Fundamental Concepts of Statistics Exercise session 4

1. Let (X, Y) have the joint density

$$
f(x, y)=\frac{6}{7}(x+y)^{2}, \quad \text { if } 0<x, y<1
$$

a) Find $P(X>Y)$ and $P(X<1 / 2)$
b) Find the marginal densities of X and Y
c) Find the two conditional densities
2. Let

$$
f(x, y)=c\left(x^{2}-y^{2}\right) e^{-x}, x>0,-x<y<x
$$

a) Find c.
b) Find the marginal densities.
c) Find the conditional densities.
3. Suppose that two components have independent exponentially distributed lifetimes T_{1} and T_{2} with parameters α and β respectively. Find

$$
P\left(T_{1}>T_{2}\right) \text { and } P\left(T_{1}>2 T_{2}\right)
$$

4. Let X and Y be jointly continuous random variables. Develop an expression for the joint density of $X+Y$ and $X-Y$. Use the density transformation theorem for this.
5. Find the joint density of $X+Y$ and X / Y where X and Y are independent exponential random variables with parameter λ. Show that $X+Y$ and X / Y are independent.
6. A six-sided die is rolled a 100 times. Using the normal approximation, - find the probability that the face showing a six turns up between 15 and 20 times.

- find the probability that the sum of the face values of the 100 trials is less than 300.

7. Suppose that X_{1}, \ldots, X_{20} are independent random variables with density

$$
f(x)=2 x, \quad 0<x<1
$$

Let $S=X_{1}+\ldots+X_{20}$. Use the central limit theorem to approximate $P(S \leq 10)$.
8. Suppose that a measurement has mean μ and $\sigma^{2}=25$. Let \bar{X} be the average of n such independent measurements. How large should n be so that $P(|\bar{X}-\mu|<1)=0.95$?
9. Assume that a company ships packages that are variable in weight, with an average weight of 15 pound and a standard deviation of 10 pound. Assuming that the packages come from a large number of different customers so that it is reasonable to model their weights as independent random variables, find the probability that 100 packages will have a total weight exceeding 17000 pound.
10. How can one approximate $\int_{0}^{1} \cos (2 \pi x) d x$ using n simulated uniform $(0,1)$ i.i.d. random variables U_{1}, \ldots, U_{n}. What is the expected value and variance of this approximation denoted say by $T\left(U_{1}, \ldots, U_{n}\right)$.
11. Consider the maximum $U_{(n)}$ of n simulated uniform $(0,1)$ i.i.d. random variables U_{1}, \ldots, U_{n}.
a) Show that $n\left(1-U_{(n)}\right)$ converges in distribution to a standard exponential distribution with distribution function $F(y)=1-e^{-y}(y>0)$ as $n \rightarrow \infty$. [To this end compute $P\left(n\left(1-U_{(n)}\right)>y\right)$ and take the limit for $n \rightarrow \infty$.]
b) How to adapt this result if the random variables are uniformly distributed on ($0, a$) for some $a>0$. [Hint: how to transform the given case to the uniform $(0,1)$ case.]

