Informática y Comunicaciones

Chapter 4
Mobile Networks, Multimedia and Security
Chapter 4: outline

4.1 Mobile Networks
4.2 Multimedia
4.3 Security
Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - **wireless:** communication over wireless link
 - **mobility:** handling the mobile user who changes point of attachment to network
Elements of a wireless network

network infrastructure
Elements of a wireless network

- Wireless hosts
 - laptop, smartphone
 - run applications
 - may be stationary (non-mobile) or mobile
 - wireless does not always mean mobility
Elements of a wireless network

- **network infrastructure**
 - e.g., cell towers, 802.11 access points

- **base station**
 - typically connected to wired network
 - relay - responsible for sending packets between wired network and wireless host(s) in its "area"
 - e.g., cell towers, 802.11 access points
Elements of a wireless network

- Wireless link
 - Typically used to connect mobile(s) to base station
 - Also used as backbone link
 - Multiple access protocol
 - Coordinates link access
 - Various data rates, transmission distance
Characteristics of selected wireless links

- **802.11n**: 200 Mbps
- **802.11a,g**: 54 Mbps
- **802.11a,g point-to-point**: 5-11 Mbps
- **4G: LTWE WIMAX**: 200 Mbps
- **3G: UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO**: 4-8 Mbps
- **2.5G: UMTS/WCDMA, CDMA2000**: 1 Mbps
- **2G: IS-95, CDMA, GSM**: 0.384 Mbps
- **2G: IS-95, CDMA, GSM**: 0.056 Mbps

Indoor: 10-30m
Outdoor: 50-200m
Mid-range outdoor: 200m – 4 Km
Long-range outdoor: 5Km – 20 Km
Elements of a wireless network

- **infrastructure mode**:
 - base station connects mobiles into wired network
 - handoff: mobile changes base station providing connection into wired network

Mobile Networks, Multimedia and Security 4-9
Elements of a wireless network

- **ad hoc mode**
 - no base stations
 - nodes can only transmit to other nodes within link coverage
 - nodes organize themselves into a network: route among themselves

Mobile Networks, Multimedia and Security 4-10
Wireless Link Characteristics

important differences from wired link

- *decreased signal strength*: radio signal attenuates as it propagates through matter (path loss)
- *interference from other sources*: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- *multipath propagation*: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more “difficult”
Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem
- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:
- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B
Code Division Multiple Access (CDMA)

- unique “code” assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own “chipping” sequence (i.e., code) to encode data
 - allows multiple users to “coexist” and transmit simultaneously with minimal interference (if codes are “orthogonal”)

- \(\text{encoded signal} = (\text{original data}) \times (\text{chipping sequence}) \)

- \(\text{decoding: inner-product of encoded signal and chipping sequence} \)
IEEE 802.11 Wireless LAN

802.11b
- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a
- 5-6 GHz range
- up to 54 Mbps

802.11g
- 2.4-5 GHz range
- up to 54 Mbps

802.11n: multiple antennae
- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions
wireless hosts communicate with base station
- base station = access point (AP)

Basic Service Set (BSS) (aka “cell”) in infrastructure mode contains:
- wireless hosts
- access point (AP): base station
- ad hoc mode: hosts only
802.11: Channels, association

- **802.11b:** 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

- **Host:** must *associate* with an AP
 - scans channels, listening for *beacon frames* containing AP’s name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP’s subnet
802.11: passive/active scanning

passive scanning:
(1) beacon frames sent from APs
(2) association Request frame sent: H1 to selected AP
(3) association Response frame sent from selected AP to H1

active scanning:
(1) Probe Request frame broadcast from H1
(2) Probe Response frames sent from APs
(3) Association Request frame sent: H1 to selected AP
(4) Association Response frame sent from selected AP to H1

Mobile Networks, Multimedia and Security 4-17
IEEE 802.11: multiple access

- avoid collisions: 2^+ nodes transmitting at same time
- 802.11: CSMA - sense before transmitting
 - don’t collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can’t sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)
802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1
802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

Mobile Networks, Multimedia and Security 4-20
Components of cellular network architecture

MSC
- connects cells to wired tel. net.
- manages call setup
- handles mobility

cell
- covers geographical region
- *base station* (BS) analogous to 802.11 AP
- *mobile users* attach to network through BS
- *air-interface*: physical and link layer protocol between mobile and BS

