Geppos tipo
Se photiton das casas de aga (simétrico y axtrime trica) poo un pórtiou It. Les dopeturs som compoer lus métules de comsetitúlictad Y esuilibro poe el cálculc dé recocmons.
Antes de resduer los rases, hay gae tear presente lós posos por resduer pirtikas por métodes a litika:
(A) Separer en estade de cogias simètrica y antrimétrika.
(2) 2.1 Tempotibiliclact: Estoblecer el grack h pore definir lis candanes all aupatitailidad.
z.2 Esuilibnu: Estabiear el grode 4 pore definir tes pecucunes de equilibno
(3) 3J Compatibilidad: Detesminass reaciones (fuerzos externos desconctdos ($R, N, M, V)$
3.2 Eeguilibrio: Determinos girs y desplezanvertos
\rightarrow Cluler roockes (R)
(4) Con tes readones se deteminen (dibyon) los culajrenes de $M(x), V(x), N(x)$ de code une de to bores.

LAS REAccuES TCZALES SE CODRESPWDEN CO A SIMA DE LOS escodos de arca sMútaicos y antisimétalicos.

(5) Dibur la elestrae eproximack.
obtener siros y desplzannestos en los nudos que felton. Notor see por el método de equilibro esto se calak an el paso (3).

Tener en wert los puntes de inflexiós (conbrus de signo es el momento flecker.

SMPLFILACICN
(QUAE SE PLEDE USAR O NO) (QUF SE PLESE USAR O NO)

$h=2$ (RESOCLHCS A DOS

$h=1$ (rasuricics a cas Eaflcturs DE canstrisicuses). Econcicí DE captasilisis)

Simétrico - Cunpstibicipes

$$
\theta_{c}=0 \quad \text { y } \quad \mu_{c}=0
$$

Las eacuores de competibilided gue se purden definir san:

$$
\begin{aligned}
& \left\{\theta_{C}=\theta_{A}+\int_{S=0}^{\sqrt[s=3 / 2 a]{M(S)} / E I}\right) d s=0 \\
& \text { Dos frevers } \\
& C \equiv s=\frac{3}{2} a \\
& \mu_{C}=\mu_{A}-\theta_{A}\left(Y_{C}-Y_{A}\right)-\int_{A}^{C}\left[\frac{M(s)}{E I}\left(Y_{C}-Y_{(S)}\right)\right] d s=0
\end{aligned}
$$

Faccloct DE NAYIER
Nocser:
(B) $\theta_{\Delta}=\mu_{\Delta}=Y_{A}=0 \rightarrow \operatorname{SMPUFics}$ us 干atcacits
(2) El manetto flecibr hay que definirlo a tramos.

$$
\begin{aligned}
& A B \equiv S \in(0, a) \\
& B C \equiv S \in\left(a, \frac{3}{2} a\right) \\
& M(s)=\left\{\begin{array}{ll}
-\frac{w}{2}\left(\frac{a}{2}\right)^{2}+M_{c}+N_{c}(a-s) & s \in(a, a) \\
-\frac{w}{2}\left(\frac{3}{2} a-s\right)^{2}+M_{c} & s \in\left(a, \frac{3}{2} a\right)
\end{array}\right\} \\
& \theta_{C}=\int_{A}^{B}\left[-\frac{w}{2}\left(\frac{a}{2}\right)^{2}+\mu_{c}+N_{C}(a-s)\right] \frac{1}{E I} d s+\int_{B}^{C}\left[-\frac{w^{2}}{2}\left(\frac{3}{2} a-s\right)^{2}+\mu_{c}\right] \frac{1}{E I} d s \\
& \left\{\begin{array}{l}
\text { Cungico } D E \\
\operatorname{var} \operatorname{las}[R S
\end{array}\right. \\
& t=\frac{3}{2} a-s \rightarrow d t=-d s
\end{aligned}
$$

