Assignment 2

Advanced Flight Mechanics 2021-22

Eduardo Andrés Abolfazl Simorgh

A2. Navigation

- Session 1: Sensors
- Session 2: Kalman Filter

Session 1

Sensors

1. Introduction and objectives

- Implement the linear model in Simulink
 - You will only need *A*_{long} and *A*_{lat} from Assignment1.
 - Excite the Phugoid and the Dutch Roll.
- Get measures from a 3-axis gyroscope.

• Compare the ideal, the measured and the filtered angular rates.

2. Linear model (I)

One model for longitudinal and lateral dynamics.

- Dynamics $\dot{\mathbf{x}} = A\mathbf{x}$
- Output $\mathbf{y} = C\mathbf{x}$

Such that:

•
$$\mathbf{x} = \begin{bmatrix} u & w & q & \theta & v & p & r & \psi \end{bmatrix}^T$$

• $\mathbf{y} = \begin{bmatrix} p & q & r \end{bmatrix}^T$

Then

3. Gyroscope

• From the linear model: • $\omega = \mathbf{y} = \begin{bmatrix} p & q & r \end{bmatrix}^T$

• $G's = \frac{1}{q} \begin{bmatrix} \dot{u} & \dot{v} & \dot{w} \end{bmatrix}^T$

'Ideal/Real Output' block

- Gyroscope settings:
 - In 'main', first order dynamics.
 - In 'noise', noise power = $(10^{-6}, 10^{-6}, 10^{-6})$

4. Kalman Filter

😼 Block Parameters: KF

Kalman Filter

Estimate the states of a discrete-time or continuous-time linear system. Time-varying systems are supported.

Filter Settings
Time domain: Continuous-Time
Model Parameters Options System Model
Model source: Individual A, B, C, D matrices
A: A : B: B :
C: C I D I
Initial Estimates
Source: Dialog -
Initial states x(0): x0_f
Noise Characteristics
\Box Use G and H matrices (default G=I and H=0)
Q: Q i Ime-invariant Q
R: R 🗄 🗹 Time-invariant R
N: 0 III IIII IIIII IIIII N

Cancel

Help

Apply

OK

5. Tips for Simulink

- Always run the model from Matlab.
- Do not include numerical values inside Simulink blocks. Use variables from your Matlab workspace. It is easier to assign values from there.
- Be careful with vectors, maybe you need a column instead of a row.
- Use 'ToWorkspace' block to export results to Matlab and work with them.

Matlab Code:

```
out = sim('model', t);
time = out.tout;
p_real = out.sensor.Data(:, 1);
q_real = out.sensor.Data(:, 2);
r_real = out.sensor.Data(:, 3);
```