Mobile Networks, Multimedia and Security 4-21
Cellular networks: the first hop

Two techniques for sharing mobile-to-BS radio spectrum

- **combined FDMA/TDMA:** divide spectrum in frequency channels, divide each channel into time slots
- **CDMA:** code division multiple access
2G (voice) network architecture

Base station system (BSS)

BTS

BSC

MSC

Gateway MSC

Public telephone network

Legend

Base transceiver station (BTS)

Base station controller (BSC)

Mobile Switching Center (MSC)

Mobile subscribers
3G (voice+data) network architecture

Key insight: new cellular data network operates in parallel (except at edge) with existing cellular voice network
- voice network unchanged in core
- data network operates in parallel
3G (voice+data) network architecture

- MSC (Mobile Switching Center)
- Gateway MSC
- SGSN (Serving GPRS Support Node)
- GGSN (Gateway GPRS Support Node)
- Public telephone network
- Public Internet
- Radio interface (WCDMA, HSPA)
- Radio access network (Universal Terrestrial Radio Access Network (UTRAN))
- Core network (General Packet Radio Service (GPRS) Core Network)
- Internet

Mobile Networks, Multimedia and Security 4-25
What is mobility?

- spectrum of mobility, from the network perspective:

 - no mobility: mobile wireless user, using same access point
 - high mobility: mobile user, passing through multiple access point while maintaining ongoing connections (like cell phone)
 - mobile user, connecting/disconnecting from network using DHCP.
Mobility: vocabulary

home network: permanent "home" of mobile
(e.g., 128.119.40/24)

permanent address: address in home network, *can always* be used to reach mobile
(e.g., 128.119.40.186)

home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote

wide area network
Mobility: more vocabulary

permanent address: remains constant (e.g., 128.119.40.186)

visited network: network in which mobile currently resides (e.g., 79.129.13/24)

care-of-address: address in visited network. (e.g., 79,129.13.2)

foreign agent: entity in visited network that performs mobility functions on behalf of mobile.

correspondent: wants to communicate with mobile

Mobile Networks, Multimedia and Security 4-28
How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

- search all phone books?
- call her parents?
- expect her to let you know where he/she is?

I wonder where Alice moved to?
Mobility: approaches

- *let routing handle it:* routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- *let end-systems handle it:*
 - *indirect routing:* communication from correspondent to mobile goes through home agent, then forwarded to remote
 - *direct routing:* correspondent gets foreign address of mobile, sends directly to mobile
Mobility: approaches

- *let routing handle it*: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- *let end-systems handle it*:
 - **indirect routing**: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - **direct routing**: correspondent gets foreign address of mobile, sends directly to mobile
Mobility: registration

end result:

- foreign agent knows about mobile
- home agent knows location of mobile
Mobility via indirect routing

1. Correspondent addresses packets using home address of mobile
2. Home agent intercepts packets, forwards to foreign agent
3. Foreign agent receives packets, forwards to mobile
4. Mobile replies directly to correspondent

Visited network
Wide area network
Home network
Indirect Routing: comments

- mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is *transparent* to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile

- foreign agent functions may be done by mobile itself

- triangle routing: correspondent-home-network-mobile
 - inefficient when correspondent, mobile are in same network
Indirect routing: moving between networks

- suppose mobile user moves to another network
 - registers with new foreign agent
 - new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)

- mobility, changing foreign networks transparent: on going connections can be maintained!
Mobility via direct routing

1. Correspondent requests, receives foreign address of mobile
2. Correspondent forwards to foreign agent
3. Foreign agent receives packets, forwards to mobile
4. Mobile replies directly to correspondent
Mobility via direct routing: comments

- overcome triangle routing problem
- *non-transparent to correspondent*: correspondent must get care-of-address from home agent
 - what if mobile changes visited network?
Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)
Chapter 4: outline

4.1 Mobile Networks
4.2 Multimedia
4.3 Security
Multimedia: audio

- Analog audio signal sampled at constant rate
 - Telephone: 8,000 samples/sec
 - CD music: 44,100 samples/sec
- Each sample quantized, i.e., rounded
 - E.g., $2^8 = 256$ possible quantized values
 - Each quantized value represented by bits, e.g., 8 bits for 256 values
Multimedia: audio