$$
\begin{align*}
& \theta_{c}=-\frac{w}{8} a^{3}+M_{c} \cdot a+N_{c} \cdot a^{2}-N_{c} \cdot \frac{a^{2}}{2}+\frac{w}{2} \frac{1}{3}\left(0-\frac{1}{8} a^{3}\right)-M_{c}\left(0-\frac{1}{2} a\right) 4 \\
& 3 M_{c}+N_{c} \cdot a-\frac{7}{24} w a^{2}=0 \tag{1}\\
& \mu_{c}=0=\mu_{A}-\theta_{A}^{0}\left(Y_{c}-Y_{A}\right)-\int_{A}^{C}\left[\frac{M(s)}{E I}\left(Y_{C}-Y(s)\right)\right] d s \\
& Y_{c}=a ; Y_{(s)}=\left\{\begin{array}{l}
s ; S \in(0, a) \\
a ; s \in\left(a, \frac{3}{2} a\right)
\end{array}\right\} \begin{array}{l}
\operatorname{ros+c} C D E B A C \\
Y_{c-}, Y(s)=0
\end{array} \\
& t=a-s \\
& \mu_{c}=\frac{1}{E I} \int_{S=0}^{S=a}\left[-\frac{w}{2}\left(\frac{a}{2}\right)^{2}+M_{c}+N_{c}(a-s)\right] \cdot(a-s) d s=\quad \begin{array}{l}
\quad d t=-d s
\end{array} \\
& =-\left[-\frac{w}{2}\left(\frac{a}{2}\right)^{2} \frac{t^{2}}{2}+M_{c} \frac{t^{2}}{2}+N_{c} \frac{t^{3}}{5}\right]_{t=a}^{t=0}=-\frac{w}{2} \cdot \frac{a^{4}}{8}+M_{c} \frac{a^{2}}{2}+N_{c} \frac{a^{3}}{3} \\
& 3 M_{c}+2 N_{c} \cdot a-\frac{3}{8} w a^{2} \tag{2}
\end{align*}
$$

* (1) y (2) Son as EuAcious DE Caspatisiusis.

$$
\begin{aligned}
& \sum F_{X}=0 ; \rightarrow R_{A, X}=\frac{1}{12} W_{a} \\
& \sum F_{Y}=0 ; \rightarrow R_{A, Y}=W_{1} \cdot \frac{a}{2} \\
& \sum M_{A}=0 ; M_{R_{A} A}=-\frac{5}{72} W_{2}{ }^{2}+W_{1} \frac{a^{2}}{8}-\frac{1}{12} W R^{2} \\
& M_{R_{1} A}=-\frac{1}{36} W a^{2}
\end{aligned}
$$

PLA COASLETAR $\quad M_{B B^{\prime}}=-M_{B^{\prime} B}=\frac{1}{18} W_{Q^{2}}$
ANTISIMÉTRIIC - COMPATIBIUDAS

TZXHC AS $\quad M(s)=V_{C} \cdot \frac{a}{2}-W_{0} \frac{(a-s)^{2}}{2}$
TRWHC BC $\quad M(s)=V_{C} \cdot\left(\frac{3}{2} a-s\right)$

$$
=\underbrace{\left.-\frac{a}{2} \int_{t=a}^{t=0} V_{c} \frac{a}{2}-\frac{W}{2} t^{2}\right) d t-\int_{t=\frac{1}{2} a}^{t=0} V_{c} t^{2} d t=\frac{a^{3}}{4} V_{c}-\frac{W}{12} a^{4}+V_{c} \frac{a^{3}}{3 \cdot 8}=0}_{\text {(1) }}
$$

$$
V_{c}=\frac{2}{7} w a
$$

$$
R_{A, Y}=-\frac{2}{7} w\left(\sum F_{y}=c\right)\left\{\begin{array}{l}
\sum M_{A}=0 ; V_{C} \frac{a}{2}+M_{R_{1} A}=\frac{W / a^{2}}{2} \\
5
\end{array}\right.
$$

$$
1\left(A_{1} x=-w c\right) \quad M_{R, A}=\frac{5}{14} w / a^{2}
$$

SIMÉTRICC - FquIUBRIO
 FS INOASACCOWAL \rightarrow Sow HAY GROS.

