

Springer Texts in Statistics
Series Editors:
G. Casella
S.E. Fienberg
I. Olkin

For further volumes:
http://www.springer.com/series/417

http://www.springer.com/series/417

Andrzej Gałecki • Tomasz Burzykowski

Linear Mixed-Effects Models
Using R

A Step-by-Step Approach

123

Andrzej Gałecki
University of Michigan
300 North Ingalls Building
Ann Arbor
Michigan
USA

Tomasz Burzykowski
Center for Statistics
Hasselt University
Agoralaan D
Diepenbeek
Belgium

ISSN 1431-875X
ISBN 978-1-4614-3899-1 ISBN 978-1-4614-3900-4 (eBook)
DOI 10.1007/978-1-4614-3900-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012941857

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Bliskim mojemu sercu

Oli i Łukaszowi

Rodzinie i Nauczycielom

Dekadentom

– A.T.G.

Moim najbliższym i przyjaciołom

– T.B.

In memory of Tom Ten Have

Preface

Linear mixed-effects models (LMMs) are powerful modeling tools that allow for
the analysis of datasets with complex, hierarchical structures. Intensive research
during the past decade has led to a better understanding of their properties.
The growing body of literature, including recent monographs, has considerably
increased their popularity among applied researchers. There are several statistical
software packages containing routines for LMMs. These include, for instance, SAS,
SPSS, STATA, S+, and R. The major advantage of R is that it is a freely available,
dynamically developing, open-source environment for statistical computing and
graphics.

The goal of our book is to provide a description of tools available for fitting
LMMs in R. The description is accompanied by a presentation of the most important
theoretical concepts of LMMs. Additionally, examples of applications from various
research areas illustrate the main features of both theory and software. The presented
material should allow readers to obtain a basic understanding of LMMs and to apply
them in practice. In particular, we elected to present several theoretical concepts
and their practical implementation in R in the context of simpler, more familiar
classes of models such as e.g., the classical linear regression model. Based on
these concepts, more advanced classes of models, such as models with heterogenous
variance and correlated residual errors, along with related concepts are introduced.
In this way, we incrementally set the stage for LMMs, so that the exposition of the
theory and R tools for these models becomes simpler and clearer. This structure
naturally corresponds to the object-oriented programming concept, according to
which R functions/methods for simpler models are also applicable to the more
complex ones.

We assume that readers are familiar with intermediate linear algebra, calculus,
and the basic theory of statistical inference and linear modeling. Thus, the intended
audience for this book is graduate students of statistics and applied researchers in
other fields.

Our exposition of the theory of various classes of models presented in the book
focuses on concepts, which are implemented in the functions available in R. Readers

vii

viii Preface

interested in a more detailed description of the theory are referred to appropriate
theoretical monograph books, which we indicate in the text.

There are a large number of R packages that can be used to fit LMMs. Rather
than attempting to describe all of these packages, we focus mainly on two of them,
namely, nlme and lme4.0. In this way, we can provide a more detailed account of
the tools offered by the two packages, which include a wide variety of functions for
model fitting, diagnostics, inference, etc.

The package nlme includes functions, which allow fitting of a wide range of
linear models and LMMs. Moreover, it has been available for many years and its
code has been stable for some time now. Thus, it is a well-established R tool.

In turn, lme4.0 is a developmental branch version of the lme4 package. The
latter has been under development for several years. Both packages offer an efficient
computational implementation and an enhanced syntax, though at the cost of a
more restricted choice of LMMs, as compared to the nlme package. At the time
of writing of our book, the implementation of LMMs in lme4 has undergone major
changes in terms of internal representation of the objects representing fitted models.
Consequently, at the beginning of 2012, a snapshot version of lme4 has been made
available to the R users under the name of lme4.0. As we anticipate that lme4.0 will
not undergo any major changes, we decided to present it in more detail in our book.
We would like to underscore, however, that the major part of the syntax, presented
in the book, will be applicable both to lme4 and lme4.0.

All classes of linear models presented in the book are illustrated using data from a
particular dataset. In this way, the differences between the various classes of models,
as well as differences in the R software, can be clearly delineated. LMMs, which are
the main focus of the book, are also illustrated using three additional datasets, which
extend the presentation of various aspects of the models and R functions. We have
decided to include the direct output of R commands in the text. In this way, readers
who would like to repeat the analyses conducted in the book can directly check their
own output. However, in order to avoid the risk of incompatibility with updated
versions of the software, the results of the analyses have also been summarized in
the form of edited tables.

