1.
Sea $X = Z^+ = \{ n \in Z \mid n > 0 \}$. Definimos una topología T en X cuyos conjuntos abiertos son \emptyset, X, y todos los subconjuntos de X de la forma $G_n = \{ x \in X \mid x \geq n \} = \{ n, n + 1, n + 2, \ldots \}$, con $n \in X$.

(a) Pruébese que T es una topología en X.

(b) Determinése el interior, la adherencia y la frontera, en (X, T), del conjunto $A = \{ 3, 5 \}$.

Justifique su respuesta.

2.

Sea T la topología generada en R (conjunto de los números reales) por la base $B = \{ [a, b) \mid a, b \in R, a < b \}$.

Estudie si (R, T) es compacto y estudie si es localmente compacto.

Justifique su respuesta.

3.

Sea el intervalo abierto $X = (0, 1)$, y sea T la topología sobre X cuyos conjuntos abiertos son \emptyset, X, y todos los intervalos de la forma $(0, 1 - \frac{1}{n})$, con $n \in Z$, $n \geq 2$.

Estudie si (X, T) es conexo.

Justifique su respuesta.

Cada pregunta se puntuará sobre 10 y después se calculará la nota media.