Fundamental Concepts of Statistics Exercise session 3

1. Find expressions for the approximate mean and variance of $Y=g(X)$ with $g(x)=\log x$
2. If X is uniformly distributed on $[10,20]$ find the approximate and exact mean and variance of $1 / X$ and compare them.
3. Find the approximate mean and variance of $Y=\sqrt{X}$ when X is a random variable following a Poisson distribution with mean λ.
4. If X is distributed as $\mathcal{N}(75,100)$, find $P(X<60)$ and $P(70<X<100)$.
5. If X is distributed as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, find b such that $P\left(-b<\frac{X-\mu}{\sigma}<b\right)=0.90$.
6. If X is distributed as $\mathcal{N}\left(\mu, \sigma^{2}\right)$ so that $P(X<89)=0.90$ and $P(X<$ $94)=0.95$, find μ and σ^{2}.
7. If X is distributed as $\mathcal{N}(5,10)$, find $P\left(0.04<(X-5)^{2}<38.4\right)$.
8. If X is distributed as $\mathcal{N}(1,4)$, find $P\left(1<X^{2}<9\right)$.
9. If X is distributed as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, show that $E[|X-\mu|]=\sigma \sqrt{2 / \pi}$.
