. The proportions of the numbers of clients in the three categories are $0.10,0.20$ and 0.70 , respectively.
What proportions of the claims filed each year come from high-risk clients?
3. What is the probability that the following system works if each unit fails independently with probability p ? (see Figure 1)

4. This problem deals with an elementary aspect of simple branching processes. A population starts with one member; at time $t=1$ it either divides with probability p or dies with probability $1-p$. If it divides, then both of its children behave independently with the same two alternatives at time $t=2$. What is the probability that there are no members in the 3rd generation? For what value of p is this probability equal to 0.5 ?
5. The following table shows the cumulative distribution function of a discrete random variable. Find the pdf.

k	$F(k)$
0	0
1	0.1
2	0.3
3	0.7
4	0.8
5	1.0

6. If X has a geometric random variable, show that for any positive integers n, k (using the definition of conditional probability)

$$
P(X>n+k-1 \mid X>n-1)=P(X>k)
$$

Given the construction of a geometric random variable from a sequence of independent Bernoulli trials, explain this property directly.
7. If f and g are densities, show that $\alpha f+(1-\alpha) g$ with $0<\alpha<1$ is a density too.
8. Let T be an exponential random variable with parameter $\lambda>0$. Let X be a dicrete random variable defined as $X=k$ if $k \leq T<k+1, k=0,1,2, \ldots$. Find the pdf of X.
9. T is an exponential random variable and $P(T<1)=0.05$. What is λ ?
10. Let $f(x)=(1+\alpha x) / 2$ for $-1 \leq x \leq 1$, and 0 otherwise. We further assume that $|\alpha| \leq 1$. Show that f is a density and find the cumulative distribution function F and quantile function Q.

