1. **Propiedades de los Estimadores Puntuales**

1. **Estimador centrado (lo inseguido) :**

 \[T(x_1,...,x_n) \]

 \[T(x) \] es un estimador centrado de \(\theta \) (o de \(h(\theta) \)) si

 \[E_\theta [T(x)] = h(\theta) \]

 * Sesgo de un estimador : \[b_\theta (T) = E_\theta [T(x) - h(\theta)] \]

 * Ejemplos :
 \[E[X] = \mu \]
 \[E[A_x] = a\mu \]
 \[E[B_x] = \sigma^2 \]
 \[E[S_x^2] = \sigma^2 \]

2. **Estimador consistente :**

 Sea \(T(X) \) un estimador de \(\theta \) y sean \(T_1(x),...,T_n(x) \)

 una secuencia de estimadores que representan a \(T \) para diferentes

 tamaños muestrales. Diremos que \(T(X) \) es consistente para \(\theta \)

 si la sucesión \(T_n \) converge con probabilidad a \(\theta \).

 \[\lim_{n \to \infty} P \{ |T_n - \theta| \leq \epsilon \} = 1 \text{ para todo } \epsilon > 0 \]

 * Ejemplos :
 \[c \xrightarrow{P} c \xrightarrow{a.s.} c \xrightarrow{P} \frac{c}{n} \xrightarrow{a.s.} \frac{c}{n} \]
 \[\frac{c}{n} \xrightarrow{a.s.} \frac{c}{n} \xrightarrow{P} \frac{c}{n} \xrightarrow{a.s.} \frac{c}{n} \]

* Proposición 1 (Condición de suficiencia para la consistencia) :

Sí \(\{T_n\} \) es una sucesión de estimadores tal que \(V_\theta \in \Theta \) :

\[\lim_{n \to \infty} E_\theta [T_n(x)] = \theta \]

\[\lim_{n \to \infty} V_\theta [T_n(x)] = 0 \]

Entonces la sucesión es consistente
\[P_{\theta}(T_{n} - \theta^2) > E \frac{E_{ \theta}[(T_{n} - \theta)^4]}{\epsilon^2} \]
\[E_{ \theta}[(T_{n}^2 + \epsilon^2 - 2 \theta T_{n})] = E[T_{n}^2] + \epsilon^2 - 2 \theta E[T_{n}] + (E_{ \theta}[T_{n}])^2 - (E_{ \theta}[T_{n}])^2 = V_{T_{n}} + (E_{ \theta}[T_{n}] - \epsilon)^2 \]
\[P_{\theta}(T_{n} - \theta^2) > E \frac{V_{T_{n}} + (E_{ \theta}[T_{n}] - \epsilon)^2}{\epsilon^2} \rightarrow 0 \quad n \rightarrow \infty \]

\[\Rightarrow T_{n} \text{ es consistente} \]

\[X \sim \text{Bernoulli}(\theta), \quad x_{1}, \ldots, x_{n} \quad T_{n} = \frac{1}{n+2} \left(\sum_{i=1}^{n} x_{i} - 1 \right) \quad \text{¿Es consistente?} \]
\[E[T_{n}] = \frac{1}{n+2} \left(\frac{n}{n+2} \theta + 1 \right) = \frac{1}{n+2} \left(\frac{n}{n+2} \theta + 1 \right) = \frac{n \theta + 1}{n+2} \]
\[\lim_{n \rightarrow \infty} E[T_{n}] = 0 \]
\[V[T_{n}] = \frac{1}{(n+2)^2} \left(\sum_{i=1}^{n} V[x_{i}] \right) = \frac{1}{(n+2)^2} n \theta (1-\theta) \]
\[\lim_{n \rightarrow \infty} V[T_{n}] = 0 \]

\[\Rightarrow T_{n} \text{ es consistente} \]

2. CRITERIOS DE COMPARACIÓN DE ESTIMADORES

Error cuadrático medio del estimator \(T \)
\[ECM_{T}(\theta) = E_{ \theta} \left[(T(x_{1}, \ldots, x_{n}) - \theta)^2 \right] \]
\[ECM_i(\theta) = E_{ \theta} \left[T^2 + \epsilon^2 - 2 \theta T \right] = E_{ \theta} \left[T^2 \right] + \epsilon^2 - 2 \theta E_{ \theta}[T] - (E_{ \theta}[T])^2 + (E_{ \theta}[T])^2 = V_{T}(T) + (E_{ \theta}[T] - \theta)^2 = V_{T}(T) + \theta^2(T) \]

\[T_i \text{ estimator de } \theta : \]
\[ECM_{T_i}(\theta) \leq ECM_{T_1}(\theta) \quad \forall \theta \in \Theta \]
\[T \text{ mejor que } T_i \]
\[T_i \text{ inadmisible} \]
Restricción al criterio de búsqueda:
\[T_i \text{ satisface } \lim_{T \rightarrow \infty} \theta = 0 \]
\[T \text{ minimiza la varianza (V(T) mínimo)} \]
1) \(X \sim \text{Bernoulli}\left(\theta\right) ; \ x_1, \ldots, x_n \text{ m.a.s.} \)

\[
E \cdot X_T\left(\theta\right) = V_{\theta}\left(T\right) + b_{\theta}\left(T\right) = \theta \left(1 - \theta\right) + 0 = \theta \left(1 - \theta\right)
\]

\[
T(x_1, \ldots, x_n) = \bar{x}
\]

\[
\lambda\left(\theta\right) = \theta
\]

\[
E_{\theta}\left[\bar{x}\right] = \theta, \ E\left[\bar{x}\right] = \theta
\]

\[
V\left[\bar{x}\right] = \theta \left(1 - \theta\right), \ V\left[\bar{x}\right] = \frac{1}{n \theta} \sigma\left(1 - \theta\right) = \frac{\theta \left(1 - \theta\right)}{n}
\]

2) \(X \sim \mathcal{N}\left(\mu, \sigma^2\right) ; \ x_1, \ldots, x_n \text{ m.a.s.} \)

\[
T(x_1, \ldots, x_n) = \bar{x}, \ \frac{\sigma^2}{\theta} \text{ conocido} \quad \theta = \mu
\]

\[
E\left[\bar{x}\right] = \mu \Rightarrow b_{\theta}\left(T\right) = 0
\]

\[
V\left[\bar{x}\right] = \frac{\sigma^2}{n}
\]

\[
E \cdot C \cdot M\left(\theta\right) = V_{\theta}\left(T\right) = \sigma^2 / n
\]

- \(\mu \text{ conocido} \), \(\theta = 0^2 \cdot \frac{x}{z} \)

\[
T(x_1, \ldots, x_n) = s^2
\]

\[
E\left[s^2\right] = \sigma^2
\]

\[
V\left[s^2\right] = \frac{2 \sigma^4}{(n-1)}
\]

\[
\frac{(n-1) \chi^2_{n-1}}{\sigma^2}
\]

\[
V\left(\frac{\chi^2_{n-1}}{\sigma^2}\right) = 2(n-1)
\]

\[
E \cdot C \cdot M\left(\sigma^2\right) = \frac{2 \sigma^4}{(n-1)}
\]

- \(\frac{T(x_1, \ldots, x_n)}{\sigma^2} = b \)

\[
E\left[\frac{b^2}{\sigma^2}\right] = \sigma^2 \left(\frac{n-1}{n}\right)
\]

\[
b = \frac{s^2}{\sigma^2} \frac{(n-1)}{(n-1)}
\]

\[
V\left[\frac{b^2}{\sigma^2}\right] = V\left[\frac{s^2}{\sigma^2}\right] = \frac{\left(n-1\right)^2 \cdot 2 \sigma^4}{n(n-1)} = \frac{2 \sigma^4}{n^2}
\]

\[
E \cdot C \cdot M\left(\sigma^2\right) = \frac{2(n-1) \sigma^4}{n^2} = V\left[\frac{b^2}{\sigma^2}\right] + b^2 = \left(\frac{2(n-1) \sigma^4}{n^2}\right) + \left(\frac{\sigma^2}{\sigma^2}\right)
\]

\[\therefore \text{ No se puede comparar con } b \]
Teorema 2:
Si existe $T \in EC(NV)$ para $h(\theta)$, T es único.

