Los números complejos.

 \mathbb{C} es \mathbb{R}^2 con las operaciones:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$a(x_1, y_1) = (ax_1, ay_1), a \in \mathbb{R}$$

$$(x_1, y_1).(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$$

Los puntos (0, y) integran el eje imaginario y los puntos (x, 0)el eje real.

Notaciones: $(x,0) \simeq x; (0,1) \simeq i; (x,y) = x + iy.a^2 + b^2$

Observaciones:

- $-i^2 = -1$, entonces (a + bi)(c + di) = (ac bd) + i(ad + bc)
- $-a + bi = c + di \iff a = c, b = d$
- $-z = a + bi, a = \operatorname{Re} z, b = \operatorname{Im} z$

- Si $z \in \mathbb{C}$ es $z \neq 0$, entonces existe $z^{-1} \in \mathbb{C}$ tal que $z.z^{-1} = 1$. Si z = a + bi, entonces $z^{-1} = \frac{a}{a^2 + b^2} - \frac{ib}{a^2 + b^2}$. Como consecuencia si $w \neq 0$, entonces $\frac{z}{w} = z.w^{-1} \in \mathbb{C}$.

Propiedades.

Aditivas:

$$z + w = w + z$$

$$z + (w + s) = (z + w) + s$$

$$z + 0 = z$$

$$z + (-z) = 0$$

Multiplicativas:

$$zw = wz$$

$$(zw)s = z(ws)$$

$$1z = z$$

$$zz^{-1} = 1 \text{ si } z \neq 0$$

Distributiva:

$$z(w+s) = zw + zs$$

Las propiedades anteriores nos permiten afirmar que $\mathbb C$ es un cuerpo.

Raices cuadradas.

Si $z \in \mathbb{C}$, entonces existe $w \in \mathbb{C}$ tal que $w^2 = z$.

D) Sea z = a + bi. Planteamos la ecuación

$$w = x + iy \operatorname{con} (x + iy)^2 = a + bi$$

es decir,

$$x^2 - y^2 = a; 2xy = b$$

Elevando al cuadrado

$$(x^2 - y^2)^2 = a^2; 4x^2y^2 = b^2$$

de donde concluimos que

$$x^2 = \frac{a + \sqrt{a^2 + b^2}}{2}$$

Si llamamos $\alpha = \sqrt{\frac{a+\sqrt{a^2+b^2}}{2}}$ y $\beta = \sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}$ resulta:

Si b > 0, entonces $x = \alpha$ e $y = \beta$ o $x = -\alpha$ e $y = -\beta$

Si b < 0, entonces $x = \alpha$ e $y = -\beta$ o $x = -\alpha$ e $y = \beta$

Corolario.

Toda ecuación del tipo $az^2 + bz + c = 0$, con $a, b, c \in \mathbb{C}$ tiene soluciones

 $z = \frac{\left[-b \pm \sqrt{b^2 - 4ac} \right]}{2a}$

Observación: \mathbb{C} es el "más pequeño" de los cuerpos que contienen a \mathbb{R} y en los que toda ecuación cuadrática tiene solución.

Representación polar.

Si z = a + bi, llamaremos módulo de z al número real $|z| = r = \sqrt{a^2 + b^2}$.

Si θ es el ángulo entre el vector z y el eje real positivo, que llamaremos argumento de z, $0 \le \theta < 2\pi$, se verifica

 $a = r \cos \theta, b = r \sin \theta, a + bi = r(\cos \theta + i \sin \theta), \theta = \arg z,$ (representación polar).

Observaciones:

- Una vez fijado un intervalo [a,b) de longitud 2π , cada z tiene un único argumento perteneciente a ese intervalo.
 - $|z_1 z_2| = |z_1| |z_2|$ y $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ (*) ya que

$$z_1 z_2 = r_1 r_2 \begin{pmatrix} [\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2] + \\ i [\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1] \end{pmatrix} =$$
$$= r_1 r_2 (\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2))$$

 (\star) Si $\arg(z_1) + \arg(z_2)$ se va fuera del intervalo asignado para los argumentos, tenemos que ajustar $\arg(z_1) + \arg(z_2)$ a través de un múltiplo de 2π para hacer caer el argumento del producto dentro del intervalo asignado.