UTIUZAR AS ECAACLCLES ELASTIAS SASIENDA CQeE:

- B y B^{\prime} no SF MVEVEN; $\theta_{B}=-\theta_{B}^{\prime}$
- $\theta_{A}=Q_{A^{\prime}}=0 \quad$ (EmpodaluIENTO)

$$
\left\{\begin{array}{l}
M_{A B}=\frac{2 E I}{a}\left(O_{B}\right) \\
M_{B A}=\frac{2 E \rho}{a}\left(2 O_{B}\right)
\end{array}\right.
$$

Pusutesp Fcosciofis DE EQUILBRIO (En nodos)

$$
\begin{aligned}
& \left\{M_{B}=0, \rightarrow M_{B A}+M_{B B^{\prime}=0 ;} \frac{2 E I}{a} 2 Q_{B}+\frac{2 E I}{a} O_{B}+\frac{W_{A}{ }^{2}}{12}=0 ;\right. \\
& C_{B}=-\frac{12}{M_{A B}=M_{R A A}}=\frac{2 E I}{a}\left(-\frac{W_{a}^{3}}{72 E I}\right)=-\frac{1}{36} W_{a^{2}}
\end{aligned}
$$

(10CAL CEF IN Equicestlo

$$
\sum M_{B}=0 ; \quad M_{A B}+M_{B A}=R_{A, x}=0 \rightarrow R_{S, x}=\frac{1}{12} M / Q
$$

(BARRA YAZIICM)
$\rightarrow 16 u x$ GEF POZ Condatisiunas

$$
\begin{aligned}
& z F y=0 ; \quad R_{A, Y}=R_{B, Y} \\
& \text { (B5OZS VFOTCN) }
\end{aligned}
$$

$$
\left\{R_{Q, Y}=R_{Q}, y=\frac{x / a}{2}\right.
$$

'ANTISMÉ TRICO - EQUIUBRIO

- Fal este as sf presr rasulvfir utiuzando al estroctod simplafias
 as ecuscafi eidsílds con Enpotedn-ADudSO.

$$
\begin{aligned}
& M_{A B}=\frac{2 E I}{a} Q_{B}+\frac{6 E I}{a} \frac{\mu_{B}}{a}+\frac{w a^{2}}{12} \\
& M_{B C}=\frac{3 E I}{(a / 2)} Q_{B}=\frac{6 E 1}{a} Q_{B}
\end{aligned}
$$

$\rightarrow K=2 \quad(g t=1$ porgue el pritico as frastamel).

$$
L_{>} K=\frac{n g+g^{t}}{L \rightarrow \theta_{B}} \rightarrow \mu_{B}\left(0 \phi_{A B}\right)
$$

* La primera ecacón de equiline es: $M_{B A}+M_{B C}=0$

$$
\begin{equation*}
\frac{1 O F P}{a} Q_{B}+\frac{6 \pm L}{a^{2}} l l_{B}-\frac{W a^{2}}{12}=0 \tag{1}
\end{equation*}
$$

Genfsusis geónetdal
$L \rightarrow$ Easceats DE EQuiceskle DE As ESCLUCTEA SIN DEFORMR.