Teorema de Rao-Blackwell:

$E(h(\theta)) \quad \{ \quad \text{Entonces} \quad H(s) = E[C(T)]:$

1. $H(s) \in U_\theta$
2. $V(H(s)) = V_E(T(T)) \quad \forall \theta \in \Theta$

Demostración:

1. $E[C(T)S] = E[C E[T] S] = E[C T] = h(\theta) \quad \Rightarrow \quad H(s) \text{ centrado}$

$E(C(T)S) = E[C(T)^2 S] - V[C(T)S] \leq E[C(T)^2 S] \quad \forall \theta \in \Theta$

$E[|C(T)|^2 S] < \infty$

2. $V(H(s)) = V(E[C(T)S]) \leq V(E(T))$

Teorema de Lehmann-Scheffé:

$E(h(\theta)) \quad \{ \quad \text{Entonces} \quad H(s) = E[C(T)]:$

$H(s) \in EC(NV) \text{ para } h(\theta)$

Demostración:

$S \text{ suficiente y completo; } T \text{ centrado}$

1. Si solo existe un estadístico centrado $E(C(T)S)$ es $E(C(T)S)$

2. $T, T^1 \parallel E[C(T)S] = E[C(T)^2 S] = h(\theta)$

S suficiente: $E[C(T)S] \text{ con } S \in \{ E[C(T)^2 S] \} \text{ y } S \in \{ E[C(T)^2 S] \}$

$E[C(T)S] = E[E[C(T)S] - E[C(T)^2 S]] = E[C(T)S] - E[C(T)^2 S] = 0$

S completo: $g(s) \leq 0 \Rightarrow E[C(T)S] = E[C(T)^2 S]$

$T \in U_\theta \quad \Rightarrow \quad \forall \theta \in \Theta \quad V(E[C(T)S]) \leq V(E(T))$

$S \text{ suficiente; } \Rightarrow \quad \text{Rao-Blackwell}$

$V(E[C(T)S]) \quad \forall \theta \in \Theta$

$V(H(s))$

$\Rightarrow H(s) \in EC(NV) \text{ para } h(\theta)$
1) $X \sim \text{Poisson}(\theta), \theta > 0$

X_1, \ldots, X_n

$\lambda = \theta$

Buscamos un estadístico suficiente:

$P_\theta(x_1, \ldots, x_n) = \frac{1}{\lambda x_1!} \cdot \lambda^x e^{-\lambda} = \lambda(x_1 \cdot x_2 \cdot \ldots \cdot x_n)^{\lambda} e^{-\lambda}$

$S(x_1, \ldots, x_n) = \sum_{i=1}^{n} x_i$ suficiente

Vemos que es completo:

$\theta \rightarrow \mathbb{R}^+$

$\theta \rightarrow \ln \theta = \gamma$

$\theta > 0$

Contiene unse alrededor de $\mathbb{R}^+ \Rightarrow S = \sum_{i=1}^{n} x_i$ ex

1) $E(S) = E \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} E(x_i) = n \theta$

$\lambda(\theta) = \theta$

$H(S) = \overline{x}$

$E(\overline{x}) = 0$

$\Rightarrow \overline{x} \in \text{MV} \text{ para } \lambda(x) = \theta$

2) $X \sim \text{Poisson}(\theta), \theta > 0$

X_1, \ldots, X_n

$\lambda(\theta) = e^{-\theta}$

$S(x_1, \ldots, x_n) = \sum_{i=1}^{n} x_i$ suficiente y completo para θ

$H(S) = E(\overline{x})$

$\omega \in \Lambda$

$P_\theta(x) = \frac{1}{x!} \cdot \theta^x e^{-\theta} \cdot \theta^n$

$\omega = \begin{cases} \lambda \quad &\text{si } x_1 = 0 \\ 0 &\text{en considerar otro caso} \end{cases}$

$E(\omega) = \lambda \cdot P_\theta(x_1 = 0) + 0 \cdot P_\theta(\text{otro caso}) = e^{-\theta}$

$H(S) = E(\overline{x}) = E(\overline{x} | P_{\theta}(x_1 = 0)) = P_\theta(x_1 = 0, \overline{x} = t) = P_\theta(x_1 = 0) \overline{x}$

$= \overline{x} P_\theta(\overline{x} = t)$

$= \frac{P_\theta(x_1 = 0, \overline{x} = t)}{P_\theta(\overline{x} = t)}$
\[P_r(X_n = 0) \Pr(X_i = t) = \frac{\sum_{i=1}^{n} x_i = t}{\Pr(X_i = t)} = (e^{-e})^{\frac{n}{n-1}} e^{-(n-1)\theta} = e^{-e} \frac{(n-1)^{t}}{t!} \]

\[P_r(X_i = 0) = e^{-e} \]

\[P_r \left(\sum_{i=1}^{n} x_i = t \right) \sim \text{Poisson} \left((n-1)\theta \right) \]

\[P_r \left(\sum_{i=1}^{n} x_i = t \right) \sim \text{Poisson} \left(n\theta \right) \]

\[(\frac{n-1}{n})^t = \left(\frac{n-1}{n} \right)^{\sum_{i=1}^{n} x_i} \]

\[\Rightarrow H(5) \text{ ECMV para } \theta(0) = e^{-e} \]

* Otro manera:

\[S = \sum_{i=1}^{n} x_i \text{ suficiente y completo} \]

\[E[H(S)] = H(\theta) = e^{-e} \]

\[H(5) \text{ ECMV para } \theta(0) \]

* Lehmann-Scheffe:

\[e^{-e} = E[H(S)] = \sum_{s=0}^{\infty} H(5) e^{-n\theta} (n\theta)^t \]

\[S = \sum_{i=1}^{n} x_i \sim \text{Poisson} \left(n\theta \right) \]

\[e^{-e + n\theta} = \sum_{s=0}^{\infty} H(5) (n\theta)^t \]

\[e^{(n-1)} = \sum_{s=0}^{\infty} \frac{(n-1)^{t}}{t!} \]

\[e^{-e + n\theta} = \sum_{s=0}^{\infty} H(5) \left(n\theta \right)^t \]

\[H(5) = \left(\frac{n-1}{n} \right)^t \]
Condiciones de regularidad de Fréchet-Cramer-Rao

- R1: El conjunto soporte de la distribución f_θ,
 $$S = \{(x_1, \ldots, x_n) \in X : f_\theta(x_1, \ldots, x_n) > 0\}$$
 no depende de θ y que existe $\frac{\partial}{\partial \theta} f_\theta(x_1, \ldots, x_n)$

- R2: Sea $h(\theta)$ función paramétrica de interés, VTEU debe cumplirse:
 $$\frac{\partial}{\partial \theta} \int_{S} x f_\theta(x) dx = \int_{S} x \frac{\partial}{\partial \theta} f_\theta(x) dx \quad \text{en el caso continuo}$$
 $$\frac{\partial}{\partial \theta} \sum_{i=1}^{n} x_i f_\theta(x_i) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} f_\theta(x_i) \quad \text{en el caso discreto}$$

La condición de regularidad R2 es equivalente a:
$$E_\theta \left[\frac{\partial}{\partial \theta} \ln(f_\theta(x)) \right] = 0, \quad \forall \theta \in \Theta$$

- Información de Fisher:
 $$\text{In}(\theta) = E_\theta \left[\left(\frac{\partial}{\partial \theta} \ln(f_\theta(x)) \right)^2 \right]$$

- Teorema de la cota de CRLB:
 Si se verifican las condiciones de regularidad R1 y R2 y γ TELU,
 tal que
 $$W(\theta) = \frac{\partial}{\partial \theta} \left(T(\theta) f_\theta(x) dx \right) = \int_{S} T(\theta) \frac{\partial}{\partial \theta} f_\theta(x) dx$$
 $$\text{In}(\theta) = E_\theta \left[\left(\frac{\partial}{\partial \theta} \ln(f_\theta(x)) \right)^2 \right]$$
 que verifica $0 < \text{In}(\theta) < \infty$

Entonces
$$\frac{(W(\theta))^2}{\text{In}(\theta)} \leq V_\theta \left[T \right], \quad \forall \theta \in \Theta$$

Además, COTA INFERIOR PARA LA VARIANZA DE TODOS LOS ESTIMADORES CENTRADOS DE $W(\theta)$:
Si $\text{In}(\theta)$ está definida, se tiene
$$\frac{(W(\theta))^2}{\text{In}(\theta)} = V_\theta \left[T \right], \quad \forall \theta \in \Theta \implies \exists \kappa(\theta) \text{ tal que}$$
$$\frac{\partial}{\partial \theta} \ln(f_\theta(x)) = \kappa(\theta) \left(T(\theta) - \text{In}(\theta) \right) \frac{\partial}{\partial \theta}$$

- COTA:
 $$\frac{W(\theta)}{\kappa(\theta)}$$
1) \[I_n(\theta) = nI_1(\theta) \]

2) Si se verifica la condición de regularidad de Fisher:

\[\frac{\partial^2 \int_{\mathcal{Z}} f_0(x) dx}{\partial \theta^2} = \int_{\mathcal{Z}} \frac{\partial^2}{\partial \theta^2} f_0(x) dx \]

\[I_n(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} (\ln f_0(x)) \right] \]

Observaciones Importantes

1) Si se verifica las condiciones de regularidad R1 y R2 y la cota de F Fisher, debe poder jactarse:

\[\frac{\partial}{\partial \theta} \ln f_0(x) = \frac{nI_1(\theta)}{h(\theta)} \left[T(\theta) - h(\theta) \right] \]

\[k(\theta) = \frac{nI_1(\theta)}{h(\theta)} \]

2) La expresión anterior permite construir el estimador T, la función h(\theta) y el valor de la cota de FCR a menos de constantes additivas y multiplicativas.

Familia Exponencial Unparamétrica

Si la familia de distribuciones de probabilidad verifica las condiciones de regularidad R1 y R2 y la cota es alcanzable, entonces la familia es exponencial unparamétrica:

\[f_0(x) = f(0) h(x) e^{T(0)T(x)} \]

T es el estadístico que alcanza la cota.

