Computational Aerodynamics MSc Aeronautical Eng.

Assignment 1

Subsonic flow over a thin symmetric airfoil

We are going to study 2D steady compressible (irrotational and isentropic) flow around a thin symmetric airfoil.
We are going to use the small disturbance potential equation and also the transonic small disturbance potential
equation, and compare the results of these two equations. Recall that for small Mach numbers the results should
be roughly the same, but as the Mach number increases the small disturbance potential equation is not a good
approximation any more. The first of these equations reads

(1_M§o)¢m+¢yy =0, (1)

where M, is the free stream Mach number and ¢ represents the small disturbance velocity potential so that
the streamwise velocity fluctuation is ' = ¢,, the vertical velocity fluctuation is v’ = ¢, and the streamwise
velocity is u = Uy, + u/, where Uy is the free stream velocity. The transonic disturbance equation is
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where vy is the ratio of specific heats.
Consider a symmetric, airfoil of chord ¢ = 1 at zero angle of attack; the upper surface of the airfoil is given
by
yp(z) =ex(l—a/c), 0<az<g, (3)

where ¢ = (.18 is a constant. Since the solution is going to be symmetric we can ignore the lower part of the
computational domain and solve only for the upper part. In addition, since the airfoil is thin, we can use thin
airfoil theory and impose the boundary condition at y = 0 instead of at the airfoil surface. Then we do not
need to work with a body fitted mesh. A simple mesh aligned with the Cartesian coordinate system will suffice.
The computational domain spans, in the vertical direction, from the chord line at y = 0 to the top boundary
located at y = Ly = 25c. The left and right far boundaries are placed 25 chord lengths away from the leading
and trailing edge respectively. Along the lower boundary the boundary condition is

_ dyp
Oy = U dx

¢y = 0 otherwise,

0<x<g,

where y,(z) is the airfoil profile. Along the far field boundaries ¢ is held constant. Since ¢ is the disturbance
potential and not the full potential we can use ¢ = 1 or equal to any other constant at these boundaries.
Since the domain is very large we need to use a non-uniform grid. Let’s use 30 mesh points equally spaced
to span the chord line 0 < z < ¢, and then stretch the mesh (as explained below for the vertical direction)
from the airfoil leading edge, starting with the same grid spacing as in the uniform part, to the left far field
boundary and also from the trailing edge to the downstream right far field boundary, using additional 40 grid
points in each direction. Concerning the vertical direction, we are going to use a exponential mesh stretching
starting at y; = 0, ending at y = L, and using IV, = 61 grid points, we also want the mesh point to start with
AYmin = €/10, for that we need to determine the stretching factor x. For the j grid point the exponential law

gives
j—1
exp RNy 1) 1
: (4)

exp(k) — 1

yj:y1+Ly

The parameter « is determined by Newton’s method for finding the value for which f(k) = Aymin—(y2—y1) = 0,
where yo is obtained by substituting j = 2 in equation (4). Note that, since the grid is stretched, the formulas
you employ for the first and second derivative need to take this fact into account. Please use central differences
for all derivatives.

Assume we normalize pressure and density so that Uy, = 1, poo = 1, and 7 = 1.4. Then, since the free

stream sound speed is o = Uso /Mo, then the free-stream pressure is
1 9 1
= — a = .
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In order to solve equation (1) the same techniques we employed in class to solve the Laplace equation can
be used. Equation (2) is more complicated since it is non-linear. To solve this equation you should employ
an iterative procedure using line relaxation. You should start the iteration process with ¢ = 1 everywhere or
with the solution obtained for equation (1). This is the solution at iteration n and we want to obtain the next
iteration n + 1. Assume we already solved for the first i — 1 lines and we are solving now line ¢, simultaneously.
For this we need to discretize the equation (2). The derivative ¢, we discretize using the values of ¢ from the
previous iteration n, so we know them. The derivative ¢,, we discretize using the values at the current iteration
n + 1 since we are going to solve for all of them simultaneously. The derivative ¢., we discretize it using for
i — 1 the values at the current iteration n 4+ 1 that we already computed, for ¢ also the value at the current
iteration n + 1 that we are going to obtain now and for ¢ + 1 the values from the previous iteration n since
we do not know the new ones yet. After doing this we obtain a tri-diagonal system for the unknown values
B(i, 1) (3, 2)" L ¢(i, Ny)" 1. Once we solve this system we can proceed to the next line i + 1. The
line solution is swept through the flow field starting at ¢ = 2. The sweep through the mesh, from left to right,
is then repeated until the solution converges the absolute value of the residual to an acceptable tolerance.

e For M., = 0.65, obtain a numerical solution of equations (1) and (2) using the mesh defined above.

o Evaluate the pressure coefficient, ¢, (x) on the surface of the airfoil (in the interval —0.5¢ < « < 1.5¢) and
the value of the Mach number in the region near the airfoil M(z,y).

Evaluate how ¢, (z) and M(z,y) change with increasing M, and in particular what are the differences
using equations (1) and (2).

For equation (2), what is the maximum M, for which your solution converges? Do you have an idea why
this is the case?

Solve also the equations varying the parameter € in the range ¢ € [0.1,0.3] at a fixed M, of your choice
(but not too small) and show the changes in ¢,(x).

e Deliverables: the source code and a short report summarizing your results (maximum 8 pages including
figures). In the report, in addition to the presentation of your results, you should explain the decisions
you have taken like for example: what discretization you employed, how did you impose the boundary
conditions, etc. It is important that the report is concise, not being just a copy of the theory. You should
provide key explanations, key results, and only those plots that support your narrative. You should not
include plots just to fill pages. I find the following approach useful: You should imagine that you are
working in a company, and your boss who is a busy person, needs to understand in a few pages, what
you did, how you did it, what results you got and what we learnt from those results. If you want to
get feedback on your report, you should deliver a printed copy of the report in my pigeonhole (Benet
building). If you only submit a pdf file, you will only get a grade.
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