Ejemplo.

Intervalo elegido $[0, 2\pi)$. $z_1 = -1$; $z_2 = -i$; arg $z_1 = \pi$; arg $z_2 = \frac{3\pi}{2}$; $z_1 z_2 = i$; arg $(z_1 z_2) = \frac{\pi}{2}$ y arg $(z_1) + \arg(z_2) = 2\pi + \frac{\pi}{2}$ Luego escribiremos:

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \pmod{2\pi}.$$

Fórmula de Moivre.

Si $z = r(\cos \theta + i \sin \theta)$ y $n \in \mathbb{N}$, entonces $z^n = r^n (\cos n\theta + i \sin n\theta)$

D) Es inmediata por inducción.

Raices n-ésimas.

Dado $w \in \mathbb{C}$ se trata de resolver la ecuación $z^n = w$. Si $w = r(\cos \theta + i \sin \theta)$ y $z = \rho(\cos \psi + i \sin \psi)$, entonces

$$z^n = \rho^n(\cos n\psi + i\sin n\psi)$$
; $\rho^n = r = |w|$; $n\psi = \theta + 2k\pi, k \in \mathbb{Z}$

.Entonces

$$z = \sqrt[n]{r} \left[\cos \left(\frac{\theta}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\theta}{n} + \frac{2k\pi}{n} \right) \right]$$

Cada valor de k da un valor de z, tenemos n-raices asociadas a los valores de k=0,1,2,...,(n-1).

Ejemplo.

Si $z^3 = 1$, obtenemos $z_1 = 1$; $z_2 = -1/2 + i\sqrt{3}/2$; $z_3 = -1/2 - i\sqrt{3}/2$. Tres raices "uniformemente distribuidas" en el círculo unidad.

Conjugación.

Si z = a + bi, definimos $\overline{z} = a - bi$ (conjugado de z)

Propiedades.

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 z_2} = \overline{z_1}.\overline{z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} \text{ si } z_2 \neq 0$$

$$z\overline{z} = |z|^2. \text{ Luego si } z \neq 0, z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$z = \overline{z} \iff z \in \mathbb{R}$$

$$\operatorname{Re} z = \frac{z + \overline{z}}{2}; \operatorname{Im} z = \frac{z - \overline{z}}{2i}; \overline{z} = z$$

Propiedades del módulo.

(i)
$$|zz'| = |z| |z'|$$

(ii) Si $z \neq 0$, entonces $|z/z'| = |z| / |z'|$
(iii) $-|z| \leq \text{Re } z \leq |z|$;
 $-|z| \leq \text{Im } z \leq |z|$;
 $|\text{Re } z| \leq |z|$; $|\text{Im } z| \leq |z|$
(iv) $|z| = |\overline{z}|$
(v) $|z + z'| \leq |z| + |z'|$;
 $||z| - |z'|| \leq |z - z'|$ (1)

$$(vi) |z_1w_1 + \dots z_nw_n| \le \sqrt{|z_1|^2 + \dots + |z_n|^2} \cdot \sqrt{|w_1|^2 + \dots + |w_n|^2}$$

Desigualdad de Cauchy-Schwarz.

D) Todas las demostraciones son triviales excepto la (v) y la (vi).

Prueba de (v).

$$|z + z'|^2 = (z + z')\overline{(z + z')} = |z|^2 + |z'|^2 + 2\operatorname{Re}(zz') \le$$

 $\le |z|^2 + 2|z||z'| + |z'|^2 = (|z| + |z'|)^2$

Por otra parte

$$|z| = |z - z' + z'| \le |z'| + |z - z'|$$

 $|z'| = |z' - z + z| \le |z| + |z - z'|$

Luego

$$||z| - |z'|| \le |z - z'|$$

Prueba de (vi).