Recíprocamente, si la muestra se distribuye según la función de densidad anterior, con \(T'(0) \) no nulo, entonces T alcanza la cota de FCR:

\[h(\theta) = -\frac{c'(0)}{c(0)T'(0)} \]

\[k(\theta) = T'(0) \]

Cota FCR:

\[\frac{h(\theta)}{T'(0)} \]
• Ejemplos:

1) m.a.s. tamaño \(n \) Bernoulli (0)

¿Cota FCR para \(h(0) = 0 \)?

\[P_0(x) = 0^n (1-\theta)^{n-x}, \theta \in (0,1) \]
\[P_0(x) = e^{-x} (1-\theta)^n \theta^x = (1-\theta)^n e^{\ln(\theta) x} \]

Familia exponencial

\[c(\theta) = (1-\theta)^n \]
\[T(x) = \sum_{i=1}^{n} x_i \]
\[T(\theta) = \ln \left(\frac{\theta}{1-\theta} \right) \]

\[c'(\theta) = -n(1-\theta)^{n-1} \]
\[\frac{\partial}{\partial \theta} c(\theta) = \frac{\partial}{\partial \theta} \left(\frac{x}{1-\theta} \right) = \frac{(1-\theta) - \theta(1-x)}{(1-\theta)^2} = \frac{1}{\theta(1-\theta)} \]
\[h(\theta) = \frac{n(1-\theta)^{n-x} \theta^x}{(1-\theta)^n} = \frac{n(1-\theta)^{n-x} \theta^x}{\theta(1-\theta)^n} \]

Cota: \(\frac{h'(\theta)}{\kappa^{(0)}} \)

\(\bar{x} \) alcanza la cota para \(h(0) = 0 \)
\(2\bar{x} \) alcanza la cota para \(h(\theta) = n\theta \)

• \(R_0, R_2 \):

(otra manera)

\[\ln P_0(x) = \frac{x}{\theta} \ln \theta + n \ln (1-\theta) - \frac{nx}{\theta} \ln (1-\theta) \]
\[\frac{\partial}{\partial \theta} \ln P_0(x) = \frac{nx}{\theta} - \frac{n}{\theta} + \frac{nx}{1-\theta} = \frac{nx}{\theta} \left(\frac{1}{\theta} - \frac{1}{1-\theta} \right) = \frac{n \bar{x}}{\theta} - \frac{n}{\theta} + \frac{n \bar{x}}{1-\theta} - \frac{n}{1-\theta} = \frac{n \bar{x}}{\theta} \left(\frac{1}{\theta} - \frac{1}{1-\theta} \right) \]

Cota: \(\frac{h'(\theta)}{\kappa^{(0)}} \)

\(\bar{x} \) alcanza la cota para \(h(0) = 0 \)
\(2\bar{x} \) alcanza la cota para \(h(\theta) = n\theta \)

• Otra manera: (Aplicando teorema de FCR)

Cota: \(\frac{(h'(\theta))^2}{H_n(\theta)} \)

\[h(\theta) = 0 \]
\[h'(\theta) = 1 \]

\[I_n(\theta) = n I_n(\theta) \]

\[I_n(\theta) = -\theta \left(\frac{\partial}{\partial \theta} \ln P_0(x) \right) \]
\[P_0(x) = e^{-x(l-\alpha)} \]
\[\ln P_0(x) = x \ln \theta + (l-x) \ln (l-\alpha) \]
\[\frac{d}{dx} \ln P_0(x) = \frac{x}{\theta} + (-x + l) \left(\frac{\alpha}{l-\alpha} \right) \]
\[\frac{d^2}{dx^2} \ln P_0(x) = -\frac{x}{\theta^2} + (x-\alpha) \left(\frac{\alpha}{(l-\alpha)^2} \right) \]
\[I(x) = -E_\theta \left[\frac{d^2}{dx^2} \ln P_0(x) \right] = \frac{A}{\theta^2} E_{x-\alpha} \left(x - \frac{A}{\theta} \right)^{\theta-1} = \frac{A}{\theta^2} \frac{\theta}{(l-\alpha)^2} (\theta - 1) = \frac{\theta}{\theta - 1} = \frac{1}{\theta - 1} \]
\[\Rightarrow \cotan \left(\frac{1}{n} I(x) \right) = \frac{A}{n} = \frac{\theta}{\theta - 1} \]

2) \(x_1, \ldots, x_n \) un muestreo de tamaño n de una población \(X \sim \text{Uniforme} (0, 2\theta) \)

Queremos estimar \(\theta(0) = \theta \)

\[f_\theta(x) = \frac{1}{2\theta}, \quad x \in (0, 2\theta) \]

\[f_\theta(x) = \left(\frac{1}{2\theta} \right)^n \prod_{i=1}^{n} I_{(0, 2\theta)}(x_i) = \frac{1}{(2\theta)^n} \prod_{i=1}^{n} I_{(0, 2\theta)}(x_i) \]

\[\Rightarrow X_{(n)} \text{ es un estimador suficiente} \]

Vemos que \(X_{(n)} \) es también completo y, por el teorema de Basu, sabemos que suficiente y completo \(\Rightarrow \text{mínimo suficiente} \)

\[E[X_{(n)}] = \int_{0}^{2\theta} \gamma \left(\frac{\gamma}{2\theta} \right)^{n-1} d\gamma \]

\[F_{X_{(n)}}(\gamma) = \left(F(\gamma) \right)^n = \left(\frac{\gamma}{2\theta} \right)^n \]

\[\int_{0}^{\gamma} f(\gamma) = \frac{1}{2\theta}, \quad \int_{0}^{\gamma} f(\gamma) = \frac{\gamma}{2\theta} \]

\[F_{X_{(n)}}(\gamma) = \left(\frac{\gamma}{2\theta} \right)^n \]

\[E[X_{(n)}] = \frac{n}{n+1} 2\theta \quad T = \frac{X_{(n)}}{2\theta} \]

Por L-S: \(E(T) \approx \text{Var}(T) \rightarrow \text{suficiente y completo} \)

\[E[T(x_1, \ldots, x_n)] = \theta \]
\[T_2(x_1, \ldots, x_n) = \bar{x} \quad V(x) = \ldots \]

\[\mathcal{V}\left(\frac{n+1}{2n} x_{\text{med}} \right) = \frac{(n+1)^2}{(2n)^2} \mathbb{E}\left[x_{\text{med}}^2 \right] - (\mathbb{E}[x])^2 \]

Tendremos que ver cuál es el de menor varianza.

3) \(x_1, \ldots, x_n \) Exponencial (\(\theta \)), \(\theta > 0 \)

\[
\begin{align*}
 f_\theta(x) &= \theta e^{-\theta x} \\
 f_\theta(x^2) &= \theta^n e^{-\frac{\theta x^2}{2}} = \theta^n e^{-\theta \bar{x}} \\
 c(\theta) &= \theta^n \\
 T(\theta) &= -n\bar{x} \\
 T(\bar{x}) &= \bar{x} \\
 c'(\theta) &= n\theta^{n-1} \\
 T'(\theta) &= -n \\
 T(x_1, \ldots, x_n) \text{ es el estadístico que alcanza la cota para} \\
 h(\theta) &= -\frac{c'(\theta)}{c(\theta)T'(\theta)} = -\frac{n\theta^{n-1}}{\theta^n (-n)} = -\frac{1}{\theta} \\
 \text{Cota} &= \frac{h(\theta)}{\mathbb{E}[T(\theta)]} = \frac{-\frac{1}{\theta}}{\theta} = \frac{1}{\theta^2} \quad /\quad \text{Ob.}\end{align*}
\]

- Otra manera:

\[
\begin{align*}
 \frac{\partial}{\partial \theta} \ln f_\theta(x^2) &= \frac{n}{\theta} - \theta \bar{x} = -\frac{n}{\theta} \bar{x} = -\frac{n}{\theta} \frac{\bar{x}^2 - \theta^2}{\theta^2} \\
 \text{Cota} &= \frac{h(\theta)}{\mathbb{E}[T(\theta)]} = \frac{-\frac{1}{\theta}}{\theta} = \frac{1}{\theta^2} \quad /\quad \text{Ob.}\end{align*}
\]

- Estimador \(\hat{\theta} = \hat{\theta} \):

\(\bar{x} \) es suficiente.

Además, \(\bar{x} \) es completo:

\[
\begin{array}{ccc}
 \theta & \xrightarrow{\text{TT}} & \mathbb{R}^+ \\
 0 & \xrightarrow{\text{TT}} & -\mathbb{R}^+ \\
 \theta \geq 0 & \Rightarrow & \text{Podemos elegir un intervalo}\end{array}
\]

\[
\begin{align*}
 \mathbb{E}[\bar{x}] &= \frac{1}{\theta} \\
 \mathbb{E}[\mu(\bar{x})] &= \theta \\
 T &= \mathbb{E}[\bar{X}] \sim \Gamma(n,n) \\
 \mathcal{G} = \mathcal{E}_x[\mathcal{H}(T)] &= \int_0^{\infty} \mathcal{H}(T) \frac{\theta^n e^{-\theta T}}{\Gamma(n)} \, dt \\
 \frac{n-1}{\theta^n} &= \mathcal{G} \mathcal{P}(n) \int_0^{\infty} \mathcal{H}(T) e^{-\theta T} \, dt \\
\end{align*}
\]
$$\int_{0}^{\infty} t^{n-1} e^{-t} dt = \frac{\Gamma(n)}{n}$$

$$(n-1) \int_{0}^{\infty} t^{n-2} e^{-t} dt = \int_{0}^{\infty} H(t) e^{-t} dt$$

$$H(t) = t^{n-1} \frac{d}{dt}$$

$$\Rightarrow H(t) = \frac{n-1}{t}$$

$$\text{EVUV para } h(0) = 0$$

- Si no se puede calcular la cota:

 $$Cota = \frac{\left(L(0)\right)^{2}}{I_n(0)}$$

 $$I_n(0) = nI_0(0)$$

 $$I_0(0) = -e^{-\frac{x}{\theta}} f(x)$$

- **NOTA**: Sólo existen cotas para $h(0) = \frac{1}{\theta}$, y si existe una solución no puede haber otra que alcance la cota para otra $h(0)$, salvo constantes multiplicativas; luego $V(\Sigma X^2)$ no puede alcanzar la cota para $h(0) = 0$.