- example: 8,000 samples/sec, 256 quantized values: 64,000 bps
- receiver converts bits back to analog signal:
 - some quality reduction

example rates

- CD: 1.411 Mbps
- MP3: 96, 128, 160 kbps
- Internet telephony: 5.3 kbps and up
Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g. 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

Spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

Temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

Mobile Networks, Multimedia and Security 4-42
Multimedia: video

- **CBR** (constant bit rate): video encoding rate fixed
- **VBR** (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes

- **examples:**
 - MPEG 1 (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < 1 Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i
Multimedia networking: 3 application types

- **streaming, stored** audio, video
 - **streaming**: can begin playout before downloading entire file
 - **stored (at server)**: can transmit faster than audio/video will be rendered (implies storing/buffering at client)
 - e.g., YouTube, Netflix, Hulu

- **conversational** voice/video over IP
 - interactive nature of human-to-human conversation limits delay tolerance
 - e.g., Skype

- **streaming live** audio, video
 - e.g., live sporting event (futbol)
Streaming stored video:

1. Video recorded (e.g., 30 frames/sec)
2. Video sent
3. Video received, played out at client (30 frames/sec)

Network delay

Streaming: at this time, client playing out early part of video, while server still sending later part of video.
Streaming stored video: challenges

- **continuous playout constraint**: once client playout begins, playback must match original timing
 - … but **network delays are variable** (jitter), so will need **client-side buffer** to match playout requirements

- **other challenges**:
 - client interactivity: pause, fast-forward, rewind, jump through video
 - video packets may be lost, retransmitted
Streaming stored video: revisited

- **client-side buffering and playout delay**: compensate for network-added delay, delay jitter
Client-side buffering, playout

- Video server to client
- Variable fill rate, \(x(t) \)
- Buffer fill level, \(Q(t) \)
- Playout rate, e.g., CBR, \(r \)
- Client application
- Buffer, size B

Mobile Networks, Multimedia and Security 4-48
Client-side buffering, playout

1. Initial fill of buffer until playout begins at t_p
2. playout begins at t_p
3. buffer fill level varies over time as fill rate $x(t)$ varies and playout rate r is constant

Mobile Networks, Multimedia and Security 4-49
Client-side buffering, playout

Playout buffering: average fill rate \(\bar{x} \), playout rate \(r \):

- \(\bar{x} < r \): buffer eventually empties (causing freezing of video playout until buffer again fills)
- \(\bar{x} > r \): buffer will not empty, provided initial playout delay is large enough to absorb variability in \(x(t) \)
 - **Initial playout delay tradeoff**: buffer starvation less likely with larger delay, but larger delay until user begins watching

Mobile Networks, Multimedia and Security 4-50
Streaming multimedia: UDP

- server sends at rate appropriate for client
 - often: send rate = encoding rate = constant rate
 - transmission rate can be oblivious to congestion levels
- short playout delay (2-5 seconds) to remove network jitter
- error recovery: application-level, timeipermittting
- RTP [RFC 2326]: multimedia payload types
- UDP may not go through firewalls
Streaming multimedia: HTTP

- Multimedia file retrieved via HTTP GET
- Send at maximum possible rate under TCP

- Fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- Larger playout delay: smooth TCP delivery rate
- HTTP/TCP passes more easily through firewalls
Streaming multimedia: DASH

- **DASH**: Dynamic, Adaptive Streaming over HTTP

 - **server:**
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - *manifest file*: provides URLs for different chunks

 - **client:**
 - periodically measures server-to-client bandwidth
 - consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)
Streaming multimedia: DASH

- **DASH: Dynamic, Adaptive Streaming over HTTP**
- **“intelligence” at client:** client determines
 - *when* to request chunk (so that buffer starvation, or overflow does not occur)
 - *what encoding rate* to request (higher quality when more bandwidth available)
 - *where* to request chunk (can request from URL server that is “close” to client or has high available bandwidth)
Content distribution networks

- **challenge**: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?

- **option 1**: single, large “mega-server”
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link

 quite simply: this solution **doesn’t scale**
Content distribution networks

- **challenge**: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?

