UNIT 3 Exercises: Information Theory

3.1

Given $p(x, y)$ with $p(0,0)=p(0,1)=p(1,1)=1 / 3$ y $p(1,0)=0$, find
a) $H(X)$ and $H(Y)$
b) $H(X \mid Y)$ and $H(Y \mid X)$
c) $H(X, Y)$
d) $I(X ; Y)$ and $I(Y ; X)$
a) $p(x)=\sum_{y} p(x, y)=>\mathrm{p}(\mathrm{X}=0)=\mathrm{p}(\mathrm{Y}=1)=2 / 3, \mathrm{p}(\mathrm{X}=1)=\mathrm{p}(\mathrm{Y}=0)=1 / 3$

$$
H(X)=-\sum_{x} p(x) \log p(x)=2 / 3 \log _{2} 3 / 2+1 / 3 \log _{2} 3=0.918 \text { bits }=H(Y)
$$

b) $H(X \mid Y)=\sum_{y} p(y) H(X \mid Y=y)=\frac{1}{3}\left(1 \frac{1}{3} \log 1\right)+\frac{2}{3}\left(\frac{1}{2} \log 2+\frac{1}{2} \log 2\right)=0.666$ bits $=H(X \mid Y)$
c) $H(X, Y)=\sum_{x, y} p(x, y) \log \frac{1}{p(x, y)}=3 \frac{1}{3} \log 3=\log 3=1.585$ bits
d) $I(X ; Y)=I(Y ; X)=H(Y)-H(Y \mid X)=0.918-0.66=0.25$ bits

3.2.

For each of the sentences below, reason if it possible that $H(Y \mid X)=0$ or that $H(Y)=0$
i. The nucleotides composing the genome of an organism are being transmitted through a digital communication system. The actual data transmitted (X) are four numbers corresponding to the 4 possible nucleotides ($\mathrm{A}=0, \mathrm{C}=1, \mathrm{G}=2, \mathrm{~T}=3$) and due to errors in the transmission the data received is $Y=X-3$.
ii. The previous signal X is transmitted but now the signal received is $Y=E X$ where E is a random variable that can take the values 1 or -1 with $1 / 2$ probability.
iii. The temperature in a laboratory (X) is transmitted wirelessly. The signal received is $Y=\left(X-27^{\circ}\right)^{2}$. Assume that the laboratory can have a malfunction in the air conditioning or heating systems, so that it can be very cold or very hot.
i. Knowing the value of X enables us to obtain the value of Y, thus, there is no surprise and $H(Y \mid X)=0$

On the other hand, the entropy of $X(H(X))$ is clearly not zero, since we can assume that each symbol (the nucleotides) has a probability different to zero. Since $X=0$ always produces $Y=-3, X=1 \rightarrow Y=-2, X=2 \rightarrow Y=-1$, and $X=3 \rightarrow Y=0$, the probabilities of the 4 symbol of Y are the same as the probabilities of X, thus $H(Y)=H(X)$ NOT ZERO
ii. Now, knowing X can give a clue about the value of X, but there will be still a 50% change of guessing the sing of the value. For instance, if $\mathrm{X}=2$, we know that Y could be -2 or 2 . So still there is some surprise, leading to $H(Y \mid X) \neq 0$.
The only way that $\mathrm{H}(\mathrm{Y})=0$ is that it has only one possible value, and this is not the case. So $H(Y) \neq 0$.

UNIT 3 Exercises: Information Theory
iii. If we know the value of X there is no surprise in Y, so $H(Y \mid X)=0$. The comment about the fluctuations of the temperature implies that $H(X) \neq 0$. The only way that $\mathrm{H}(\mathrm{Y})=0$ is that it has only one possible value, and this is not the case. So $H(Y) \neq 0$.

3.3.

Given a channel with additive noise. When the symbols $\{0,1\}$ from an information source X are transmitted, the symbols received are $Y=X+Z$, where Z is a binary random variable with equally probable values $\{0, a\}$, a is an integer number.
Find the capacity of the channels for $a=0, a=1$ and $a=2$.

$\mathrm{a}=0$
Y=X => C=1 bit
$\mathrm{a}=1$
$X=0 \rightarrow Y=0$ or $Y=1$
$X=1 \rightarrow Y=1$ or $Y=2$
This is the erasure channel. After computing the capacity we get that $\mathrm{C}=0.5$ bits
$a=2$