Calcular $V\left(\frac{\sum x}{\Sigma x^2}\right)$:

$$x \sim \text{Exp}(\theta) = \gamma \text{m}(\theta, 1)$$

$$\sum x \sim \gamma \text{m}(\theta, n)$$

$$y = \frac{n-1}{\sum x}$$

$$t = \frac{\theta}{y}$$

$$s = \frac{n-1}{t} = y$$

$$\frac{\partial t}{\partial y} = \left| \frac{n-1}{y^2} \right|$$

$$\gamma = \int_{0}^{\infty} y \left(\frac{n-1}{y} \right) \left(\frac{x}{\gamma} \right)^{n-1} \frac{\gamma e^{-\gamma x}}{\Gamma(n)}$$

$$\text{Ev}[\gamma] = \frac{\theta^n (n-1)^n}{\Gamma(n)} \int_{0}^{\infty} e^{-\frac{\theta x}{\gamma}} \gamma^n d\gamma = \frac{\theta^n (n-1)^n}{\Gamma(n)} \int_{0}^{\infty} e^{-\frac{\theta x}{\gamma}} x^{n-1} dx$$

$$x = \frac{\theta}{\gamma} \Rightarrow dx = \frac{\theta}{\gamma^2} dy$$

$$\gamma = \frac{\theta}{x} \Rightarrow x = \frac{\theta}{\gamma}$$

$$y = \frac{\theta}{x} \Rightarrow d\gamma = \frac{\theta}{x} dx$$

$$\Rightarrow \frac{n(n-1)}{\theta^n} \frac{x^n}{\Gamma(n)} \int_{0}^{\infty} e^{-\gamma x} x^{n-1} dx = \frac{n(n-1)}{\theta^n} \frac{x^n}{\Gamma(n)}$$

$$\frac{n(n-1)}{\theta^n} \frac{x^n}{\Gamma(n)} \int_{0}^{\infty} e^{-\gamma x} x^{n-1} dx = \frac{n(n-1)}{\theta^n} \frac{x^n}{\Gamma(n)}$$

$$= \frac{\theta^n (n-1)^n}{\Gamma(n)} \frac{\Gamma(n-1)}{(n-1)\Gamma(n-1)} = 0$$
\[\mathbb{E}[Y^2] = \frac{\Gamma(n)}{n^{n-1}} \int_0^\infty e^{-(n-1)x} x^{n-2} \, dx = \frac{\Gamma(n)}{n^{n-1}} \frac{\gamma(n-1, n-1)}{n^{-2}} \]

\[V(Y) = \mathbb{E}[Y^2] - (\mathbb{E}[Y])^2 = \frac{\sigma^2}{n-2} \]

\[\text{Cov} = \frac{V(Y)}{\text{Var}(Y)} = \frac{\sigma^2}{n} \]

Métodos de obtención de estimadores

1. **M M M M Mementos**
 \[\Theta = (\Theta_1, \ldots, \Theta_r) \]
 \[\alpha_k = \mathbb{E}[X^k] = \alpha_k (\theta_1, \ldots, \theta_r) \]
 \[\alpha_k (\theta_1, \ldots, \theta_r) = \alpha_k, \quad k = 1, \ldots, r \]
 \[\theta_2 (x_1, \ldots, x_n), \ldots, \theta_r (x_1, \ldots, x_n) \]

 - Ejemplos:

 1) \(X \sim N(\mu, \sigma^2) \), \(\Theta = (\mu, \sigma^2) \)
 \(x_1, \ldots, x_n \)
 \(r = 2 \)
 \[\alpha_1 = \mathbb{E}[X] = \mu = \alpha_1 = \bar{X} \]
 \[\alpha_2 = \mathbb{E}[X^2] = V(X) + (\mathbb{E}[X])^2 = \sigma^2 + \mu^2 \]

 \[\begin{bmatrix} \mu = \alpha_1 \\ \sigma^2 = \alpha_2 - \alpha_1^2 \end{bmatrix} \]
 \[\begin{bmatrix} (\alpha_1, \alpha_2) \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (\alpha_1, \alpha_1^2 - \alpha_2) \]
 \[\begin{bmatrix} (\alpha_1, \alpha_2) \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (\alpha_1^2, \alpha_2 - \alpha_1^2) \]
 \[T_2 = \alpha_1 = \bar{X} \quad T_2 = \alpha_2 - \alpha_1^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 \]

 2) \(X \sim B(n, \theta) \), \(n \in \mathbb{N} \), \(\Theta = (n, \theta) \)
 \(x_1, \ldots, x_n \)
 \(r = 2 \)
 \[\alpha_1 = \mathbb{E}[X] = n\theta \]
 \[\alpha_2 = \mathbb{E}[X^2] = V(X) + (\mathbb{E}[X])^2 = n\theta(1 - \theta) + n\theta^2 \]
 \[n = \alpha_1 / \theta \]
 \[\alpha_2 = \frac{\alpha_1^2}{\theta} \quad \theta(1 - \theta)^2 + n^2 \theta^2 = 0 \quad \Rightarrow \quad \sigma = \frac{\alpha_2^2 + \alpha_1 - \alpha_1^2}{\alpha_1} \]
\((\alpha_1, \alpha_2) \xrightarrow{\delta} \left(\frac{\alpha_1^2}{\alpha_1^2 + \alpha_2^2 - \alpha_1} \right) \)

\((\alpha_1, \alpha_2) \xrightarrow{\theta} T(x) = \left(\frac{\alpha_1^2}{\alpha_1^2 + \alpha_2^2 - \alpha_1} \right) \)

3) \(X_1, \quad P(x) = \begin{cases}
\frac{1}{2}, & x = 0 \\
\frac{1}{2}, & x = 1
\end{cases} \)

¿Estimador de \(\theta \) N.M.? ¿Estimador centrado? ¿Estimador consistente?

\(\gamma = \lambda \)

\(\alpha_1 = E[X] = \sum x P(x) = \frac{1}{2} \cdot 0 + \frac{1}{2} = \frac{1}{2} \Rightarrow 0 = \alpha_1 + \frac{1}{2} \)

\(\alpha_1 \xrightarrow{\delta} \left(\alpha_1 + \frac{1}{2} \right) \)

\(\alpha_1 + \frac{1}{2} = \overline{x} + \frac{1}{2} \)

\(E[\overline{x} + \frac{1}{2}] = E[X] + \frac{1}{2} = \frac{1}{n} \sum E[X_i] + \frac{1}{2} = 0 - \frac{1}{2} + \frac{1}{2} = 0 \quad (\text{centrado}) \)

\(\lim E[T] = 0 \quad n \rightarrow \infty \)

\(\lim V[T] = 0 \quad n \rightarrow \infty \)

\(V[\overline{x} + \frac{1}{2}] = V(\overline{x}) = \frac{1}{n^2} \sum V(x_i) = \frac{1}{n} \left[\frac{1}{2} \cdot 0^2 + 0^2 \right] \xrightarrow{\sigma^2} 0 \quad (\text{consistente}) \)

\(E[X_i^2] = \frac{1}{2} (1 - 1) + 0 \cdot \frac{1}{2} + 0 \cdot 0 = \frac{1}{2} \)

\(V(x) = E[X_i^2] - (E[X])^2 = \frac{1}{2} - 0^2 + 0 \)

- Propiedades de los estimadores obtenidos por N.M.:

1. Son centrados
2. Son consistentes: \(\alpha_1 \xrightarrow{p} \alpha_1 \quad \text{L.D.IV} \)
3. T.C.I: Normalidad asymptótica:

\(\alpha_1 \xrightarrow{N} N(\alpha_1, V[\overline{x}]) \)
2. Método de máxima similitud (EMV)

\[f(x) = f_0(x) = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum (x_i - \theta)^2} \]

La función de verosimilitud:

\[L(\theta | \mathbf{x}) = \max_{\theta \in \Theta} L(\theta | x_1, \ldots, x_n) \]

\[\frac{\partial}{\partial \theta} \ln L(\theta | x_1, \ldots, x_n) \rightarrow \hat{\theta}(x_1, \ldots, x_n) \]

- Ejemplos:

A) \(X \sim N(\theta, 1) \)

\[x_1, \ldots, x_n \text{ m.a.s. EMV?} \]

- \(f_0(x) = L^{\theta}(0) = \frac{1}{(2\pi)^{n/2}} \]

- \(\ln L^{\theta}(0) = -n \ln (2\pi) - \frac{1}{2} \sum (x_i - \theta)^2 \]

- \(\frac{\partial}{\partial \theta} \ln L^{\theta}(0) = \frac{1}{2} \sum (2(x_i - \theta)) = n\bar{x} - n\theta = 0 \)

- \(\frac{\partial^2}{\partial \theta^2} \ln L^{\theta}(0) = -n < 0 \Rightarrow \theta = \bar{x} \]

Mínimo relativo

Estudiemos la frontera para ver si es absoluto:

- \(\lim_{\theta \to \pm \infty} L^{\theta}(0) = 0 \)

- \(\hat{\theta} = \bar{x} \text{ es un máximo global} \Rightarrow \bar{x} \text{ es EMV} \)

2) \[
\begin{array}{c}
\text{Diagrama}
\end{array}
\]

\[\int_{-\infty}^{\bar{x}} \bar{x} \geq c \quad 0 \text{ es EMV} \]

\[\int_{c}^{0} \bar{x} \leq 0 \]
3) \(X \sim \text{B}(1, 0) \)
\(x_i \ldots x_n \) \(\text{ENV} \)

\[f_0(x) = L^2(0) = \binom{n}{x} \theta^x (1-\theta)^{n-x} \]

\[\ln L^2(0) = (\binom{n}{x} - 1, 0) L_n (1-\theta) \]