To further support those readers who are interested in actively using the material
presented in the book, we have developed the package nlmeU. It contains all the
datasets and R code used in the book. The package is downloadable at http://
www-personal.umich.edu/~agalecki/.

We hope that our book, which aims to provide a state-of-the-art description of
the details of implementing of LMMs in R, will support a widespread use of the
models by applied researchers in a variety of fields including biostatistics, public
health, psychometrics, educational measurement, and sociology.

When working on the text, we received considerable assistance and valuable
comments from many people. We would like to acknowledge Geert Molenberghs
(Hasselt University and the Catholic University of Leuven), Geert Verbeke (Catholic
University of Leuven), José Pinheiro (Novartis AG), Paul Murrell (Auckland
University), Przemysław Biecek (Warsaw University), Fabian Scheipl (Ludwig
Maximilian University of Munich), Joshua Wiley (University of California, Los

Preface ix

Angeles), Tim Harrold (NSW Ministry of Health), Jeffrey Halter (University of
Michigan), Shu Chen (University of Michigan), Marta Gałecka (Weill Cornell
Medical College), anonymous reviewers and members of the R-sig-ME discussion
group led by Douglas Bates (University of Wisconsin-Madison), and Ben Bolker
(McMaster University) for their comments and discussions at various stages during
the preparation of the book. We also acknowledge a formidable effort on the part of
the developers of the nlme and lme4 packages. Without them this book would not
have been written. In particular, Ben Bolker’s contribution was invaluable to ensure
that the majority of the lme4.0 syntax used in the text can also be used with the lme4
package. We are grateful to John Kimmel for encouraging us to consider writing the
book and to Marc Strauss, Hannah Bracken, and Brian Halm from Springer for
their editorial assistance and patience. Finally, we gratefully acknowledge financial
support from the Claude Pepper Center grants AG08808 and AG024824 from the
National Institute of Aging and from the IAP Research Network P7/06 of the
Belgian Government (Belgian Science Policy).

Ann Arbor, MI, USA Andrzej Gałecki
Diepenbeek, Belgium, and Warszawa, Poland Tomasz Burzykowski

Contents

Part I Introduction

1 Introduction . 3
1.1 The Aim of the Book .. 3
1.2 Implementation of Linear Mixed-Effects Models in R 3
1.3 The Structure of the Book . 5
1.4 Technical Notes . 8

2 Case Studies . 11
2.1 Introduction .. 11
2.2 Age-Related Macular Degeneration Trial . 12

2.2.1 Raw Data . 13
2.2.2 Data for Analysis . 14

2.3 Progressive Resistance Training Study . 20
2.3.1 Raw Data . 20
2.3.2 Data for Analysis . 22

2.4 The Study of Instructional Improvement Project 24
2.4.1 Raw Data . 24
2.4.2 Data for Analysis . 26
2.4.3 Data Hierarchy . 28

2.5 The Flemish Community Attainment-Targets Study 31
2.5.1 Raw Data . 32
2.5.2 Data for Analysis . 34

2.6 Chapter Summary . 34

3 Data Exploration . 39
3.1 Introduction .. 39
3.2 ARMD Trial: Visual Acuity . 39

3.2.1 Patterns of Missing Data . 41
3.2.2 Mean-Value Profiles . 42
3.2.3 Sample Variances and Correlations of Visual

Acuity Measurements . 45

xi

xii Contents

3.3 PRT Study: Muscle Fiber Specific Force . 48
3.4 SII Project: Gain in the Math Achievement Score 53

3.4.1 School-Level Data . 55
3.4.2 Class-Level Data . 58
3.4.3 Pupil-Level Data . 60

3.5 FCAT Study: Target Score . 63
3.6 Chapter Summary . 64

Part II Linear Models for Independent Observations

4 Linear Models with Homogeneous Variance . 69
4.1 Introduction . 69
4.2 Model Specification . 70

4.2.1 Model Equation at the Level of the Observation 70
4.2.2 Model Equation for All Data . 71

4.3 Offset . 71
4.4 Estimation . 72

4.4.1 Ordinary Least Squares . 72
4.4.2 Maximum-Likelihood Estimation . 73
4.4.3 Restricted Maximum-Likelihood Estimation 74
4.4.4 Uncertainty in Parameter Estimates . 75