Supongamos que no todos los w_k son cero. Sea

$$v = \sum_{k=1}^{n} |z_k|^2; t = \sum_{k=1}^{n} |w_k|^2 \text{ y } s = \sum_{k=1}^{n} z_k w_k$$

Consideremos

$$c = \frac{z_1 w_1 + \dots + z_n w_n}{|w_1|^2 + \dots + |w_n|^2} = \frac{s}{t}$$

Desarrollando la expresión

$$\sum_{k=1}^{n} |z_k - c\overline{w_k}|^2 \ge 0$$

obtenemos

$$\sum_{k=1}^{n} |z_k - c\overline{w_k}|^2 = v + |c|^2 t - c \sum_{k=1}^{n} \overline{z_k w_k} - \overline{c} \sum_{k=1}^{n} z_k w_k =$$

$$= v + |c|^2 t - 2 \operatorname{Re}(\overline{c}s) = v + \frac{|s|^2}{t} - 2 \operatorname{Re}(\overline{s}s)$$

.Teniendo en cuenta que

$$\overline{s}s = |s|^2 \in \mathbb{R},$$

obtenemos

$$v + \frac{|s|^2}{t} - 2\frac{|s|^2}{t} = v - \frac{|s|^2}{t} \ge 0,$$

es decir

$$|s|^2 \le vt$$

con lo que concluimos la prueba.

Métrica en \mathbb{C} .

La función d(z,w) = |z-w| es una distancia en \mathbb{C} . Esta métrica origina la topología usual y ya es conocido para todos nosotros el manejo de los conceptos de convergencia de sucesiones, límites de funciones definidas en dominios de \mathbb{C} , continuidad, compacidad etc.

La completitud de \mathbb{C} con esta métrica es obvia ya que se deduce de la propia completitud de \mathbb{R} si tenemos en cuenta que:

 (z_n) converge en $\mathbb{C} \iff \operatorname{Re} z_n$ e $\operatorname{Im} z_n$ convergen en \mathbb{R} .

En caso de convergencia

 $\lim_{n} z_n = \lim_{n} \operatorname{Re} z_n + i \lim_{n} \operatorname{Im} z_n.$

Compacidad.

 (\mathbb{C}, d) es un espacio métrico. Luego un subconjunto K es compacto si, y sólo si, toda sucesión de elementos de K admite una subsucesión convergente hacia un punto de K.

Es importante, ya que lo manejaremos frecuentemente, recordar que en \mathbb{C} un subconjunto K es compacto si, y sólo si, K es cerrado y acotado.

Además, y como corolario, tenemos el siguiente resultado:

Teorema de Bolzano-Weierstrass.

Cada sucesión acotada de números complejos admite una subsucesión convergente.

Compactificación del plano complejo. El plano ampliado.

 (\mathbb{C},d) es un espacio métrico completo pero no es compacto. Vamos a proceder a compactificarlo.

Sea \sum la esfera de Riemann, es decir,

$$\sum = \left\{ (x_1, x_2, x_3) : x_1^2 + x_2^2 + \left(x_3 - \frac{1}{2} \right)^2 = \left(\frac{1}{2} \right)^2 \right\} \subset \mathbb{R}^3.$$

La proyección estereográfica (x, y, 0) del punto $(x_1, x_2, x_3) \neq$ (0,0,1) de la esfera es:

$$x = \frac{x_1}{1 - x_3}, y = \frac{x_2}{1 - x_3}.$$

Esta proyección es una aplicación biyectiva entre $\sum \setminus \{(0,0,1)\}$

y C. (Hacer el dibujo correspondiente). Una sucesión (x_{1n}, x_{2n}, x_{3n}) en $\sum \setminus \{(0, 0, 1)\}$ converge hacia (0, 0, 1), en la métrica usual de \mathbb{R}^3 si, y sólo si, la sucesión de proyecciones z_n en \mathbb{C} verifica $|z_n| \longrightarrow \infty$.