De modo que

\[\frac{\partial}{\partial \theta} \ln L^2(0) = \frac{(\binom{n}{x} - 1, 0)}{\theta} = 0 \Rightarrow \frac{\sum x_i}{1-\theta} \frac{\theta^x}{1-\theta} = \frac{n}{1-\theta} = 0 \]

\[\hat{\theta} = \frac{\sum x_i}{n} \]

Falta ver que es máximo absoluto:

\(\theta \in [0, 1] \)

\[L_2(\theta = 0) = 0 \in [0, 1] \]

\[L_2(\theta = 1) = 0 \in [0, 1] \]

\[\bar{X} \in \text{ENV} \text{ para } \theta \]

* \(\theta \in (0, 1) \)

\[x > \theta \text{ creciente} \]

\[x < \theta \text{ decreciente} \]

* \(\theta \in [\frac{3}{4}, 1] \)

\[x < \frac{3}{4} \]

\[\bar{X} \leq \theta \leq \frac{3}{4} \]

4) \(X \sim \text{U}(0, 0), \theta \geq 0 \)
\(x_i \ldots x_n \)

\[L_2(\theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I_{(0, \theta)}(x_i) \]

\[\ln L_2(\theta) = -n \ln \theta \]

\[\frac{\partial}{\partial \theta} \ln L_2(\theta) = -\frac{n}{\theta} = 0 \Rightarrow \theta = 0 \]

Como es la función recíproca

\[L_2(\theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I_{(0, \theta)}(x_i) = \frac{1}{\theta^{n} \prod_{i=1}^{n} I_{(x_{(1)}, \infty)}(0)} \]

Como el máximo depende de \(\theta \) y \(\theta \in (x_{(1)}, \infty) \), el máximo está en
5) \(X \sim U \left(\frac{0 - \frac{1}{2}}{1}, \frac{0 + \frac{1}{2}}{1} \right) \)

\[\prod_{i=1}^{n} I_{[0-\frac{1}{2},0+\frac{1}{2}]}(X_i) = \prod_{i=1}^{n} I_{[\frac{X_i}{1} - \frac{1}{2}, \frac{X_i}{1} + \frac{1}{2}]} \]

\[0 - \frac{1}{2} < x_{\min} < x_{\max} < 0 + \frac{1}{2} \]

El EH de \(X \) es cualquier punto del intervalo \([0-\frac{1}{2}, 0+\frac{1}{2}]\)

\[0 - \frac{1}{2} \leq x_{\min} \leq x_{\max} + \frac{1}{2} \]

\[0 \in (-\infty, x_{\min} + \frac{1}{2}] \]

\[x_{\min} \leq 0 + \frac{1}{2} \]

\[x_{\min} - \frac{1}{2} \leq 0 \]

\[0 \in (x_{\min} - \frac{1}{2}, \infty) \]

6) Tenemos 4 bolas y sacamos 2 bolas con reemplazo, sabiendo que mínimo hay 1B y 1N.

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(B)</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>(N_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B</td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>N_1</td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td>B</td>
<td>N_2</td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td>B</td>
<td>N_3</td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td>N_1</td>
<td>B</td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td>N_2</td>
<td>N_1</td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td>N_3</td>
<td>N_1</td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = 1/4</td>
<td></td>
<td>9/16</td>
</tr>
</tbody>
</table>

- Hay probabilidad con 2 blancas y 2 negras.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(0 = 1/4)</th>
<th>(0 = 1/2)</th>
<th>(0 = 3/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>9/16</td>
<td>4/16</td>
<td>1/16</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>6/16</td>
<td>8/16</td>
<td>6/16</td>
</tr>
<tr>
<td>(x = 2)</td>
<td>4/16</td>
<td>4/16</td>
<td>6/16</td>
</tr>
<tr>
<td>(0 < x < 2)</td>
<td>6/16</td>
<td>8/16</td>
<td>6/16</td>
</tr>
</tbody>
</table>
• Propiedades de los EMV:

1) Suficiencia:

Si \(\hat{\theta} \) es un estimador suficiente y el EMV existe, \(\theta \) es \(\gamma \)-equivocado, función del estimador suficiente.

Demonstración:

\[
\hat{\theta} = T(x_1, \ldots, x_n) \implies f_\theta(x_1, \ldots, x_n) = h(x_1)g_\theta(\hat{\theta})
\]

El EMV existe y es único, máxima

\[
g_\theta(\hat{\theta}) \implies \text{ser} \text{ \text{función} de } \hat{\theta}
\]

2) Consistencia (En condiciones bastante generales)

El hecho de que el dominio no esté condicionado por el parámetro, que se cumplan las ...

3) Consistencia:

No son centrados, pero sí son asintóticamente centrados.

\[
\hat{\theta}_n \xrightarrow{p} \theta \quad \text{L.D.G.N.}
\]

\[
\hat{\theta}_n \xrightarrow{d} E(\theta)
\]

4) Eficiencia (Cond. regularidad)

El estimador eficiente, si existe, es de EMV.

5) Invariancia:

Los estimadores son invariables frente a transformaciones

\(\hat{\theta} \) EMV para \(\theta \)

\(\text{g función de inverson única } \implies g(\hat{\theta}) \) es \(\text{EMV para } g(\theta) \)
En la estadística bayesiana, 0 es una v.a. (tiene una distribución y será con la que trabajaremos).

- Ejemplo: lanzar una moneda al aire
- P(éxito) $= P(\text{cara})$ (Bernoulli)
- $0 = 1/2$
- Tiro a la vez $= \sum_{x=1}^{100} P(\text{éxito}) = \frac{nx}{n}$, que converge a 1 (límite)

- La estadística que usamos se basa en la frecuencia relativa.
- La estadística bayesiana se basa en la creencia subjetiva sobre 0.

- Coge otra vez este experimento:
- Tiro la moneda 0, 0 v.a.
- $P(\text{cara}) = \frac{1}{2}$
- Si 0 es v.a., tiene una distribución: "se distribuye de alguna manera basada en mi experiencia".

La representación concreta con la muestra (número) hará que tenga una distribución final de 0 que ha cambiado por x_1, \ldots, x_n (muestra). Esto se hace con el teorema de Bayes.

- Teorema de Bayes

$$B, A \text{ dos sucesos elementales}$$

$$Pr(B|A) = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A)} = \frac{Pr(A|B) \cdot Pr(B)}{\sum Pr(A|B_i) \cdot Pr(B_i)}$$

$$f(x_1, \ldots, x_n|10) = \frac{f(x_1, \ldots, x_n|10) \cdot f(10)}{\int f(x_1, \ldots, x_n|10) \cdot f(10) \, dx_1 \ldots dx_n}$$
Familia conjugada

\[P_1 \sim \text{Beta}(\alpha, \beta) \quad 0, \infty \]

Esta familia es conjugada de la familia de funciones de densidad de la población.

\[\mathbb{T} \text{ final tiene que ser } e^{P_1}, \quad \mathbb{T}(0^{|X_1, \ldots, X_n|}) \sim e^{P_1} \]

\[P_2 = \frac{1}{2} (|X_1|; \theta \in \Theta) \]

- **CÁSOS:**
 1) \(O \sim \text{Beta} \)
 \[f(X_1) \text{ población Bernoulli, Binomial o Binomial negativa } \]
 \[\Rightarrow \text{familia conjugada } \Rightarrow \mathbb{T}(0^{|X_1, \ldots, X_n|}) \text{ Beta} \]

 2) \(O \sim \text{Gamma} \)
 \[f(X_1) \text{ población Poisson o Exponencial } \]
 \[\Rightarrow \text{familia conjugada } \Rightarrow \text{distribución final } \mathbb{T}(0^{|X_1, \ldots, X_n|}) \text{ Gamma} \]

 3) \(O \sim \text{Normal}(\mu_0, \sigma_0^2) \)
 \[f(X_1) \text{ población Normal}(\mu_0, \sigma_0^2), \quad \sigma_0 \text{ constante } \]
 \[\Rightarrow \text{familia conjugada } \Rightarrow \mathbb{T}(0^{|X_1, \ldots, X_n|}) \text{ Normal} \]

- **Ejemplos:**
 1) \(X \sim \text{Binomial}(n, 0) \)
 \[X_1, \ldots, X_n \text{ muestra de tamaño } n \text{ (muestra)} \]
 \[\Delta \text{ paso: } O \sim \text{Beta}(n, 1) \]

 Demostrar que es una Beta y obtener los parámetros.