4.5 Model Diagnostics . 75
4.5.1 Residuals . 76
4.5.2 Residual Diagnostics . 78
4.5.3 Influence Diagnostics . 80

4.6 Inference .. 81
4.6.1 The Wald, Likelihood Ratio, and Score Tests 81
4.6.2 Confidence Intervals for Parameters . 84

4.7 Model Reduction and Selection . 84
4.7.1 Model Reduction . 85
4.7.2 Model Selection Criteria . 86

4.8 Chapter Summary . 88

5 Fitting Linear Models with Homogeneous Variance:
The lm() and gls() Functions . 89
5.1 Introduction . 89
5.2 Specifying the Mean Structure Using a Model Formula 89

5.2.1 The Formula Syntax . 90
5.2.2 Representation of R Formula: The terms Class 94

5.3 From a Formula to the Design Matrix . 96
5.3.1 Creating a Model Frame. 96
5.3.2 Creating a Design Matrix . 102

5.4 Using the lm() and gls() Functions to Fit a Linear Model. 107
5.5 Extracting Information from a Model-Fit Object 108

Contents xiii

5.6 Tests of Linear Hypotheses for Fixed Effects . 109
5.7 Chapter Summary . 110

6 ARMD Trial: Linear Model with Homogeneous Variance 113
6.1 Introduction . 113
6.2 A Linear Model with Independent Residual Errors

with Homogeneous Variance . 113
6.3 Fitting a Linear Model Using the lm() Function 114
6.4 Fitting a Linear Model Using the gls() Function 119
6.5 Chapter Summary . 120

7 Linear Models with Heterogeneous Variance . 123
7.1 Introduction . 123
7.2 Model Specification . 124

7.2.1 Known Variance Weights . 124
7.2.2 Variance Function . 125

7.3 Details of the Model Specification . 127
7.3.1 Groups of Variance Functions . 127
7.3.2 Aliasing in Variance Parameters . 129

7.4 Estimation . 130
7.4.1 Weighted Least Squares . 130
7.4.2 Likelihood Optimization . 131
7.4.3 Constrained Versus Unconstrained

Parameterization of the Variance Parameters 135
7.4.4 Uncertainty in Parameter Estimation . 135

7.5 Model Diagnostics . 136
7.5.1 Pearson Residuals . 136
7.5.2 Influence Diagnostics . 137

7.6 Inference . 138
7.6.1 Tests of Statistical Significance . 138
7.6.2 Confidence Intervals for Parameters . 140

7.7 Model Reduction and Selection . 140
7.8 Mean-Variance Models . 141

7.8.1 Estimation . 141
7.8.2 Model Diagnostics and Inference . 145

7.9 Chapter Summary . 146

8 Fitting Linear Models with Heterogeneous Variance:
The gls() Function . 149
8.1 Introduction . 149
8.2 Variance-Function Representation: The varFunc Class 149

8.2.1 Variance-Function Constructors . 150
8.2.2 Initialization of Objects of Class varFunc 151

8.3 Inspecting and Modifying Objects of Class varFunc 152
8.4 Using the gls() Function to Fit Linear Models

with Heterogeneous Variance . 154

xiv Contents

8.5 Extracting Information From a Model-fit Object
of Class gls . 156

8.6 Chapter Summary . 158

9 ARMD Trial: Linear Model with Heterogeneous Variance 159
9.1 Introduction . 159
9.2 A Linear Model with Independent Residual Errors

and Heterogeneous Variance . 159
9.2.1 Fitting the Model Using the gls() Function 160

9.3 Linear Models with the varPower(·) Variance-Function 162
9.3.1 Fitting the Models Using the gls() Function 163
9.3.2 Model-Fit Evaluation . 168

9.4 Chapter Summary . 171

Part III Linear Fixed-Effects Models for Correlated Data

10 Linear Model with Fixed Effects and Correlated Errors 177
10.1 Introduction .. 177
10.2 Model Specification . 178
10.3 Details of Model Specification . 179

10.3.1 Variance Structure . 180
10.3.2 Correlation Structure . 181
10.3.3 Serial Correlation Structures . 182
10.3.4 Spatial Correlation Structures . 183

10.4 Estimation . 185
10.4.1 Weighted Least Squares . 185
10.4.2 Likelihood-Based Estimation . 186
10.4.3 Constrained Versus Unconstrained