$$
\begin{aligned}
& \sum M_{A}=0 ; M_{A B}+M_{B A}-\frac{V_{C^{2}}}{2}=0 \\
& \left.\frac{6 E 1}{a} Q_{B}+\frac{12 E I}{a^{2}} \mu_{B}-\frac{w_{a}^{2}}{2}=0\right](Z) \\
& (1)-(2) \Rightarrow\left\{\begin{array}{l}
Q_{B}=-\frac{w a^{3}}{42 k I} \\
\mu_{B}=\frac{3 w a^{4}}{56 E 1}
\end{array} \rightarrow \begin{array}{l}
M_{A B}=-\frac{2}{42} w_{a}^{2}+\frac{9}{28} w a^{2}+ \\
\\
+\frac{1}{12} w c^{2}=\frac{5}{14} w a^{2}
\end{array}\right.
\end{aligned}
$$

* UA deica sin siupufican taneién es viable

$$
\left.\begin{array}{l}
\theta_{B}=O_{B}^{\prime} \\
\mu_{B}=\mu_{B}^{\prime}
\end{array}\right\} K=2
$$

$$
M_{A B}=\frac{2 E I}{a} Q_{B}+\frac{6 E 1}{a} \frac{l_{B}}{a}+\frac{W_{C}{ }^{2}}{12}
$$

$$
M_{B A}=\frac{2 F f}{a}\left(2 Q_{B}\right)+\frac{G E P}{a} \frac{l l_{B}}{a}-\frac{w_{C}}{12}
$$

$$
M_{B B^{\prime}}=\frac{2 F I}{a}\left(\zeta \theta_{B}\right)
$$

RESuLCDOS

SIME TRICO

$$
\begin{aligned}
& R_{A, X}=\frac{1}{1 Z} w_{a} \\
& R_{A, Y}=\frac{1}{2} w_{a} \\
& M_{R, A}=-\frac{1}{36} w C^{?} \\
& \theta_{B}=-\frac{W_{a}^{3}}{72 E 1}
\end{aligned}
$$

Antisimetriko

$$
\begin{aligned}
& R_{1} x=-w a, \quad R_{S_{1}^{\prime}}^{\prime} x=-w a \\
& R A_{1} Y=-\frac{2}{7} w a \quad R_{A_{1}^{\prime}}^{\prime}=\frac{2}{7} w c \\
& M_{R_{1} A}=\frac{5}{14} w a^{2} \quad M_{1} A^{\prime}=\frac{5}{14} w_{c}^{2} \\
& O_{B}=-\frac{w a^{3}}{42 E I} \\
& U_{B}=\frac{3 W a^{4}}{56 E I}
\end{aligned}
$$

$\underset{\left.(\rightarrow)^{2}\right)}{R_{1}, x}=\frac{1}{12} \times / a-\times / a=-\frac{11}{12} w a ; R_{s^{\prime}}, x=\frac{13}{12} \mathrm{wa}$ $R Q, Y=\frac{1}{2} w a-\frac{2}{7} w=\frac{-33}{14} w a ;\left(\frac{1}{\left.R a_{1}^{\prime}\right)}=-\frac{3}{14}\right)^{12} a^{\frac{11}{14} w<}$
(介)
(p)
$M_{R A} A=\frac{-1}{36} w k^{2}+\frac{5}{14} w a^{2}=0,33 w k^{2} ;\left(\begin{array}{ll}\text { Mr, } A^{\prime} \\ (v)\end{array}=0,38 w c^{2}\right.$ ((-4)

Riesul wod rascacnas (corrección)
SIMETRICO DSTOS) $W=9 \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
& R_{1, X}=\frac{1}{12} W / a=3 \mathrm{~N} \\
& R_{D, Y}=\frac{1}{2} W a=18 \mathrm{~N} \\
& M_{B, A}=-\frac{1}{36} W a^{2}=1 \mathrm{~N} \cdot \mathrm{~m} \\
& \theta_{B}=-\frac{W / a^{3}}{72 E L}=\frac{8}{E I}
\end{aligned}
$$