Extendemos la proyección estreográfica haciendo corresponder al punto (0,0,1) el punto ∞ que anadimos a \mathbb{C} . Obtenemos así el plano ampliado $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. La topología de $\widehat{\mathbb{C}}$ viene descrita a través de las bases de entornos de cada uno de sus puntos. Las bases de entornos de los puntos $z \in \mathbb{C}$ son lasmismas que en (\mathbb{C}, d) . es decir, discos de la forma $\{D(z, r) : r > 0\}$. La base de entornos de ∞ es $\{D(\infty,r): r>0\}$ donde $D(\infty,r)=$ $\{z \in \mathbb{C} : |z| > r\} \cup \{\infty\}$. Ahora ya damos sentido a expresiones del tipo:

$$(z_n) \subset \widehat{\mathbb{C}} \text{ con } (z_n) \longrightarrow \infty$$

$$\lim_{z \longrightarrow \infty} f(z) \text{ para funciones } f : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$$

Observación.

Si en la proyección anterior

$$(x_1, x_2, x_3) \longleftrightarrow z$$

 $(x'_1, x'_2, x'_3) \longleftrightarrow z'$

definimos $\widehat{d}(z, z')$ =distancia euclídea entre (x_1, x_2, x_3) y (x'_1, x'_2, x'_3) , resulta que $\widehat{d} \mid_{\mathbb{C}}$ es una métrica equivalente a d y

 $(\widehat{\mathbb{C}}, \widehat{d})$ es un espacio métrico completo y compacto.

Repaso sobre convergencia de sucesiones y series.

Recordemos las siguientes definiciones, conceptos y relaciones:

Vamos a considerar siempre sucesiones y series de números complejos.

Def.-

$$(z_n) \longrightarrow z \iff_{def} \forall \epsilon > 0, \exists N \in \mathbb{N} : n \ge N \implies |z_n - z| < \epsilon$$

Def.-

$$\sum_{k=1}^{\infty} z_k \text{ es convergente} \iff_{def} \exists s \in \mathbb{C} : (s_n) = (\sum_{k=1}^n z_k) \longrightarrow s$$

En este caso escribiremos

$$\sum_{n=1}^{\infty} z_n = s$$

Def.-

$$(z_n)$$
 es de Cauchy $\iff_{def} \forall \epsilon > 0, \exists N \in \mathbb{N} : p, q \geq N \implies |z_p - z_q| < \epsilon.$

Otra forma de escribir lo anterior es:

$$(z_n)$$
 es de Cauchy \iff_{def}

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : n \ge N \Longrightarrow \forall p = 0, 1, 2, ..., |z_n - z_{n+p}| < \epsilon.$$

La completitud de \mathbb{C} nos permite afirmar:

$$(z_n)$$
 es convergente \iff (z_n) es de Cauchy

Criterio de Cauchy:

$$\sum_{k=1}^{\infty} z_k \ es \ convergente \iff$$

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : n \geq N \Longrightarrow \forall p = 1, 2, ..., \left| \sum_{k=n+1}^{n+p} z_k \right| < \epsilon$$

Convergencia absoluta.

Def.-

$$\sum_{k=1}^{\infty} z_k$$
 converge absolutamente si $\sum_{k=1}^{\infty} |z_k|$ es convergente

El Criterio de Cauchy nos dice que

Convergencia absoluta ⇒ Convergencia

Modos de convergencia en teoría de funciones.

En los próximos capítulos veremos como los procesos de límite nos permiten obtener nuevas funciones holomorfas además de los polinomios y funciones racionales.

En este capítulo vamos a considerar siempre $X \subset \mathbb{C}$, no vacío, y (f_n) una sucesión de funciones definidas en X con valores en \mathbb{C} .

Convergencia puntual.