Parameterization of the Variance-Covariance
Matrix . 188

10.4.4 Uncertainty in Parameter Estimation . 190
10.5 Model Diagnostics . 190

10.5.1 Residual Diagnostics . 191
10.5.2 Influence Diagnostics . 192

10.6 Inference and Model Selection . 192
10.7 Mean-Variance Models . 194
10.8 Chapter Summary . 196

11 Fitting Linear Models with Fixed Effects and Correlated Errors:
The gls() Function . 197
11.1 Introduction .. 197
11.2 Correlation-Structure Representation: The corStruct Class 197

11.2.1 Correlation-Structure Constructor Functions 198
11.3 Inspecting and Modifying Objects of Class corStruct 199

11.3.1 Coefficients of Correlation Structures . 199
11.3.2 Semivariogram .. 200
11.3.3 The corMatrix() Function . 202

Contents xv

11.4 Illustration of Correlation Structures . 202
11.4.1 Compound Symmetry: The corCompSymm

Class . 203
11.4.2 Autoregressive Structure of Order 1:

The corAR1 Class. 204
11.4.3 Exponential Structure: The corExp Class 206

11.5 Using the gls() Function . 209
11.6 Extracting Information from a Model-Fit Object

of Class gls . 210
11.7 Chapter Summary . 211

12 ARMD Trial: Modeling Correlated Errors for Visual Acuity 213
12.1 Introduction . 213
12.2 The Model with Heteroscedastic, Independent

Residual Errors Revisited . 213
12.2.1 Empirical Semivariogram . 214

12.3 A Linear Model with a Compound-Symmetry
Correlation Structure . 216
12.3.1 Model Specification . 216
12.3.2 Syntax and Results . 217

12.4 Heteroscedastic Autoregressive Residual Errors 220
12.4.1 Model Specification . 220
12.4.2 Syntax and Results . 221

12.5 General Correlation Matrix for Residual Errors 223
12.5.1 Model Specification . 223
12.5.2 Syntax and Results . 224

12.6 Model-Fit Diagnostics . 227
12.6.1 Scatterplots of Raw Residuals . 227
12.6.2 Scatterplots of Pearson Residuals . 229
12.6.3 Normalized Residuals . 232

12.7 Inference About the Mean Structure . 234
12.7.1 Models with the General Correlation Structure

and Power Variance Function . 236
12.7.2 Syntax and Results . 236

12.8 Chapter Summary . 238

Part IV Linear Mixed-Effects Models

13 Linear Mixed-Effects Model . 245
13.1 Introduction . 245
13.2 The Classical Linear Mixed-Effects Model . 246

13.2.1 Specification at a Level of a Grouping Factor 246
13.2.2 Specification for All Data . 248

13.3 The Extended Linear Mixed-Effects Model . 249

xvi Contents

13.4 Distributions Defined by the y and b Random Variables 250
13.4.1 Unconditional Distribution of Random Effects 250
13.4.2 Conditional Distribution of y Given the

Random Effects . 250
13.4.3 Additional Distributions Defined by y and b 252

13.5 Estimation . 254
13.5.1 The Marginal Model Implied by the Classical

Linear Mixed-Effects Model . 254
13.5.2 Maximum-Likelihood Estimation . 256
13.5.3 Penalized Least Squares . 257
13.5.4 Constrained Versus Unconstrained

Parameterization of the Variance-Covariance
Matrix . 261

13.5.5 Uncertainty in Parameter Estimation . 263
13.5.6 Alternative Estimation Approaches .. 264

13.6 Model Diagnostics . 264
13.6.1 Normality of Random Effects . 264
13.6.2 Residual Diagnostics . 265
13.6.3 Influence Diagnostics . 267

13.7 Inference and Model Selection . 267
13.7.1 Testing Hypotheses About the Fixed Effects 267
13.7.2 Testing Hypotheses About the Variance-

Covariance Parameters . 268
13.7.3 Confidence Intervals for Parameters . 269

13.8 Mean-Variance Models . 270
13.8.1 Single-Level Mean-Variance Linear

Mixed-Effects Models . 270
13.8.2 Multilevel Hierarchies . 272
13.8.3 Inference . 272

13.9 Chapter Summary . 273

14 Fitting Linear Mixed-Effects Models: The lme() Function 275
14.1 Introduction . 275
14.2 Representation of a Positive-Definite Matrix: The pdMat Class . . . 276