- **option 2**: store/serve multiple copies of videos at multiple geographically distributed sites (*CDN*)
 - **enter deep**: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
 - **bring home**: smaller number (10’s) of larger clusters in POPs near (but not within) access networks
 - used by Limelight
CDN cluster selection strategy

- **challenge:** how does CDN DNS select “good” CDN node to stream to client
 - pick CDN node geographically closest to client
 - pick CDN node with shortest delay (or min # hops) to client (CDN nodes periodically ping access ISPs, reporting results to CDN DNS)
 - IP anycast

- **alternative:** let client decide - give client a list of several CDN servers
 - client pings servers, picks “best”
 - Netflix approach
Case study: Netflix

- 30% downstream US traffic in 2011
- owns very little infrastructure, uses 3rd party services:
 - own registration, payment servers
 - Amazon (3rd party) cloud services:
 - Netflix uploads studio master to Amazon cloud
 - create multiple version of movie (different endodings) in cloud
 - upload versions from cloud to CDNs
 - Cloud hosts Netflix web pages for user browsing
 - three 3rd party CDNs host/stream Netflix content: Akamai, Limelight, Level-3
Case study: Netflix

1. Bob manages Netflix account
2. Bob browses Netflix video
3. Manifest file returned for requested video
4. DASH streaming

Amazon cloud

Akamai CDN

Limelight CDN

Level-3 CDN

Netflix registration, accounting servers
Voice-over-IP (VoIP)

- **VoIP end-end-delay requirement**: needed to maintain “conversational” aspect
 - higher delays noticeable, impair interactivity
 - < 150 msec: good
 - > 400 msec bad
 - includes application-level (packetization, playout), network delays

- **session initialization**: how does callee advertise IP address, port number, encoding algorithms?

- **value-added services**: call forwarding, screening, recording

- **emergency services**: 911
VoIP characteristics

- speaker’s audio: alternating talk spurts, silent periods.
 - 64 kbps during talk spurt
 - pkts generated only during talk spurts
 - 20 msec chunks at 8 Kbytes/sec: 160 bytes of data
- application-layer header added to each chunk
- chunk+header encapsulated into UDP or TCP segment
- application sends segment into socket every 20 msec during talkspurt
VoIP: packet loss, delay

- **network loss**: IP datagram lost due to network congestion (router buffer overflow)
- **delay loss**: IP datagram arrives too late for playout at receiver
 - delays: processing, queueing in network; end-system (sender, receiver) delays
 - typical maximum tolerable delay: 400 ms
- **loss tolerance**: depending on voice encoding, loss concealment, packet loss rates between 1% and 10% can be tolerated
● end-to-end delays of two consecutive packets: difference can be more or less than 20 msec (transmission time difference)
Voice-over-IP: Skype

- proprietary application-layer protocol (inferred via reverse engineering)
 - encrypted msgs
- P2P components:
 - clients: skype peers connect directly to each other for VoIP call
 - super nodes (SN): skype peers with special functions
 - overlay network: among SNs to locate SCs
 - login server
P2P voice-over-IP: skype

skype client operation:
1. joins skype network by contacting SN (IP address cached) using TCP
2. logs-in (username, password) to centralized skype login server
3. obtains IP address for callee from SN, SN overlay
 - or client buddy list
4. initiate call directly to callee
Skype: peers as relays

- **Problem:** both Alice, Bob are behind “NATs”
 - NAT prevents outside peer from initiating connection to insider peer
 - inside peer *can* initiate connection to outside

- **Relay Solution:** Alice, Bob maintain open connection to their SNs
 - Alice signals her SN to connect to Bob
 - Alice’s SN connects to Bob’s SN
 - Bob’s SN connects to Bob over open connection Bob initially initiated to his SN
Real-Time Protocol (RTP)

- RTP specifies packet structure for packets carrying audio, video data
- RFC 3550
- RTP packet provides:
 - payload type identification
 - packet sequence numbering
 - time stamping
- RTP runs in end systems
- RTP packets encapsulated in UDP segments
- interoperability: if two VoIP applications run RTP, they may be able to work together
RTP runs on top of UDP

RTP libraries provide transport-layer interface that extends UDP:

- port numbers, IP addresses
- payload type identification
- packet sequence numbering
- time-stamping
RTP example

example: sending 64 kbps PCM-encoded voice over RTP

- application collects encoded data in chunks, e.g., every 20 msec = 160 bytes in a chunk
- audio chunk + RTP header form RTP packet, which is encapsulated in UDP segment

- RTP header indicates type of audio encoding in each packet
 - sender can change encoding during conference
- RTP header also contains sequence numbers, timestamps