 La distribución final viene dada por Bayes:
 \[\mathbb{T}(0^{|X_1, \ldots, X_n|}) = \int \left(\frac{f(x_1, \ldots, x_n | 0)}{f(x_1, \ldots, x_n | 0) \mathbb{T}(0 1 | x_1, \ldots, x_n)} \right) \mathbb{T}(0|1) \, d\theta \]
 \[\mathbb{T}(0) = \frac{1}{\beta(1, 1)} = \frac{1}{\beta(1, 1)} \]
 \[f(x_1, \ldots, x_n | 0) = \frac{1}{\beta(1, 1)} 2^{-n} \left(\sum_{r=0}^{n-1} \binom{n-1}{r} (4-2^0)^{n-1-r} \right) \]

 Función de densidad conjunta de la muestra:
 \[f(x_1, \ldots, x_n | 0) = \frac{1}{\beta(n)} \prod_{i=1}^{n} \left(\frac{2^n}{2^n (4-2)^{-n}} \right) \]
2) \(X \sim \text{Poisson}(\theta), \theta > 0 \)
\(x_1, \ldots, x_n \) muestren \(n \)
\(0 \sim \text{Gamma}(\rho, \gamma) \)
Obtener distribución final.

\[
\text{PP}(0) = \frac{\Gamma(\rho)}{\Gamma(\rho+\gamma)} \theta^{\frac{n}{\gamma}} e^{-\nu \theta}
\]

\[
\int_{x_1, \ldots, x_n} = \frac{e^{-\nu \theta}}{\text{PP}(\theta)}
\]

\[
\text{PP}(0|x) = \frac{1}{\text{PP}(0)} \text{PP}(\theta)
\]

\[
\int_{0}^{\infty} e^{-\nu \theta} \theta^{\frac{n}{\gamma}} e^{-\nu \theta} \theta^{\frac{n}{\gamma}} e^{-\nu \theta} d\theta = \frac{\Gamma(\rho+\gamma)}{\Gamma(\rho)}
\]

\[
\frac{\Gamma(\rho+\gamma)}{\Gamma(\rho)} = \frac{\Gamma(\rho+\gamma)}{\Gamma(\rho)}
\]

Distribución \(\text{Gamma}(\alpha, \beta) \)

\[
\alpha = n+\rho
\]

\[
\beta = q+n-2\theta x
\]

3) \(X \sim N(\mu, \sigma^2) \)
\(\mu = \mu \)
\(x_1, \ldots, x_n \) \(\sigma^2 \) conocido

\(\sigma \sim \text{PP}(0) = N(\mu, \sigma^2) \)

\[
\text{PP}(\mu|x) = \frac{1}{\text{PP}(\theta)} \text{PP}(\theta)
\]

\[
\int_{0}^{\infty} e^{\frac{1}{2} \sigma^2} \sigma (x_i - \mu)^2 = \left(\frac{1}{\sigma^2} \right) (\mu - \mu_0)^2
\]

\[
\Sigma (x_i - \bar{x})^2 = \Sigma (x_i - \bar{x} + \bar{x} - \mu)^2 = \Sigma x_i^2 + n\mu^2 - 2n\bar{x}\mu
\]

\[
(\mu - \mu_0)^2 = \mu^2 + \bar{x}^2 - 2\mu \bar{x}
\]

\[
\theta = \frac{1}{2} \left((\bar{x}^2 + n\mu^2 - 2n\bar{x}\mu) \sigma^2 + (\mu^2 + \bar{x}^2 - 2\mu \bar{x}) \sigma^2 \right) = \frac{1}{\sigma^2}
\]

\[
\bar{x}^2
\]

\[
\mu^2
\]
\[-\frac{1}{2} \left(\frac{(x - \mu)^2}{\sigma^2} + \frac{1}{\sigma^2} \right) \]

Definición de función pérdida.

Es una función \(L: \Theta \times \Theta \rightarrow \mathbb{R} \) tal que

\[L(\theta, \tilde{\theta}) \geq 0, \quad \forall \theta, \tilde{\theta} \in \Theta \]

0 no satisface la Td(\Theta), \(\tilde{\theta} = \mu \)

1) \(L(\theta, \tilde{\theta}) = 0 \) si \(\theta = \tilde{\theta} \)

2) \(L(\theta, \tilde{\theta}) \geq L(\theta, \hat{\theta}) \)

Ejemplos:

- \(L(\theta, \tilde{\theta}) = |\theta - \tilde{\theta}| \) ERROR ABSOLUTO DE LA ESTIMACIÓN
- \(L(\theta, \tilde{\theta}) = (\theta - \tilde{\theta})^2 \) FUNCIÓN PÉRDIDA CUADRÁTICA

Precio de un estimador o función pérdida, final:

\[R(\theta, \tilde{\theta}) = E[L(\theta, \tilde{\theta})] = \int L(\theta, \tilde{\theta}) \pi(\theta | \tilde{\theta}) \, d\theta \]

Ejemplo:

Si nuestra función pérdida es la función pérdida cuadrática, entonces \(R(\theta, \tilde{\theta}) = E[(\theta - \tilde{\theta})^2] \)
* Teorema *

Si la función pérdida es cuadrática, el estimador bayesiano es la esperanza de la distribución a posteriori.

\[
\hat{\theta} = \mathbb{E}[\pi(\theta|x)]
\]

\[
R(\theta, \hat{\theta}) = \mathbb{E}[\pi(\theta-x^2) | x] = \mathbb{E}[\pi(\theta-x^2 + \theta-x^2)] = \int (\theta-x^2 + \theta-x^2) \pi(\theta|x) d\theta
\]

\[
= \mathbb{E}[(\theta-x^2)^2 + (\theta-x^2)^2 + 2(\theta-x^2)(\theta-x^2)] \pi(\theta|x) d\theta
\]

\[
\frac{\partial}{\partial \theta} \left[2(\theta-x^2)(\theta-x^2) \right] = 0
\]

\[
\hat{\theta} = \mathbb{E}[\pi(\theta|x)] = \frac{\int \theta \pi(\theta|x) d\theta}{\int \pi(\theta|x) d\theta}
\]

* Intervalos creíbles *

\(\theta \) v.a. y \(\theta \sim \pi(\theta|x) \)

\(\hat{\theta} \) estadístico bayesiano

\(\theta \in [\theta_1(x_1, ..., x_n), \theta_2(x_1, ..., x_n)] \)

Para \(\alpha \in (0,1) \):

\[
\Pr\left[\theta_1(x_1, ..., x_n) \leq \theta \leq \theta_2(x_1, ..., x_n) \right] = 1-\alpha \quad \text{Intervalo creíble con grado} \ 1-\alpha \ \text{de estimación}
\]

\(\pi(\theta|x) \)
1. Para una muestra de tamaño n de una población Bernoulli (θ), encontrar un estimador centrado de $\theta(\theta) = \theta^2$.

S克莱 que un estimador T es centrado si $\mathbb{E}[T(x_i)] = \theta(\theta) = \theta^2$

Estrumemos ante una población Bernoulli (θ); luego $f(x_i) = \theta^{x_i}(1-\theta)^{1-x_i}$ con $X\sim \text{Bern}(\theta)$

\[P(X=x_i) = \theta^x(1-\theta)^{1-x} \]

\[P(X=x_i) = \theta^x(1-\theta)^{1-x} = \theta^x \\

\text{Sea} \ u = \begin{cases} 1 & X_i = 1 \\ 0 & \text{o} \text{tr} \end{cases} \]

\[P(u = 1) = P(X_i = 1) = \theta^x \quad (P(X_i = 1), P(X_i = 0)) \\

\Rightarrow \mathbb{E}[u] = \theta \cdot P(X_i = 1) + 0 \cdot P(X_i = 0) = \theta^2 \\

\text{Entonces} \ \mathbb{E}[u] = \theta^2, \ \text{luego} \ \sum_{x_i = 1} T(x_1, \ldots, x_n) = x_1 \cdot x_2 \ldots \text{es un estimador centrado para} \ \theta(\theta) = \theta^2 \]
5. Para un m.a.r de tamaño \(n \) de una población Binomial-Negativa \((-1, \theta)\), obtener de ECMV para \(\lambda(1) = P_0(X = 0) \).

Se trata de una población Binomial-Negativa \((-1, \theta)\) luego

\[
P(X_{1:n}) = \binom{n}{x} \theta^x (1-\theta)^{n-x}, \quad x = 0, 1, 2, \ldots \quad \theta > 0 \quad r = 1
\]

\[
\lambda(1) = P_0(X = 0) = \theta \]

\[
P_{\theta}(x) = \theta^n (1-\theta)^{x} \Rightarrow \ln(P_{\theta}(x)) = n \ln \theta + n \ln (1-\theta) \quad \ln (x-0)
\]

\[
\Rightarrow \frac{\partial}{\partial \theta} \ln(P_{\theta}(x)) = \frac{n}{\theta} + \left(\sum_{x=1}^{n} \frac{1}{x} \right) \left(-\frac{1}{1-\theta} \right) = \frac{1}{\theta} \left[\sum_{x=1}^{n} \frac{1}{x} \right] \frac{\ln (1-\theta)}{1-\theta}
\]

\[\Rightarrow \text{ECMV para } \lambda(1) = \frac{n \ln (1-\theta)}{\theta}
\]

- Construimos \(\omega = \left\{ \begin{array}{ll} 1 & \text{si } x_0 = 0 \\ 0 & \text{en otro caso} \end{array} \right. \)

\[\Rightarrow P(\omega = 1) = P(x = 0) = \text{ECMV} = 1 \cdot P(x = 0) = \theta \]

\[
P_{\theta}(x) = \theta^n (1-\theta)^{x} = \theta^n (x-0)
\]

\[\Rightarrow \quad T(\theta) = \frac{\sum X_i}{n} \quad \text{FAMILIA EXPONENCIAL} \]

- Univariable

\[
\Rightarrow \quad T(\theta) \text{ es suficiente, y además es completo, ya que}\]

\[
Q: \theta \rightarrow \mathbb{R} \quad \text{contiene un intervalo} \quad 0 > 0 \]

\[\Rightarrow \quad \text{T(\theta) es mínima suficiente}
\]

- \(\lambda(1) = E(\omega | y) = 1 \cdot P(\omega | y) = P(\omega = 1 | \sum_{i=1}^{n} x_i = t) = P(x = 0, \sum_{i=1}^{n} x_i = t) = P(x = 0) \cdot P(\sum_{i=1}^{n} x_i = t) = \]

\[\left(\sum_{x=1}^{n} \frac{1}{x} \right) \left(\sum_{x=1}^{n} \frac{1}{x} \right) \left(\frac{n-1}{t} \right) \left(\frac{n-1}{t} \right) \left(\frac{1}{t} \right) \]

\[\Rightarrow \quad T(\theta) = \frac{n-1}{t + n-1}
\]