14.2.1 Constructor Functions for the pdMat Class 276
14.2.2 Inspecting and Modifying Objects of Class pdMat 279

14.3 Random-Effects Structure Representation:
The reStruct class . 283
14.3.1 Constructor Function for the reStruct Class 284
14.3.2 Inspecting and Modifying Objects of Class reStruct 286

14.4 The Random Part of the Model Representation:
The lmeStruct Class . 290

14.5 Using the Function lme() to Specify and Fit Linear
Mixed-Effects Models . 292

Contents xvii

14.6 Extracting Information from a Model-Fit Object
of Class lme . 293

14.7 Tests of Hypotheses About the Model Parameters 297
14.8 Chapter Summary . 300

15 Fitting Linear Mixed-Effects Models: The lmer() Function 303
15.1 Introduction .. 303
15.2 Specification of Models with Crossed and Nested

Random Effects . 304
15.2.1 A Hypothetical Experiment with the Effects

of Plates Nested Within Machines . 304
15.2.2 A Hypothetical Experiment with the Effects

of Plates Crossed with the Effects of Machines 305
15.2.3 General Case . 306

15.3 Using the Function lmer() to Specify and Fit Linear
Mixed-Effects Models . 308
15.3.1 The lmer() Formula . 308

15.4 Extracting Information from a Model-Fit Object
of Class mer . 312

15.5 Tests of Hypotheses About the Model Parameters 314
15.6 Illustration of Computations . 315
15.7 Chapter Summary . 325

16 ARMD Trial: Modeling Visual Acuity . 327
16.1 Introduction . 327
16.2 A Model with Random Intercepts and Homogeneous

Residual Variance . 327
16.2.1 Model Specification . 328
16.2.2 R Syntax and Results . 330

16.3 A Model with Random Intercepts and the varPower(·)
Residual Variance Function .. 334
16.3.1 Model Specification . 334
16.3.2 R Syntax and Results . 336
16.3.3 Diagnostic Plots . 339

16.4 Models with Random Intercepts and Slopes and the
varPower(·) Residual Variance-Function . 346
16.4.1 Model with a General Matrix D . 346
16.4.2 Model with a Diagonal Matrix D . 348
16.4.3 Model with a Diagonal Matrix D

and a Constant Treatment Effect . 353
16.5 An Alternative Residual Variance Function: varIdent(·) 356
16.6 Testing Hypotheses About Random Effects . 361

16.6.1 Test for Random Intercepts . 362
16.6.2 Test for Random Slopes . 364

xviii Contents

16.7 Analysis Using the Function lmer() . 367
16.7.1 Basic Results . 367
16.7.2 Simulation-Based p-Values:

The simulate.mer()Method . 372
16.7.3 Test for Random Intercepts . 376
16.7.4 Test for Random Slopes . 379

16.8 Chapter Summary . 380

17 PRT Trial: Modeling Muscle Fiber Specific-Force . 385
17.1 Introduction . 385
17.2 A Model with Occasion-Specific Random Intercepts

for Type-1 Fibers . 385
17.2.1 Model Specification . 386
17.2.2 R Syntax and Results . 388

17.3 A Mean-Variance Model with Occasion-Specific
Random Intercepts for Type-1 Fibers . 397
17.3.1 R Syntax and Results . 397

17.4 A Model with Heteroscedastic Fiber-Type×Occasion-
Specific Random Intercepts . 400
17.4.1 Model Specification . 400
17.4.2 R Syntax and Results . 402

17.5 A Model with Heteroscedastic Fiber-Type×Occasion-
Specific Random Intercepts (Alternative Specification) 411
17.5.1 Model Specification . 411
17.5.2 R Syntax and Results . 412

17.6 A Model with Heteroscedastic Fiber-Type×Occasion-
Specific Random Intercepts and a Structured
Matrix D . 415
17.6.1 Model Specification . 415
17.6.2 R Syntax and Results . 416

17.7 A Model with Homoscedastic Fiber-Type×Occasion-
Specific Random Intercepts and a Structured
Matrix D . 419
17.7.1 Model Specification . 419
17.7.2 R Syntax and Results . 420

17.8 A Joint Model for Two Dependent Variables . 422
17.8.1 Model Specification . 422
17.8.2 R Syntax and Results . 423

17.9 Chapter Summary . 429

18 SII Project: Modeling Gains in Mathematics Achievement-Scores . . 431
18.1 Introduction .. 431
18.2 A Model with Fixed Effects for School-

and Pupil-Specific Covariates and Random Intercepts
for Schools and Classes . 431
18.2.1 Model Specification . 432
18.2.2 R Syntax and Results . 433