Mobile Networks, Multimedia and Security 4-69
RTP and QoS

- RTP does *not* provide any mechanism to ensure timely data delivery or other QoS guarantees.
- RTP encapsulation only seen at end systems (*not* by intermediate routers).
 - Routers provide best-effort service, making no special effort to ensure that RTP packets arrive at destination in timely matter.
Chapter 4: outline

4.1 Mobile Networks
4.2 Multimedia
4.3 Security
What is network security?

Confidentiality: only sender, intended receiver should “understand” message contents
- sender encrypts message
- receiver decrypts message

Authentication: sender, receiver want to confirm identity of each other

Message integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

Access and availability: services must be accessible and available to users
Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate “securely”
- Trudy (intruder) may intercept, delete, add messages
Who might Bob, Alice be?

- ... well, *real-life* Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
- other examples?
There are bad guys (and girls) out there!

Q: What can a “bad guy” do?
A: A lot!

- **eavesdrop**: intercept messages
- actively **insert** messages into connection
- **impersonation**: can fake (spoof) source address in packet (or any field in packet)
- **hijacking**: “take over” ongoing connection by removing sender or receiver, inserting himself in place
- **denial of service**: prevent service from being used by others (e.g., by overloading resources)
The language of cryptography

plaintext

encryption algorithm

plaintext message

K_A
Alice's encryption key

K_A(m) ciphertext, encrypted with key K_A

m = K_B(K_A(m))

Mobile Networks, Multimedia and Security 4-76
Breaking an encryption scheme

- **cipher-text only attack:**
 Trudy has ciphertext she can analyze

- **known-plaintext attack:**
 Trudy has plaintext corresponding to ciphertext
 - e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,

- **two approaches:**
 - brute force: search through all keys
 - statistical analysis

- **chosen-plaintext attack:**
 Trudy can get ciphertext for chosen plaintext
Symmetric key cryptography

plaintext → encryption algorithm → ciphertext → decryption algorithm → plaintext

symmetric key crypto: Bob and Alice share same (symmetric) key: K_S

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher
Simple encryption scheme

substitution cipher: substituting one thing for another
- monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

<table>
<thead>
<tr>
<th>plaintext</th>
<th>ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcdefghijklmnopqrstuvwxyz</td>
<td>mnbvcxzasdfghjklpoiuytrewq</td>
</tr>
</tbody>
</table>

e.g.: Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

✿ **Encryption key**: mapping from set of 26 letters
to set of 26 letters
A more sophisticated encryption approach

- n substitution ciphers, M_1, M_2, \ldots, M_n
- cycling pattern:
 - e.g., $n=4$: M_1, M_3, M_4, M_3, M_2; M_1, M_3, M_4, M_3, M_2; ..
- for each new plaintext symbol, use subsequent substitution pattern in cyclic pattern
 - dog: d from M_1, o from M_3, g from M_4

Encryption key: n substitution ciphers, and cyclic pattern

- key need not be just n-bit pattern
Symmetric key crypto: DES

DES: Data Encryption Standard
- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- block cipher with cipher block chaining
- how secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - no known good analytic attack
- making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys
Public Key Cryptography

symmetric key crypto
- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never “met”)?

public key crypto
- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do not share secret key
- *public* encryption key known to *all*
- *private* decryption key known only to receiver
Public key cryptography

Bob's public key K_B^+

Bob's private key K_B^-

plaintext message, m

encryption algorithm

ciphertext $K_B^+(m)$

decryption algorithm

plaintext message $m = K_B^-(K_B^+(m))$

Mobile Networks, Multimedia and Security 4-83
Public key encryption algorithms

requirements:

1. need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that
 $$K_B^-(K_B^+(m)) = m$$

2. given public key K_B^+, it should be impossible to compute private key K_B^-

RSA: Rivest, Shamir, Adelson algorithm
Prerequisite: modular arithmetic

- \(x \mod n = \) remainder of \(x \) when divide by \(n \)
- facts:
 - \([(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n \)
 - \([(a \mod n) - (b \mod n)] \mod n = (a-b) \mod n \)
 - \([(a \mod n) \times (b \mod n)] \mod n = (a*b) \mod n \)
- thus
 - \((a \mod n)^d \mod n = a^d \mod n \)
- example: \(x=14, n=10, d=2 \):
 - \((x \mod n)^d \mod n = 4^2 \mod 10 = 6 \)
 - \(x^d = 14^2 = 196 \quad x^d \mod 10 = 6 \)
RSA: getting ready