Def.-

$$(f_n)$$
 converge puntualmente en $A \subset X$ si $\forall z \in A, \exists \lim_n (f_n(z))$

En este caso la función límite puntual es

$$f(z) := \lim_{n} (f_n(z)), z \in A$$

Observación. Incluso en funciones reales, la convergencia puntual no garantiza buenas propiedades en la función límite. Por ejemplo $(x^n) \longrightarrow f(x)$ en [0,1], donde f(x) = 0, si $x \in [0,1)$ y f(x) = 1 si x = 1. (f es discontinua). A pesar de esto, "No conocemos ninguna sucesión simple de

A pesar de esto, "No conocemos ninguna sucesión simple de funciones holomorfas en el disco unidad U que sea puntualmente convergente a una función no holomorfa en U ".(Tales funciones pueden construirse utilizando el Teorema de Runge que nosotros no veremos en este curso).

Convergencia uniforme.

$$(f_n) \longrightarrow f$$
 uniformemente en $A \subset X, f : A \longrightarrow \mathbb{C} \iff_{def} \forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : |f_n(z) - f(z)| < \epsilon, \forall n \geq N, \forall z \in A$

$$\sum_{k=0}^{\infty} f_k \text{ converge uniformemente en } A \subset X \iff_{def}$$

$$(s_n) = \left(\sum_{k=0}^n f_k\right)$$
 converge uniformemente en A

Notaciones: En lo sucesivo será de mucha utilidad utilizar las siguientes notaciones:

$$|f|_A := Sup\{|f(z)| : z \in A\}$$

Si consideramos V el espacio vectorial, sobre \mathbb{C} , definido por:

$$V := \{ f : X \longrightarrow \mathbb{C} : |f|_A < \infty \}$$

se verifican las siguientes propiedades:

$$\begin{aligned} |f|_A &=& 0 \Longleftrightarrow f \mid_A = 0 \\ |cf|_A &=& |c| \mid f \mid_A, c \in \mathbb{C} \\ |f+g|_A &\leq& |f|_A + |g|_A \end{aligned}$$

Con esta notación

$$(f_n) \longrightarrow f$$
 uniformemente en $A \iff \lim_n |f_n - f|_A = 0$

Propiedades.

Si
$$(f_n)$$
 y (g_n) conv. unif. en A , entonces
$$\forall a, b \in \mathbb{C}, (af_n + bg_n) \longrightarrow_{unif.enA} \left(a \lim_n f_n + b \lim_n g_n\right)$$

Si (f_n) y (g_n) conv. unif. en A y $\lim_n f_n$, $\lim_n g_n$ estan acotadas en A, entonces

$$\lim(f_ng_n) = \left(\lim_n f_n\right) \left(\lim_n g_n\right)$$
 uniformemente en A.

Observación.- Si $(f_n) \subset C(X)$ y $(f_n) \longrightarrow f$ uniformemente en X, entonces $f \in C(X)$.

Criterios de Cauchy.

 (f_n) converge uniformemente en $A \iff$

 (f_n) es uniformemente de Cauchy en A, es decir,

$$\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : |f_n - f_m|_A < \epsilon, \forall m, n \ge N$$

Para series tendríamos:

$$\sum (f_n)$$
 converge uniformemente en $A \Leftrightarrow$

$$\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : |f_{m+1}(z) + \dots + f_n(z)| < \epsilon, \forall n > m \ge N, \forall z \in A$$

Criterio M-Weierstrass.

Supongamos que existe $(M_n) \subset \mathbb{R}$, $M_n \geq 0$ tal que $|f_n|_A \leq M_n$ y $\sum M_n < \infty$. Entonces $\sum (f_n)$ converge uniformemente en A.

D) Veamos que $\sum (f_n)$ satisface el criterio de Cauchy en sentido uniforme.

$$\forall n > m, \forall z \in A, \left| \sum_{m+1}^{n} f_k(z) \right| \le \sum_{m+1}^{n} |f_k(z)| \le \sum_{m+1}^{n} M_k$$

Por otro lado la condición $\sum M_n < \infty$, nos dice que

$$\forall \epsilon > 0, \exists N = N(\epsilon) \in \mathbb{N} : \sum_{m+1}^{n} M_k < \epsilon, \forall n > m \ge N, \forall z \in A$$

es decir $\sum (f_n)$ converge uniformemente en A.