Contents xix

18.3 A Model with an Interaction Between School-
and Pupil-Level Covariates . 438
18.3.1 Model Specification . 438
18.3.2 R Syntax and Results . 439

18.4 A Model with Fixed Effects of Pupil-Level
Covariates Only . 442
18.4.1 Model Specification . 442
18.4.2 R Syntax and Results . 442

18.5 A Model with a Third-Degree Polynomial
of a Pupil-Level Covariate in the Mean Structure 444
18.5.1 Model Specification . 444
18.5.2 R Syntax and Results . 444

18.6 A Model with a Spline of a Pupil-Level Covariate
in the Mean Structure . 448
18.6.1 Model Specification . 448
18.6.2 R Syntax and Results . 449

18.7 The Final Model with Only Pupil-Level Variables
in the Mean Structure . 450
18.7.1 Model Specification . 450
18.7.2 R Syntax and Results . 450

18.8 Analysis Using the Function lmer() . 457
18.9 Chapter Summary . 462

19 FCAT Study: Modeling Attainment-Target Scores . 465
19.1 Introduction .. 465
19.2 A Fixed-Effects Linear Model Fitted Using

the Function lm() . 465
19.2.1 Model Specification . 466
19.2.2 R Syntax and Results . 466

19.3 A Linear Mixed-Effects Model with Crossed Random
Effects Fitted Using the Function lmer() . 468
19.3.1 Model Specification . 469
19.3.2 R Syntax and Results . 469

19.4 A Linear Mixed-Effects Model with Crossed Random
Effects Fitted Using the Function lme() . 478

19.5 A Linear Mixed-Effects Model with Crossed Random
Effects and Heteroscedastic Residual Errors Fitted
Using lme() . 485
19.5.1 Model Specification . 485
19.5.2 R Syntax and Results . 486

19.6 Chapter Summary . 489

20 Extensions of the R Tools for Linear Mixed-Effects Models 491
20.1 Introduction . 491
20.2 The New pdMatClass: pdKronecker . 491

20.2.1 Creating Objects of Class pdKronecker 493

xx Contents

20.2.2 Extracting Information from Objects of Class
pdKronecker . 494

20.3 Influence Diagnostics . 497
20.3.1 Preparatory Steps . 497
20.3.2 Influence Diagnostics . 501

20.4 Simulation of the Dependent Variable . 509
20.5 Power Analysis . 511

20.5.1 Post Hoc Power Calculations . 512
20.5.2 A Priori Power Calculations

for a Hypothetical Study . 515
20.5.3 Power Evaluation Using Simulations . 521

Acronyms . 525

References . 527

Function Index . 531

Subject Index . 537

Part I
Introduction

Chapter 1
Introduction

1.1 The Aim of the Book

Linear mixed-effects models (LMMs) are an important class of statistical mod-
els that can be used to analyze correlated data. Such data include clustered
observations, repeated measurements, longitudinal measurements, multivariate
observations, etc.

The aim of our book is to help readers in fitting LMMs using R software. R
(www.r-project.org) is a language and an environment aimed at facilitating
implementation of statistical methodology and graphics. It is an open-source
software, which can be freely downloaded and used under the GNU General
Public License. In particular, users can define and share their own functions, which
implement various methods and extend the functionality of R. This feature makes R
a very useful platform for propagating the knowledge and use of statistical methods.

We believe that, by describing selected tools available in R for fitting LMMs,
we can promote the broader application of the models. To help readers less familiar
with this class of linear models (LMs), we include in our book a description of the
most important theoretical concepts and features of LMMs. Moreover, we present
examples of applications of the models to real-life datasets from various areas to
illustrate the main features of both theory and software.

1.2 Implementation of Linear Mixed-Effects Models in R

There are many packages in R, which contain functions that allow fitting var-
ious forms of LMMs. The list includes, but is not limited to, packages amer,
arm, gamm, gamm4, GLMMarp, glmmAK, glmmBUGS, heavy, HGLMMM,
lme4.0, lmec, lmm, longRPart, MASS, MCMCglmm, nlme, PSM, and pedi-
greemm. On the one hand, it would seem that the list is rich enough to allow for

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__1,
© Springer Science+Business Media New York 2013

3

({www.r-project.org})

4 1 Introduction

a widespread use of LMMs. On the other hand, the number of available packages
leads to difficulty in evaluating their relative merits and making the most suitable
choice.