UNIT 3 Exercises: Information Theory

$$
\begin{aligned}
& a=1 \quad C=\max _{p(x)} I(y ; x) \\
& I(y ; x)=\sum_{x \alpha} p(x, y) \lg \frac{P(x, \gamma)}{P(x) p(\gamma)} \\
& p(x=0)=f \quad P(x=1)=1-q \\
& P(y=0 \mid x=0)=P(Y=1 \mid x=0)=P\left(y=1|x=1|=P(y=2 \mid x=1)=P(y=2 \mid x=2)=\frac{1}{2} \rightarrow P(0 \mid 2)=P(2 \mid 0)=0\right. \\
& P(y=0)=\sum_{x} P(x, 0)=\sum_{x} \underbrace{P(y=0 \mid x)}_{1 / 2} P(x)=\frac{1}{2} q \\
& \left.\begin{array}{l}
P(y=1)=\sum_{x}^{x} p(x, 1)=\sum_{x}^{x} p\left(y_{=1 / 2}^{1 / 2}\right. \\
P(y=2)=\frac{1}{2}(1-q)
\end{array}\right\}(x)=\frac{1}{2} q+\frac{1}{2}(1-q)=\frac{1}{2} \quad \sum_{j} P(y)=1 \\
& \left.\begin{array}{l}
P(0,0)=P(y=0 \mid x=0) P(x=0)=\frac{q}{2}=P(0,1) \\
P(1,1)=P(y=1 \mid x=1) P(x=1)=\frac{1-q}{2}=P(1,2)
\end{array}\right\} \sum_{x, y} P(x, y)=1 \\
& P(0,2)=P(1,0)=0 \\
& I(y ; x)=\underbrace{\frac{q}{2} \lg \frac{q / 2}{q \frac{q}{2}}}_{(0,0)}+\underbrace{\frac{q}{2} \lg \overbrace{\frac{q / 2}{q \frac{1}{2}}}^{1}}_{(0,1)}+\underbrace{\frac{1-q}{2} \lg \frac{(1-q) / 2}{(1-q) \frac{1}{2}}}_{(1,1)}+\underbrace{\frac{1-q}{2} \lg \frac{(1-q) / 2}{(1-q)(1-q) / 2}}_{(1,2)} \\
& =\frac{q}{2} \operatorname{l} \frac{1}{q}+\frac{1-q}{2} \lg \frac{1}{(1-f)}=\frac{1}{2}\left[q f \frac{1}{f}+(1-f) y \frac{1}{1-f}\right]=\frac{H(q)}{2} \\
& C=\max _{q} \frac{H(f)}{2}=\frac{1}{2} \text { bits }
\end{aligned}
$$

3.4

Find the capacity in bits of an error-free channel used to transmit 30 symbols.
In an error-free chanel $H(X)=H(Y)$, so $I(Y ; X)=H(X)$ and, eventually, $C=$ max $I(Y ; X)=$ max $H(X)=\log \# X$ So $C=\log 230=4.9$ bits

3.5

Given a discrete r.v. $X \in\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ with the following probabilities:

$$
P(X=x 1)=0.04
$$

$P(X=x 2)=0.3$
$P(X=x 3)=0.1$
$P(X=x 4)=0.1$
$P(X=x 5)=0.06$
$P(X=x 6)=0.4$

1) Compute its entropy
2) Find a binary Huffman code for X
3) Compute the average length of the resulting code for X

UNIT 3 Exercises: Information Theory

$\left.\left.\begin{array}{c|cc|c}x & P(x) & x & P(x) \\ \hline x_{6} & 0.4 & x_{6} & 0.4 \\ x_{2} & 0.3 & x_{2} & 0.3 \\ x_{3} & 0.1 & x_{3} & 0.1 \\ x_{4} & 0.1 & x_{4} & 0.1 \\ x_{1} & 0.04 \\ x_{5} & 0.06\end{array}\right] 0.1 \quad\left(x_{1} x_{5}\right) \quad 0.1\right]$

x	$P(x)$
x_{6}	0.4
x_{2}	0.3
$x_{y}\left(x_{1} x_{5}\right.$	0.2
x_{3}	0.1

UNIT 3 Exercises: Information Theory

x	$P(x)$	$C(x)$	l_{i}
x_{6}	0.4	0	1
x_{2}	0.3	10	2
x_{3}	0.1	111	3
x_{4}	0.1	1100	4
x_{1}	0.04	11010	5
x_{5}	0.06	11011	5

$$
\begin{aligned}
& H(x)=-\sum_{x} p(x) \lg (x) \simeq 2.14 \text { bits } \\
& L=\sum_{i} l_{i} p\left(x_{i}\right) \geq 2.2 \text { bitt } \\
& H(x) \leq L \leq \lg 6 \\
& \downarrow \\
& 2.14 \quad 2.2 \quad 2.58
\end{aligned}
$$

UNIT 3 Exercises: Information Theory
3.6

Given a discrete rev. $Y \in\left\{Y_{1}, Y_{2}\right\}$ with the following probabilities:
$P(Y=y 1)=0.7$
$\mathrm{P}(\mathrm{Y}=\mathrm{y} 2)=0.3$

1) Compute $\mathrm{H}(\mathrm{Y})$
2) Find a binary Huffman code for Y
3) Compute the average length of the resulting code for Y
4) Apply questions 1,2 and 3 to a new rev. Z that includes all possible couples of symbols from Y
5) Using the Huffman code for Z, reason if the average length per Y 's symbol is better in contrast with question 3
$1,2,3$

UNIT 3 Exercises: Information Theory

The average length of Z must be divided by two in order to compare it with the average length of Y, since each symbol from Z involves two symbols from Y. $L z / 2$ is smaller than $L Y$, so the Huffman code for Z is more efficient than the one for Y.
Also, it is important to stress that Z is related to Y. We are using Z to encode Y in a more efficient way. Z and Y are not independent random variables.