$$
a=4 m
$$

Antisimétala
sumed de zos dos

$$
\begin{aligned}
& R A, x=\frac{1}{12} \times 1 a-w_{1} a=-\frac{11}{12} w a: R_{A}^{\prime} ; x=\frac{1}{12} w a+w a=\frac{13}{12} w a \\
& (\rightarrow) \\
& \nabla_{A_{i t}}=\frac{1}{2} w a-\frac{2}{7} w a=\frac{3}{14} w a ; R_{A^{\prime} y}=\frac{1}{2} w a+\frac{2}{7} w a=\frac{11}{14} w a
\end{aligned}
$$

$$
\begin{aligned}
& P A, x=-w a=-28 n \quad w=7 \pi / m a=4 m \\
& B A, M=-\frac{2}{7} W a=-8 N \\
& M_{R, A}=\frac{5}{14} w_{a^{2}}=40 N \cdot m \\
& \theta_{B}=-\frac{\omega_{B}^{3}}{42 E I}=-\frac{T^{3} \cdot 16}{3^{F I}} \\
& A_{B}=\frac{3 W a^{4}}{56 E I}=\frac{3 \cdot 2 \cdot 16}{E I}
\end{aligned}
$$

Dugathats.
Slafetrico

Bagas Ars

$$
\begin{aligned}
& V(s)=3 N \quad(d \square 1) \\
& M(S)=1-35 \quad \text { (a) } \\
& M(4)=-11 n \cdot m
\end{aligned}
$$

$$
\begin{aligned}
& M_{B}=1-3 \cdot \varphi=-11 \mathrm{~N} \cdot \mathrm{~m} \\
& V B=18 N \\
& H_{B}=5 N \\
& \frac{11 \mathrm{NM} \rightarrow \square-3 N}{3+} \\
& \text { H } \\
& \text { 1ロt } \\
& 7 \\
& 18 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
M(S)=-11+18 \cdot \hat{S}-W^{\frac{\hat{S}^{2}}{2}} \\
\hat{S}=S-4
\end{array}\right. \\
& m(2)= \\
& \text { c }
\end{aligned}
$$

pertaco simétrico

fustica nioximen.

3

ECASTIN braxtudx

EsEmple 2 PO'Ritco A DOS AOUSS COU arras SIMÉTRICA.

LA SIuplifiación por sinetréa ES:
PSS 194-196 y $254-257$ ariverd.

5 incontar con 3 fasceans $\quad K=n g+g t=1+1=2$
$h=2 \rightarrow 2$ Ecatceane DE COMAT BBIUDES.

$$
\theta_{c}=l_{c}=0
$$

$$
\begin{aligned}
& \eta_{S}=1 \rightarrow \theta_{B} \\
& \sigma_{E}=1 \rightarrow \phi_{A B} \\
& \frac{\sigma_{B C}, \mu_{B}, V_{B} S F}{}
\end{aligned}
$$

 $\perp A B$
o

$$
\begin{aligned}
& \text { CCulatibumas } \\
& \theta_{C}=\theta_{A}^{1}+\int_{s=0}^{0} \frac{1}{E I} M(s) d s=0 \\
& l l_{C}=l_{A}^{\prime}-Q_{A}^{C}\left(Y_{C}-Y_{A}\right)-\int_{S=0}^{S=L_{1}} M_{(s)}^{S}\left(Y_{C}-Y(s)\right) d s=0
\end{aligned}
$$

 Dal póctco $\rightarrow S \in(0, h)$ y $S \in(h, h+l)$

$$
\begin{aligned}
& X_{(s)}=s \\
& M(s)=M_{c}+H_{c}(f+h-s)-\frac{w l a}{2}
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)=h+(s-h) \operatorname{sen} \alpha \\
& M(s)=M_{c}+H_{c}(h+l-s) \operatorname{sen} \alpha-\frac{w_{2}}{2} \cos \alpha \cdot(h+l-s)^{2} \\
& E \perp \theta_{c}=\int_{s=0}^{s=h}\left(M_{c}+V_{c}[f+h-s]-\frac{w_{2} b}{2}\right) d s \\
& \int_{s=h}^{s=h+l}\left(M_{c}+V_{c}[h+l-s] \operatorname{sen} \alpha-\frac{w_{c}}{2} \cos \alpha[h+l-s]^{2}\right) d s
\end{aligned}
$$

