Fundamental Concepts of Statistics Exercise session 7

1. Let $X_1, ..., X_n$ be a random sample from a Poisson distribution with mean λ and $T = \sum_{i=1}^n X_i$. Show that the distribution of $X_1, ..., X_n$ given T is independent of λ so that T is sufficient for λ .

2. Let $X_1, ..., X_n$ be a random sample from the distribution with density

$$f(x;\theta) = \frac{\theta}{(1+x)^{1+\theta}}, \ x > -1 \text{ and } \theta > 0.$$

Find a sufficient statistic for θ .

- 3. Suppose that X is binomially (n, p) distributed.
- a) Show that the MLE of p is $\hat{p} = X/n$.
- b) Show that this MLE attains the Cramr-Rao lower bound.
- 4. Suppose that $X_1, ..., X_n$ is a random sample from geometric distribution Geo(p) with

$$P(X = x) = p(1 - p)^{x-1}, x = 1, 2, \dots$$

Expected value of geometric distribution is 1/p.

- a) Find the MLE of p.
- b) Find the asymptotic variance of the MLE.
- 5. The Pareto distribution is defined through

$$f(x;\theta) = \theta x_0^{\theta} x^{-\theta-1}, \ x > x_0.$$

Assume that x_0 is given. Consider $X_1, X_2, ..., X_m$ iid sample from this distribution

- a) Find the MLE of θ
- b) Find the asymptotic variance of the MLE.

6. Let $X_1, ..., X_n$ be a random sample from the Rayleigh distribution with parameter $\theta > 0$:

$$f(x;\theta) = \frac{x}{\theta^2} e^{-x^2/(2\theta^2)}, \ x > 0.$$

Find the MLE of θ and the asymptotic variance of the MLE given that $E(X_i^2) = 2\theta^2$.

7. Let $X_1, ..., X_n$ be a random sample from uniform distribution $U[0, \theta]$. Find the MLE of θ .