Ejercicios Álgebra Lineal

1 FORMA CANÓNICA DE JORDAN.

PRÁCTICOS.

Ejercicio 1.

- a) Demostrar que si f es un endomorfismo diagonalizable, entonces f^n es diagonalizable cualquiera que sea $n \ge 1$.
- b) Dar un ejemplo de un endomorfismo f definido en un espacio vectorial tal que $f^2 \neq 0$ y $f^3 = 0$. Probar que f no es diagonalizable.

Ejercicio 2.

En un espacio vectorial V se considera un endomorfismo f cuvo polinomio característico es

$$P_{c,f}(x) = (x-2)^7$$

tal que $ran(f-2id_V)=3$, $ran(f-2id_V)^2=1$. Determinar la forma canónica de Jordan.

Ejercicio 3.

En $\mathbb{R}^1 3$ se tiene un endomorfismo f con un único valor propio λ que satisface las siguientes condiciones:

$$dim \ ker(f - \lambda Id)^5 = 11, \ dim \ ker(f - \lambda Id)^6 = 13$$

Determinar las posibles formas de Jordan de f y, en cada caso, calcular $dim ker(f - \lambda Id)$.

Ejercicio 4.

En \mathbb{R}^1 0 se tiene un endomorfismo f con un único valor propio λ que satisface la siguiente condición:

$$dim \ ker(f - \lambda Id)^5 = 9$$

Determinar las posibles formas de Jordan de f y, en cada caso, calcular $dim ker(f - \lambda Id)$.

Ejercicio 5.

Determinar en función del parámetro $a \in \mathbb{R}$ la forma canónica de Jordan de la matriz con coeficientes reales

$$A = \left(\begin{array}{cccc} 5 & a & 0 & 1\\ 0 & 5 & 0 & 0\\ 0 & 0 & 5 & 1\\ 0 & 0 & 0 & 5 \end{array}\right)$$

Hallar, en cada caso, una base de Jordan.

TEÓRICOS.

Ejercicio 6.

Sea A la matriz de $M_{n\times n}(\mathbb{K})$ formada integramente por unos. Calcular los polinomios característico y mínimo de A. Probar que A es diagonalizable y encontrar una matriz diagonal D y una invertible M tales que $A = MDM^{-1}$.

Ejercicio 7.

Sea e_1, \ldots, e_n una base del espacio vectorial E y $f \in End(V)$ tal que

$$f(e_1) = \dots = f(e_n) = \sum_{i=1}^{n} a^i e^i$$

Demostrar que f es diagonalizable si y sólo si $\sum_{i=1}^{n} a^{i} \neq 0$.

Ejercicio 8.

Demostrar que $f \in End_{\mathbb{C}(V)}$ es diagonalizable si y sólo si todo subespacio invariante por f admite un complementario también invariante por f.

Ejercicio 9.

Sea $f: \mathbb{R}_2[x] \longrightarrow \mathbb{R}_2[x]$ el endomorfismo que hace corresponder f(p) = p + p' a cada polinomio real p de grado menor que 3. a) Encontrar la forma canónica de Jordan de f. b) Demostrar que f^{-1} es una expresión polinómica en f. c) Encontrar la matriz de f^{-1} en la base $1, x, x^2$. (Indicación: utilizar b)).

2 FORMAS BILINEALES.

PRÁCTICOS.

Ejercicio 1.

Sea $\{\bar{u}_1,\ldots,\bar{u}_6\}$ una base del espacio vectorial V y β una forma bilineal simétrica que verifica

$$\beta(\bar{u}_1, \bar{u}_1) > 0, \quad \beta(\bar{u}_4, \bar{u}_4) > 0$$

 $\beta(\bar{u}_2, \bar{u}_2) < 0, \quad \beta(\bar{u}_5, \bar{u}_5) < 0$

y $det(\mathcal{M}_{\{u_i\}}(\beta) < 0$. Además, los subespacios $L_1 = L(\{u_1, u_2, u_3\})$ y $L_2 = L(\{u_4, u_5, u_6\})$ son ortogonales respecto de β . Determinar el índice, coíndice y la signatura de β .

TEÓRICOS.

Ejercicio 2.

Sea β una forma bilineal simétrica definida en un espacio vectorial real V que no es ni definida positiva ni definida negativa. Demostrar que existen vectores isótropos no nulos respecto de β .

Ejercicio 3.