REQRVER (B) Y (2) TER AMBIO DE VARUELES
(1) Clunse De Vabuscie

$$
\begin{aligned}
& t=h+h-s \rightarrow d t=-d s \\
& s=0 \rightarrow t=f h ; s=h \rightarrow t=f
\end{aligned}
$$

$$
-\int_{t=\delta h}^{t=\rho}\left(M_{c}+V_{c} \cdot t-w_{l} l \frac{a}{2}\right) d t=M_{c} \cdot h+\frac{V_{c}}{2}\left(h^{2}+h_{\rho} \rho\right)-\frac{w l a h}{2}
$$

(2) anoslo de varusce

$$
\begin{aligned}
& t=h+l i s \rightarrow d t=-d s \\
& s=h \rightarrow t=l ; s=h+l \rightarrow t=0
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{t=\rho}^{t=0}\left(M_{c}+V_{c} \cdot t \operatorname{sen} \alpha-\frac{w_{2}}{2} \cos \alpha t^{2}\right) d t=M_{c} l_{+}+\frac{V_{c}}{2} \operatorname{sen} \alpha l^{2}-\frac{w^{6}}{6} \cos \alpha l^{3} \\
& M_{c}(h+l)+\frac{V_{c}}{2}\left(l^{2} \operatorname{sen} \alpha+h^{2}+2 h b\right)=\frac{\omega_{12} l}{2}\left(a h+\frac{1}{3} \cos \alpha l^{2}\right)^{\prime}
\end{aligned}
$$

Resclver (i)y (z) per Claislo De varubles

$$
\begin{aligned}
& \text { (1) } t=\rho+h-s \rightarrow d t=-d s ; \quad s=0 \rightarrow t=f+h \\
& s=h \rightarrow t=f \\
& \int_{t=f}\left(m_{c} \cdot t+V_{c} t^{2}-\frac{w_{l} \rho a}{2} t\right) d t= \\
& t=f+h \\
& =-\frac{u_{c}}{2}\left(h^{2}+2 \rho h\right)-\frac{v_{c}}{3}\left(h^{3}+3 \rho h^{2}+3 \rho^{2} h\right)+\frac{w l a}{4}\left(h^{2}+2 \rho h\right)
\end{aligned}
$$

(z)

$$
\begin{aligned}
& \frac{f}{l} \int_{t=l}^{t=0}\left(M_{c} t+V_{c} t^{2} \operatorname{sen} \alpha-\frac{\omega^{2}}{2} \cos \alpha t^{3}\right) d t=\frac{f}{l}\left[-\frac{\mu_{k}}{2} l^{2}-\frac{v_{c}}{3} l^{3} \sin \alpha+\frac{\omega}{8} \cos \alpha l\right. \\
& 1+8=C G \\
& \left.+\frac{u_{c}}{2}\left[h^{2}+2 h+\rho l\right]\right]+\frac{U_{c}}{s}\left[h^{3}+3 \rho h^{2}+3 \rho^{2} h+\rho l^{2} \operatorname{sen} \alpha\right]= \\
& =\frac{W l a}{4}\left(h^{2}+2 h\right)+\frac{f \omega}{8 l} \cos \alpha l^{4} \\
& M_{c}=\frac{\left|\begin{array}{ll}
a_{13} & a_{12} \\
a_{23} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|} \\
& V_{c}=\frac{\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|}
\end{aligned}
$$

EquILISRIO

LAS ECACCCNES ECISSACAS DR LAS DOS Buaras Son.