- Por Lehman–Schifflé: ECMV para \(\lambda(1) = P_0(X = 0) \equiv \frac{1}{T(\theta)} = \frac{n-1}{t + n-1}
\]
1. Para una m.a.s. de tamaño n de una población $N(0, \sigma^2)$, se pide:

- Obtener un estimador centrado para σ^2.
- ¿Cuál es el EMV para σ^2?

a) Buscamos T tal que $\mathbb{E}[T(X)] = \sigma^2$

Problema elegido:

$\mathbb{E}[X] = 0 \times$
$\mathbb{E}[S^2] = \sigma^2 \checkmark$
$\mathbb{E}[X] = 0 \times$
$\mathbb{E}[X^2] = \mathbb{V}(X) + (\mathbb{E}[X])^2 = \sigma^2 \checkmark$

Nos quedamos con $\sqrt{n} \overline{X}$, que es más fácil de trabajar que S^2.

b) Se trata de una población normal $(0, \sigma^2)$, luego

$$f_\sigma(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

Haciendo la en ambos lados:

$$\ln f_\sigma(x) = \ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{x^2}{2\sigma^2}$$

$$\frac{d}{dx} (\ln f_\sigma(x)) = -\frac{x}{\sigma^2} = 0 \Rightarrow x = 0 \Rightarrow x^2 = 0$$

De modo que $\hat{\sigma} = |X|$

Vimos $\hat{\sigma}$ es máximo absoluto:

$$\frac{d^2}{d\sigma^2} (\ln f_\sigma) = -\frac{3x^2}{\sigma^4} + \frac{2}{\sigma^2} = \frac{-2x^2}{\sigma^4} = \frac{-2}{\sigma^4}$$

$$\hat{\sigma} = |X|$$

De parte crítica es un estimador.

1. $\hat{\sigma} = |X|$
2. $\sigma^2 = \frac{\hat{\sigma}^2}{2} = \frac{e^{2x^2}}{2}$
3. $x^2 \leq \sigma^2$
4. $e^{x^2} \leq e^{\sigma^2}$
5. $1 \times 1 \geq \max_\sigma 1 \times 1$
6. $1 \times 1 \leq 0$ 0 max σ no domínio

⇒ No existe el EMV, porque el máximo puede estar en el caso en el que no pertenece al dominio.
2. Para una m.a.s de tamaño \(n \) de una población \(\mathcal{N}(0, \theta) \), encontrar el/los estimadores de máxima verosimilitud.

Las probabilidades como en el ejercicio 1 pero observamos que \(x \in \mathcal{N}(0, \theta) \), por lo que basta estudiar el máximo de \(f_0(x) = \frac{1}{\theta^n} \exp \left(-\frac{x^2}{2\theta^2} \right) \)

\[0 < x < x_m < \theta \]

\[\theta \in \mathcal{D}(x_m, x) \Rightarrow \text{El EMV es } x_m \]

3. Para una m.a.s de tamaño \(n \) de una población \(\mathcal{N}(0, \theta) \), sólo se registra se cada observación es menor a igual que cero o mayor. Si sabes que ha habido m valores menores o iguales que cero, con más encontrar el EMV de \(\theta \).

Definitivos:

- \(\gamma \leq 0 \)
- \(\gamma > 0 \)

\[\gamma = \begin{cases} 1 & x \leq 0 \\ 0 & \text{o de otro caso} \end{cases} \]

\[\sum_{i=1}^{n} \gamma_i = m \quad \text{(La probabilidad de valores } \leq 0) \]

\[\mathcal{N}(0, \theta) \rightarrow \text{Transformamos para una } \mathcal{N}(1, 1) \]

\[P_{\mathcal{N}(1, 1)}(\gamma = 1) = P_{\mathcal{N}(1, 1)}(x \leq 0) = \Phi(x) = \frac{1}{2} \left(1 - P_{\mathcal{N}(1, 1)}(x \geq 0) \right) = \frac{1}{2} - \Phi(-1) = \Phi(1) \]

\[\Phi(1) = \gamma(1) \quad \gamma = \text{función característica de la } \mathcal{N}(0, 1) \]

\[\sum_{i=1}^{n} \gamma_i = m \quad \text{para una } \mathcal{N}(1, 1) \]

\[\sum_{i=1}^{n} \gamma_i = m \quad \text{para una } \mathcal{N}(1, 1) \]

\[f_0(x) = \frac{1}{\theta^n} \exp \left(-\frac{x^2}{2\theta^2} \right) \]

\[\text{Hacemos, en } \gamma: \]

\[\ln f_0(x) = \ln \frac{1}{\theta^n} \ln 0 + \frac{x^2}{2\theta^2} \ln 1 \]

\[\frac{\partial}{\partial \theta} \ln f_0(x) = \frac{1}{\theta} - \frac{x^2}{2\theta^2} = 0 \Rightarrow \theta = \bar{x} \]

Con la segunda derivada es 0 comprendemos que es máximo relativo 7, desde luego que no se produzca en los extremos.

Hallamos máximo global \(\hat{\theta} = \bar{x} \) EMV para \(1 - \Phi(1) \)

\[\phi(1) = 1 - \Phi(1) = \Phi(1) \]

\[\hat{\theta} = \bar{x} \quad \phi(1) = \Phi(1) = \Phi(1) \]

(Hechos esto porque hemos hallado el EMV para \(1 - \Phi(1) \) pero lo que es \(\Phi(1) \)?)

¿Y ahora qué? ¿Solución?
4. Determinar los EMV con m.a.s de tamaño \(n \), para \(\theta \) en los siguientes casos:

a) \(f(x; \theta) = \frac{1}{\theta} \Gamma^k_i \frac{1}{\theta^2} \Gamma^{k-1}_i \Gamma^{-1}_i \frac{1}{\theta+n} \Gamma^{n}_{x_{(n)}} \), \(\theta \) entero positivo

b) \(f(x; \theta) = e^{2x+\theta} \), \(\theta \) entero

\(e \in [x_{(n)}, \infty) \Rightarrow [x_{(n)} \text{ EMV} \]

\(e \in (-\infty, x_{(n)}) \Rightarrow \infty \text{ EMV es } x_{(n)} \)

NOTA: Si \(e \) está acotada por el parámetro, \(\theta \), entonces \(e \) y \(\theta \) están acotados.

En nuestro caso:

\(f(x; \theta) = e^{2x+\theta} \)

\(e \in (0, \infty) \)

\(\theta \) es la mínima cardinalidad.

\(\frac{\partial}{\partial \theta} \ln f(x; \theta) = n = 0 \Rightarrow \text{ Conclusion: No hay}\)

Otro caso:

\(g(x; \theta) = 0 \), \(\theta \in [0, \infty) \)

EMV \(\Rightarrow 0 \)
1. Para una m.a.s. de tamaño n de una población Poisson,(λ), supuesto que la distribución inicial a priori del parámetro θ viene dada por una distribución Gamma(α, β), con $\alpha > 0$, $\beta > 0$. Se pide:

- Probar que la familia Gamma es conjugada respecto a la población Poisson.
- Calcular la media y la varianza de la distribución poste.
- Calcular la pérdida final esperada para el estimador Bayesiano.

a) m.a.s. tamaño n Poisson(λ)

$TT(\theta) \sim \text{Gamma}(\alpha, \beta)$

Tenemos que ver que $TT(\theta) \sim \text{Gamma}(\alpha, \beta)$

Se trata de una población Poisson(θ) luego $f_{\theta}(x) = e^{-\theta} \theta^x / x!$, $\theta > 0$

$TT(\theta) = \theta^\alpha e^{-\theta} \theta^{-\beta} \sim \text{Gamma}(\alpha, \beta)$

De donde que

$\frac{\int \theta^\alpha e^{-\theta} \theta^{-\beta} \, d\theta}{\theta^{\alpha-1} e^{-\theta} \theta^{-\beta}} \sim \text{Gamma}(\alpha, \beta)$

$\int \theta^\alpha e^{-\theta} \theta^{-\beta} \, d\theta = \int e^{-\theta} \theta^{\alpha-1} e^{-\theta} \, d\theta = \int e^{-\theta} \theta^{\alpha-1} \, d\theta = \frac{\Gamma(\alpha)}{\alpha!}$

$= \int 0^\infty e^{-\theta} \theta^{\alpha-1} \, d\theta = \frac{\Gamma(\alpha)}{\alpha!}$

$a_n = n + \alpha$

$p_1 - d = \Sigma x + p - d \rightarrow p_1 = \Sigma x + p$

$\Rightarrow TT(\theta) \sim \text{Gamma}(\alpha, \beta)$

$a_n = n + \alpha$

$p_1 = \Sigma x + p$
\[E[B] = \frac{\theta^l}{\alpha_l} \]

\[V(B) = E[B^2] - (E[B])^2 \]

\[E[B^2] = \int_0^{\infty} \frac{\theta^l}{\alpha_l} \theta^{\alpha_l - 1} e^{-\theta} \theta^2 \]
2. Se tiene la sospecha de que una moneda está sesgada, en el sentido de que su probabilidad de cara es menor que 0.5. Se esta información se modeliza mediante una distribución Beta (0.1, 8) como distribución inicial, ¿cuál es el estimador bayesiano cuando después de tirar la moneda 50 veces se obtienen 20 caras? Utilizar como función pérdida el valor absoluto.

