Fundamental Concepts of Statistics Exercise session 6

1. Two random samples of size n are taken from two populations, and two proportions p_{1} and p_{2} are estimated. It is expected that both population proportions are close to 0.5 . What should the sample size n be so that the standard deviation of the difference $\hat{p}_{1}-\hat{p}_{2}$ will be less than 0.02 ?
2. The value of a population mean increases linearly through time:

$$
\mu(t)=\alpha+\beta t
$$

while the variance remains constant. Independent samples of size n are taken at times $t=1,2,3$.
a) Find the conditions on w_{1}, w_{2} and w_{3} such that

$$
\hat{\beta}=w_{1} \bar{X}_{1}+w_{2} \bar{X}_{2}+w_{3} \bar{X}_{3}
$$

(with \bar{X}_{i} denoting the sample average at time $i, i=1,2,3$) is an unbiased estimator of β.
b) What values of w_{1}, w_{2} and w_{3} minimize the variance of $\widehat{\beta}$ subject to the constraint that the estimator is unbiased?
3. Is \bar{X}^{2} an unbiased estimator of μ_{X}^{2} ? If not, what is the bias?
4. The typical estimator for a population proportion p is the sample proportion $\widehat{p}_{1}=\frac{X}{n}$ where X is the number of successes in a random sample of size n. However, in the case when the population proportion p is small and the sample size n is small, one might easily get zero successes and an estimate 0 for the proportion p. To remedy this, the Wilson estimator is proposed as $\widehat{p}_{2}=\frac{X+2}{n+4}$. Find the bias and mean squared error of both estimators, and show whether \widehat{p}_{2} is consistent.