- message: just a bit pattern
- bit pattern can be uniquely represented by an integer number
- thus, encrypting a message is equivalent to encrypting a number.

example:
- m = 10010001. This message is uniquely represented by the decimal number 145.
- to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).
RSA: Creating public/private key pair

1. choose two large prime numbers \(p, q \).
 (e.g., 1024 bits each)
2. compute \(n = pq, \quad z = (p-1)(q-1) \)
3. choose \(e \) (with \(e < n \)) that has no common factors with \(z \) (\(e, z \) are “relatively prime”).
4. choose \(d \) such that \(ed - 1 \) is exactly divisible by \(z \).
 (in other words: \(ed \mod z = 1 \)).
5. public key is \((n, e) \). private key is \((n, d) \).
RSA: encryption, decryption

0. given \((n,e)\) and \((n,d)\) as computed above

1. to encrypt message \(m < n\), compute
 \[c = m^e \mod n \]

2. to decrypt received bit pattern, \(c\), compute
 \[m = c^d \mod n \]

\[m = \left(m^e \mod n \right)^d \mod n \]

\textit{magic happens!}
RSA example:

- $e=5$ (so e, z relatively prime).
- $d=29$ (so $ed-1$ exactly divisible by z).

encrypting 8-bit messages.

<table>
<thead>
<tr>
<th>encrypt: bit pattern</th>
<th>m</th>
<th>m^e</th>
<th>$c = m^e \mod n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001000</td>
<td>12</td>
<td>24832</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>decrypt: c</th>
<th>c^d</th>
<th>$m = c^d \mod n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>481968572106750915091411825223071697</td>
<td>12</td>
</tr>
</tbody>
</table>
Why does RSA work?

- must show that $c^d \mod n = m$
- where $c = m^e \mod n$
- fact: for any x and y: $x^y \mod n = x^{(y \mod z)} \mod n$
 - where $n = pq$ and $z = (p-1)(q-1)$
- thus,
 $c^d \mod n = (m^e \mod n)^d \mod n$
 $= m^{ed} \mod n$
 $= m^{(ed \mod z)} \mod n$
 $= m^1 \mod n$
 $= m$
Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap 1.0: Alice says “I am Alice”

“**I am Alice**”

Failure scenario??
Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap 1.0: Alice says “I am Alice”

in a network, Bob can not “see” Alice, so Trudy simply declares herself to be Alice
Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet containing her source IP address

Failure scenario??
Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet containing her source IP address.

Trudy can create a packet “spoofing” Alice’s address.
Protocol ap3.0: Alice says “I am Alice” and sends her secret password to “prove” it.

Failure scenario??
Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends her secret password to “prove” it.

playback attack: Trudy records Alice’s packet and later plays it back to Bob.
Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her encrypted secret password to “prove” it.

Failure scenario??

Mobile Networks, Multimedia and Security 4-97
Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her encrypted secret password to “prove” it.

record and playback still works!
Goal: avoid playback attack

nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

“I am Alice”

K_{A-B}(R)

Alice is live, and only Alice knows key to encrypt nonce, so it must be Alice!

Failures, drawbacks?
Authentication: ap5.0

ap4.0 requires shared symmetric key
- can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

Bob computes

\[K_A^+(K_A^-(R)) = R \]

and knows only Alice could have the private key, that encrypted R such that

\[K_A^+(K_A^-(R)) = R \]

"I am Alice"

R

K_A^-(R)

"send me your public key"

K_A^+

K_A

Mobile Networks, Multimedia and Security 4-100
ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

\[m = K_A^{-1}(K_A^+(m)) \]

- Trudy gets \(K_T^{-1}(m) \)
- Sends \(m \) to Alice encrypted with Alice’s public key
- Alice sends \(m \) to Bob encrypted with Bob’s public key

Mobile Networks, Multimedia and Security 4-101
ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

difficult to detect:
- Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one week later and recall conversation!)
- problem is that Trudy receives all messages as well!
Digital signatures

cryptographic technique analogous to hand-written signatures:

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document
Digital signatures

simple digital signature for message m:

- Bob signs m by encrypting with his private key K_B^-, creating “signed” message, $K_B^-(m)$

Bob’s message, m

Dear Alice
Oh, how I have missed you. I think of you all the time! ...(blah blah blah)
Bob

Bob’s private key

Bob’s message, m, signed (encrypted) with his private key

Public key encryption algorithm
Digital signatures

- Suppose Alice receives msg m, with signature: m, $K_B^-(m)$
- Alice verifies m signed by Bob by applying Bob’s public key K_B to $K_B^-(m)$ then checks $K_B(K_B^+(m)) = m$.
- If $K_B^+(K_B^-(m)) = m$, whoever signed m must have used Bob’s private key.