Sea β una forma bilineal simétrica definida en \mathbb{R}^3 tal que existen dos vectores isótropos v_1, v_2 linealmente independientes tales que $v_1 + v_2$ no es isótropo. Calcular el índice y coíndice de la forma β .

Ejercicio 4.

Sea $n \in \mathbb{N}$ y $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz simétrica. ¿se puede asegurar que A y A^3 son congruentes como matrices con coeficientes en \mathbb{R} ?

3 ESPACIO VECTORIAL EUCLÍDEO.

PRÁCTICOS.

Ejercicio 1.

En \mathbb{R}^3 se define el producto escalar cuya matriz en la base canónica es

$$\left(\begin{array}{ccc}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)$$

2

Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo cuya matriz en la misma base viene dada por

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 0 \end{array}\right)$$

Demostrar que f es autoadjunta respecto del producto escalar y determinar una base ortonormal de vectores propios.

Ejercicio 2.

En \mathbb{R}^3 se considera la forma bilineal β cuya matriz de la base canónica es

$$\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 2
\end{array}\right)$$

Demostrar que β es un producto escalar. Si en \mathbb{R}^3 se considera la estructura de espacio vectorial euclídeo definida por β , demostrar que la aplicación lineal $l: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$l(1,0,0) = (1,0,0) l(0,1,0) = (0,1,0) l(0,0,1) = (1,1,-1)$$

es ortogonal. Descomponer l como producto de simetrías vectoriales ortogonales respecto de planos vectoriales de \mathbb{R}^3 .

Ejercicio 3.

Demostrar que si ||u|| = ||v|| entonces $(u+v) \cdot (u-v) = 0$.

Ejercicio 4.

Sea E el espacio vectorial de los polinomios reales de grado ≤ 2 . Para todo par $p(x), q(x) \in E$, definimos

$$\phi(p,q) = \int_0^1 p(x) \cdot q(x) \, dx$$

Demostrar que ϕ es un producto escalar en E.

TEÓRICOS.

Ejercicio 5.

Sea $(V_1,<,>_1)$ un espacio vectorial euclídeo y sea V_2 un espacio vectorial real. Sea $f\colon V_2\to V_1$ una aplicación lineal.

En V_2 se define la forma bilineal $<,>_2$ por:

$$<\bar{x}, \bar{y}>_2 = < f(\bar{x}), f(\bar{y})>_1, \quad \forall \bar{x}, \bar{y} \in V_2$$

Demostrar que $<,>_2$ es un producto escalar definido en V_2 si y sólo si f es inyectiva.

Ejercicio 6.

Sean $<,>_1$ y $<,>_2$ dos productos escalares definidos en un espacio vectorial V. Demostrar que existe una base de V ortogonal simultáneamente para los dos productos escalares.

Ejercicio 7.

Sea G la matriz de un producto escalar en una base $\{e_1, e_2, e_3\}$. Demostrar que $det(G) = det(e_1, e_2, e_3)^2$.

Ejercicio 8.

Sea E un espacio vectorial euclídeo, f un endomorfismo de E tal que $||f(x)|| \le ||x||$ para todo $x \in E$ y g su adjunta.

Demostrar que:

- a) $||g(x)|| \le ||x|| \quad \forall x \in E$.
- b) $Ker(g id_E) = Ker(f id_E)$.
- c) $E = Ker(f id_E) + Im(f id_E)$.

Ejercicio 9.

Sea E un espacio vectorial euclídeo y $f \in End(E)$ tal que $f(x) \cdot y = -x \cdot f(y)$ para todo $x,y \in E$. Demostrar que

- a) $\operatorname{Ker} f$ e $\operatorname{Im} f$ son subespacios ortogonales.
- b) $E = Ker(f) \oplus Im(f)$.
- c) Si (a_j^i) es la matriz de f en una base ortonormal, entonces $a_j^i = -a_i^j$ para todo i, j.

Ejercicio 10.

Sea $f \colon E \to F$ una aplicación lineal entre espacios vectoriales euclídeos y g su adjunta. Demostrar que

- a) $g \circ f$ es diagonalizable en una base ortonormal.
- b) Todos los valores propios de $g \circ f$ son positivos. Designémos los por $a_1, \ldots, a_n, n = dim(E)$.
- c) Existen bases ortonormales e_1, \ldots, e_n de E y u_1, \ldots, u_n de F tales que $f(e_i) = \sqrt{a_i}u_i$, $i = 1, \ldots, n$.