Observación.

En las condiciopnes del Criterio M-Weierstrass, es obvio que la serie $\sum (f_n)$ converge absolutamente en A, en el sentido de que $\forall z \in A, \sum_{n=0}^{\infty} |f_n(z)|$ es convergente.

Def. $\sum (f_n)$ converge normalmente en X si para todo compacto $K \subset X$ se verifica: $\sum |f_n|_K < \infty$.

Si $X = B(z_0; r)$ en \mathbb{C} , cada compacto $K \subset X$ esta incluído en $B(z_0; s)$ para algún s con s < r. Luego en este caso $\sum (f_n)$ converge normalmente en X si, y solo si, para cada s con 0 < s < r se verifica $\sum |f_n|_{B(z_0; s)} < \infty$.

Convergencia uniforme sobre compactos.

 (f_n) converge uniformemente sobre los compactos de $X \iff_{def}$

Para cada compacto $K \subset X$ se verifica : (f_n) converge uniformemente en KAnálogo para series.

 $\sum (f_n)$ converge uniformemente sobre los compactos de $X \iff_{def}$

Para cada compacto $K \subset X$ se verifica : $\sum (f_n)$ converge uniformemente en K

Observación. Si $(f_n) \subset C(X)$, la convergencia uniforme sobre compactos de X asegura, tanto en el caso de sucesiones como de series, la continuidad en X del límite.

Observación. El criterio M-Weierstrass nos dice que toda serie normalmente convergente en X converge uniformemente sobre los compactos de X.

Ejemplos.

La sucesión (z^n) converge en cada disco B(0;r), r < 1, uniformemente hacia la función cero ya que $|z^n|_{B(0;r)} = r^n$, pero la convergencia no es uniforme en el disco unidad $U = \{z : |z| < 1\}$. En efecto si $0 < \epsilon < 1$, para cada $n \in \mathbb{N}$ existe un punto z_0 en U, por ejemplo $z_0 = \sqrt[n]{\epsilon}$, tal que $|z_0|^n \ge \epsilon$.

Esta situación es muy común en la teoría de funciones holomorfas.

La serie $g(z) = \sum \frac{z^n}{n}$ converge normalmente en el disco unidad U. En efecto si 0 < r < 1, entonces

$$\sum |f_n|_{B(0;r)} \le \sum \frac{r^n}{n} \le r^n < \infty$$

Esta serie no converge uniformemente en el disco unidad U. En efecto, en caso contrario la serie $\sum \frac{x^n}{n}$ debería de converger uniformemente en [0,1). En este caso

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : n \geq N \Longrightarrow$$

$$\forall x \in [0,1) \text{ y } \forall p = 0, 1, 2, ..., \frac{x^n}{n} + ... + \frac{x^{n+p}}{n+p} < \epsilon$$

Por otro lado la divergencia de la serie

$$\frac{1}{N} + \frac{1}{N+1} + \dots$$

nos permite elegir un $p \in \mathbb{N}$:

$$\frac{1}{N} + \frac{1}{N+1} + \ldots + \frac{1}{N+p} > 2\epsilon$$

Entonces si tomamos un x próximo a 1 de modo que $x^{N+p}>1/2$, obtenemos

$$\frac{x^{N}}{N} + \dots + \frac{x^{N+p}}{N+p} > x^{N+p} \left(\frac{1}{N} + \frac{1}{N+1} + \dots + \frac{1}{N+p}\right) > \epsilon$$

Observación.

Si las series $f = \sum (f_n), g = \sum (g_n)$ convergen normalmente en X, entonces la serie producto de Cauchy

$$\sum p_{\lambda}, \operatorname{con} \, p_{\lambda} = \sum_{\mu + \nu = \lambda} f_{\mu} g_{\nu}$$

converge normalmente en X a f.g. (Verlo)