Alice thus verifies that:
- \Rightarrow Bob signed m
- \Rightarrow no one else signed m
- \Rightarrow Bob signed m and not m'

Non-repudiation:
- \checkmark Alice can take m, and signature $K_B^-(m)$ to court and prove that Bob signed m
Certification authorities

- **certification authority (CA):** binds public key to particular entity, E.
- E (person, router) registers its public key with CA.
 - E provides “proof of identity” to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E’s public key digitally signed by CA – CA says “this is E’s public key”
Certification authorities

- when Alice wants Bob’s public key:
 - gets Bob’s certificate (Bob or elsewhere).
 - apply CA’s public key to Bob’s certificate, get Bob’s public key
SSL: Secure Sockets Layer

- widely deployed security protocol
 - supported by almost all browsers, web servers
 - https
 - billions $/year over SSL
- mechanisms: [Woo 1994], implementation: Netscape
- variation -TLS: transport layer security, RFC 2246
- provides
 - confidentiality
 - integrity
 - authentication

- original goals:
 - Web e-commerce transactions
 - encryption (especially credit-card numbers)
 - Web-server authentication
 - optional client authentication
 - minimum hassle in doing business with new merchant
- available to all TCP applications
 - secure socket interface
SSL and TCP/IP

SSL provides application programming interface (API) to applications

C and Java SSL libraries/classes readily available
WEP design goals

- symmetric key crypto
 - confidentiality
 - end host authorization
 - data integrity
- self-synchronizing: each packet separately encrypted
 - given encrypted packet and key, can decrypt; can continue to decrypt packets when preceding packet was lost (unlike Cipher Block Chaining (CBC) in block ciphers)
- Efficient
 - implementable in hardware or software
Firewalls

A firewall isolates an organization’s internal network from the larger Internet, allowing some packets to pass while blocking others.
Firewalls: why

prevent denial of service attacks:
 - SYN flooding: attacker establishes many bogus TCP connections, no resources left for “real” connections

prevent illegal modification/access of internal data
 - e.g., attacker replaces CIA’s homepage with something else

allow only authorized access to inside network
 - set of authenticated users/hosts

three types of firewalls:
 - stateless packet filters
 - stateful packet filters
 - application gateways
Stateless packet filtering

- internal network connected to Internet via *router firewall*
- router *filters packet-by-packet*, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits
Stateless packet filtering

<table>
<thead>
<tr>
<th>Policy</th>
<th>Firewall Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>No outside Web access.</td>
<td>Drop all outgoing packets to any IP address, port 80</td>
</tr>
<tr>
<td>No incoming TCP connections, except those for institution’s</td>
<td>Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80</td>
</tr>
<tr>
<td>public Web server only.</td>
<td></td>
</tr>
<tr>
<td>Prevent Web-radios from eating up the available bandwidth.</td>
<td>Drop all incoming UDP packets - except DNS and router broadcasts.</td>
</tr>
<tr>
<td>Prevent your network from being used for a smurf DoS attack.</td>
<td>Drop all ICMP packets going to a “broadcast” address (e.g. 130.207.255.255).</td>
</tr>
<tr>
<td>Prevent your network from being tracerouted</td>
<td>Drop all outgoing ICMP TTL expired traffic</td>
</tr>
</tbody>
</table>
Limitations of firewalls

- **IP spoofing**: router can’t know if data “really” comes from claimed source
- if multiple app’s. need special treatment, each has own app. gateway
- client software must know how to contact gateway.
 - e.g., must set IP address of proxy in Web browser
- filters often use all or nothing policy for UDP
- *tradeoff*: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks
Chapter 4: summary

- mobile networks
 - wireless communication
 - IEEE 802.11
 - mobility
- multimedia
 - audio & video
 - streaming
 - VoIP
- security
 - cryptography
 - RSA
 - SSL
 - WEP
 - firewalls