$$
\begin{aligned}
& \bar{\phi}_{A B}=\frac{-8}{n} \bar{\phi}_{B C}\left\{\begin{array}{l}
M_{A B}=2 k_{A B} \theta_{B}-\sigma u_{A B} \cdot \bar{\phi}_{A B} \\
M_{E A}=4 u_{A B} \theta_{B}-\sigma L_{A B} \phi_{A S}
\end{array}\right\} u_{A B}=\frac{E I}{\hbar} \\
& \begin{array}{l}
\overline{\Phi_{A B}}>0 \\
\Phi_{B C}<0
\end{array}\left\{\begin{array}{l}
M_{B C}=4 k_{B C} \theta_{B}-\sigma k_{B C} \overline{\phi_{B C}}+\frac{w l^{2}}{12} \cos \alpha \\
M_{C B}=2 k_{B C} \theta_{B}-\sigma k_{B C} \overline{\Phi_{B C}}-\frac{w l^{2}}{12} \cos \alpha
\end{array}\right\} \frac{W_{B C}}{\rho}
\end{aligned}
$$

como $g t+n g=k=1+1=2 \rightarrow 2$ Easceans DE Equicuspio. it
(2) La seannal euraión de Equiustio seà $R_{B, X}^{A B}=R_{B, X}^{B C}$

$$
\begin{aligned}
& A B \rightarrow \sum M_{A}=0 ; M_{A B}+M_{B A}+R_{B, X} \cdot h=0 ; R_{B, X}=-\frac{M_{A B}+M_{B A}}{h} \\
& B C \rightarrow \sum M_{C}=0 ; M_{B C}+M_{C B}+R_{B, x} \cdot f-W / l\left(a-\frac{a}{2}\right)=0 ; \\
& L \rightarrow \sum F y=0 \rightarrow R_{B, Y}=W \cdot l \\
& R_{B, X}=\frac{\frac{w / \rho_{a}}{2}-M_{B C}-M_{C B}}{f} \\
& 6 \theta_{B}\left(i k_{A B}-h K_{B C}\right)+\left(12 \overline{\phi_{B C}}\left(k_{A B} \frac{f^{2}}{h}+h h_{B C}\right)+\frac{h w_{0} l^{2}}{2}=0\right. \\
& a_{21} \\
& \Theta_{B}=\frac{\left|\begin{array}{ll}
a_{13} & a_{12} \\
a_{23} & a_{22}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|} \quad \overline{Q_{B C}}=\frac{\left|\begin{array}{ll}
a_{11} & a_{22} \\
a_{21} & a_{23}
\end{array}\right|}{\left|\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right|} \Rightarrow \\
& M_{A B}, M_{B A}, M_{B C}, M_{B A} \\
& \text { WISTC DE REACCICKI. }
\end{aligned}
$$

Aclurician RIGIDEZ

L_{1} Eumons Fun $3 \times 3+2=11$
Elhinar las 5 parazis filis y calmmess.
(1) \rightarrow

$$
\begin{aligned}
& l_{1}=0 \\
& V_{1}=0 \\
& Q_{1}=0
\end{aligned}
$$

$$
(z) \rightarrow\left\{\begin{array}{l}
u_{4} \neq 0 \\
v_{4}=0 \\
Q_{4} \neq 0
\end{array}\right.
$$

ST FCIMCNOLU LUS ST FUMINS CNAS.
(4) UTTH PAZA DESOLUFZ PAS'CTIA DE CABCSITRRIO.

LX fs uns materz

$$
D E 12 \times 12
$$

1 y 4 futardoc $K_{\text {_NAT }}=K([4: 9],[4: 9])$
1 EAP
4 Aroodso sin disces.

$$
\begin{aligned}
& K_{\text {_HAT }}=K([4: 9],[4: 0]) \\
& K_{\text {-HAT }}=K([4: 9,12],[4: 9,12])
\end{aligned}
$$

4 EM
4 ADOAD ar neppur. $K_{\text {Mest }}=K_{1}([4: 10,12],[4: 10,17])$