Se trata de una población X~Bernoulli, luego \(f(x) = \theta^x (1-\theta)^{n-x} \) con \(n=50 \) (se tiran 50 veces la moneda)

\[
T(\theta) = \frac{\theta}{\beta(40, 8)}
\]

\[
E = \{x = 20\} \text{ (Se obtienen 20 caras)}
\]

\[
T(\theta) = \frac{1}{\beta(40, 8)} \theta^{20} (1-\theta)^{30} \text{ I}(0, 1)
\]

\[
T(\theta) = \frac{1}{\beta(40, 8)} \int_0^\infty \theta^x (1-\theta)^{n-x} \text{ d}\theta
\]

\[
= \frac{1}{\beta(40, 8)} \int_0^{20} \theta^x (1-\theta)^{30} \text{ d}\theta
\]

\[
= \frac{1}{\beta(40, 8)} \text{ Beta}(30, 88)
\]

\[
= \frac{1}{\beta(40, 8)} \text{ Beta}(30, 88)
\]

\[
= \frac{1}{\beta(40, 8)} \text{ Beta}(30, 88)
\]

3. La proporción \(\theta \) de votantes a un determinado partido político en unas elecciones es desconocida y su distribución inicial es Beta (4, 10).

- Se toma una muestra de 1000 votantes y se encuentra que 125 van a votar al partido político. ¿Cuál es el estimador bayesiano para \(\theta \)?

- Si se cambia el sistema de muestreo y se muestran 1000 personas hasta conseguir que 125 voten al partido, ¿cuál es el estimador bayesiano para \(\theta \)?

a) \(\theta \sim \text{Beta}(4, 10) \) \(\theta \sim \text{proporción votantes} A \)

\(
\hat{\theta} = \text{E}(T(\theta) | E) = \int_0^1 \theta T(\theta) f(\theta) \text{ d}\theta = \frac{1}{\beta(4, 10)} \int_0^1 \theta^{40} (1-\theta)^{88} \text{ d}\theta = \frac{40!}{40! 88!} \frac{1}{92!} = \frac{1}{\beta(40, 88)}
\)

\[
\hat{\theta} = \frac{p}{p+q}
\]

\[
\Rightarrow \hat{\theta} = \frac{p}{p+q}
\]
5) \(x = 125 \) estudiantes

\[
\int_0^a \beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\beta^\alpha x^{\alpha-1} (1-x)^{\beta-1}}{x^a (1-x)^{\beta+1}}
\]

\[
\int_a^1 \beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\beta^\alpha (1-x)^{\beta+1}}{x^a (1-x)^{\beta+1}}
\]

\[
\beta(\alpha, \beta) \sim \text{Beta}(421, 885)
\]

... hallamos \(\beta(\alpha, \beta) \) y hallamos su esperanza.

4. A una persona se le pasa un test de inteligencia, cuyo resultado \(y \) se supone que sigue una distribución Normal \(\mathcal{N}(\theta, \sigma^2 = 10) \), donde \(\theta \) es su nivel de inteligencia real. Supongamos que en el colectivo al que pertenecen los estudiantes, la inteligencia \(\theta \) se distribuye según Normal \(\mathcal{N}(100, 15^2) \). ¿Cuál sería el estimador bayesiano de \(\theta \) si se supone piedad uniforme? ¿Cuánto valdría este si la persona tenía como resultado del test el valor 140? ¿Cuál es la piedad final esperada correspondiente?

\(X \sim \mathcal{N}(\theta, 10) \)

\(\theta \) nivel de inteligencia.

\(\theta \sim \mathcal{N}(100, 15^2) \)

\(n = 4 \rightarrow \bar{x} = \frac{400}{4} = 100 \)

\(\bar{X} | \theta \sim \mathcal{N}(\theta, 15^2/n) \)

\[
\mu_\theta = \frac{\mu_0 + \bar{x} \cdot \frac{n}{C_0}}{1 + \frac{n}{C_0}} = \frac{100 + 100 \cdot \frac{4}{15}}{1 + \frac{4}{15}} = 106.723
\]

\[
\left(\hat{\theta} | \bar{X}_n \right) = \mu_\theta \text{ estimador bayesiano}
\]

\[
C_\theta = \frac{A}{n + C_0^2} = \frac{4}{4 + 15^2} = 0.065
\]

\[
C_\bar{X} = n^{-1} \text{ piedad final esperada}
\]
\[
\begin{align*}
\Pi(0\uparrow) &= \frac{C^{41}}{(4 - 0)} \cdot \int_0^{\infty} e^{-\alpha \sqrt{1 - \alpha}} \, d\alpha \\
\xi &= \frac{\xi^{29}}{\xi^{29} + \xi^{30}} = 42.5 \\
\eta &= \frac{\eta^{29}}{\eta^{29} + \eta^{30}} = 88.5 \\
\text{E[T] (0121)} &= \int_0^{\infty} e^{-\alpha \sqrt{1 - \alpha}} \, d\alpha = \frac{1}{\beta(129, 88.5)} \\
&= \frac{\Pi(129, 88.5)}{\Pi(129, 88.5)} = \frac{\Pi(129, 88.5)}{\Pi(129, 88.5)} = 0.427 \quad \text{Estimation by Yestano} \\
\text{E[G]} &= \int_0^{\infty} e^{-\alpha \sqrt{1 - \alpha}} \, d\alpha = \frac{\xi^{29}}{\xi^{29} + \xi^{30}} \\
&= \frac{\Pi(129, 88.5)}{\Pi(129, 88.5)} = \frac{\Pi(129, 88.5)}{\Pi(129, 88.5)} = 0.425 \approx 16.558 \\
\nu(01) &= \frac{245 - \left(\frac{53}{88.5} \right)^2}{15} \approx 16.522 \quad \text{RFE}
\end{align*}
\]
Sean una m.a.s. de tamaño \(n \), con función de densidad

\[
 f_\theta(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}} \mathcal{I}(0,\infty)(x), \quad \theta > 0
\]

Obtener la cota de TCR y un estimador eficiente

\[
 f_\theta(x) = \frac{1}{\theta} e^{-\frac{\sum_{i=1}^{N} x_i}{\theta}} \mathcal{I}(0,\infty)(x_i)
\]

\[
 \ln f_\theta(x) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{N} x_i
\]

\[
 \frac{\partial}{\partial \theta} \ln f_\theta(x) = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{N} x_i = \frac{1}{\theta^2} \frac{\sum_{i=1}^{N} x_i}{\theta} \left[\sqrt{\frac{\sum_{i=1}^{N} x_i}{\theta}} - n \sigma \right]
\]

\[
 h(\theta) = \frac{n \theta}{\sum_{i=1}^{N} x_i}
\]

\[
 T(x_1,\ldots,x_n) = \frac{\sum_{i=1}^{N} x_i}{n}
\]

\[
 h(\theta) = \frac{n \theta}{\sum_{i=1}^{N} x_i}
\]

\[
 K(\theta) = \frac{h(\theta)}{h'(\theta)} = \frac{1}{\theta^2} \Rightarrow \ln(\theta) = k(\theta), \quad h'(\theta) = \frac{1}{\theta^2}, \quad n = \frac{n}{\theta^2}
\]

\[
 \text{COTA} = \frac{h'(\theta)}{h(\theta)} = n \theta^2
\]

Estimador eficiente \(\hat{\theta} = \frac{\sum_{i=1}^{N} x_i}{n} \) (alcanza la cota para \(h(\theta) = n \theta \))

\[
 \text{COTA} = \frac{(h(\theta))^2}{h'(\theta)} = \frac{n^2}{n^2} = n \theta^2
\]

(b) \(p_\theta(x) = \theta (1-\theta)^x \), \(x = 0, 1, 2, \ldots \)

\[
 \ln p_\theta(x) = n \ln \theta + \sum_{i=1}^{N} x_i \ln (1-\theta)
\]

\[
 \frac{\partial}{\partial \theta} \ln p_\theta(x) = \frac{n}{\theta} - \left(\sum_{i=1}^{N} x_i \right) \cdot \frac{1}{1-\theta} = \frac{n}{\theta} - \frac{1}{1-\theta} \left[\frac{\sum_{i=1}^{N} x_i}{n} - (1-\theta) \right]
\]

\[
 \text{COTA} = \frac{h'(\theta)}{h(\theta)} = \frac{\frac{n}{\theta}}{\frac{n}{1-\theta}} = \frac{1-\theta}{\theta}
\]

Estimador \(\hat{\theta} = \frac{\sum_{i=1}^{N} x_i}{n} = \frac{s}{n} \)
Para un m.a.s. de tamaño n de una población Bernoulli (0.5) donde un número fijo conocido de 02 se n, obtendremos el ECMV para

(a) $n(X) = \theta / 2$

$$T(x) = \sum_{i=1}^{n} x_i$$
Sufr. completo

$H(t)$
$E [H(t)] = h(\theta)$

$P(X = x) = \theta$

$W \in Un$

$E [W] = h(\theta) = \theta / 2$

$W = \begin{cases} 1 & x_1 \leq n \\ 0 & \text{otro caso} \end{cases}$

$E [W] = 1 \cdot P_r (W = 1) = P_r (x_1, \ldots, x_n = 1) = \Pr (X = \frac{n}{2})$

$\mathbb{E}[W | T] = 1 \cdot \Pr (W | T) = \frac{P_r (x_1, \ldots, x_n \in T; \sum x_i = \ell)}{P (\ell \in T)}$
Biv. normal (μ, σ)

$\Pr (\frac{\ell}{n})$