It is virtually impossible to describe the contents of all of the packages mentioned
above. To facilitate and promote the use of LMMs in practice, it might be more
useful to provide details for a few of them, so that they could be used as a starting
point. Therefore, we decided to focus on the packages nlme and lme4.0, for several
reasons. First, they contain the functions lme() and lmer(), respectively, which
are specifically designed for fitting a broad range of LMMs. Second, they include
many tools useful for applications such as model diagnostics. Finally, many other
packages, which add new LMM classes or functionalities, depend on and are built
around nlme and/or lme4.0. Examples include, but are not limited to, packages
amer, gamm, gamm4, or RLRsim.

The reader may note that we focus more on the package nlme than on lme4.0.
The main reason is that the former has already been around for some time. Thus, its
code is stable. On the other hand, the package lme4.0 is a development version of
lme4 made available at the beginning of 2012. At that time lme4’s code underwent
major changes in terms of internal representation of the objects representing fitted
models. Hence, the developers of lme4 decided to make available the snapshot
version of lme4, under the name of lme4.0, containing the functionalities preceding
the changes. It is these dynamics of the development of the code of lme4 and lme4.0
which prompted us to focus more on nlme. However, it is expected that lme4.0
will not undergo any major modifications, either. Given that it offers interesting
tools for fitting LMMs, we decided to include a presentation of it in our book. The
presentation should also be of help for lme4 users. In particular, the major part of
the lme4.0 syntax used in the book should also be applicable to lme4.

An important feature that distinguishes R from many other existing statistical
software packages implementing LMMs is that it incorporates several concepts of
an object-oriented (O-O) programming, such as classes of objects and methods
operating on those classes. There are two O-O systems that have been implemented
in R, namely, S3 and S4. They incorporate the O-O concepts to a different degree,
with S3 being a less formal and S4 being a more stringent implementation. In both
systems, the O-O concepts are implemented by defining special type of functions
called generic functions. When such a function is applied to an object, it dispatches
an appropriate method based on object’s class. The system S3 has been used in the
package nlme, while S4 has been used in the package lme4.0.

The O-O programming approach is very attractive in the context of statistical
modeling because models can often be broken down into separable (autonomous)
components such as data, mean structure, variance function, etc. Moreover, com-
ponents defined for one type of model can also be used as building blocks for a
different type of model.

1.3 The Structure of the Book 5

1.3 The Structure of the Book

As it was mentioned in the previous section, an inherent feature of the O-O
programming approach is that concepts and methods used for simpler objects or
models are applicable to the more complex ones. For this reason, in our book
we opted for an incremental build-up of the knowledge about the implementation
of LMMs in the functions from packages nlme and lme4.0. In particular, in
the first step, we decided to introduce theoretical concepts and their practical
implementation in the R code in the context of simpler classes of LMs, like
the classical linear regression model. The concepts are then carried over to more
advanced classes of models, including LMMs. This step-by-step approach offers a
couple of advantages. First, we believe that it makes the exposition of the theory
and R tools for LMMs simpler and clearer. In particular, the presentation of the
key concepts in the context of a simpler model makes them easier to explain and
become familiar with. Second, the step-by-step approach is helpful in the use of
other R packages, which rely on classes of objects defined in the nlme and/or lme4.0
packages.

As a result of this conceptual approach, we divided our book into four parts.
Part I contains the introduction to the datasets used in the book. Parts II, III, and IV
focus on different classes of LMs of increasing complexity. The structure of the
three parts is, to a large extent, similar. First, a review of the main concepts and
theory of a particular class of models is presented. Special attention is paid to the
presentation of the link between similar concepts used for different classes. Then,
the details of how to implement the particular class of models in the packages nlme
and/or lme4.0 are described. The idea is to present the key concepts in the context
of simpler models, in order to enhance the understanding of them and facilitate their
use for the more complex models. Finally, in each part, the particular class of LMs
and the corresponding R tools are illustrated by analyzing real-life datasets.

In a bit more detail, the contents of the four parts are as follows:
Chapter 2 of Part I contains a description of four case studies, which are used

to illustrate various classes of LMs and of the corresponding R tools. Chapter 3
contains results of exploratory analyses of the datasets. The results are used in later
chapters to support model-based analyses. Note that one of the case studies, the
Age-Related Macular Degeneration (ARMD) clinical trial, is used repeatedly for
the illustration of all classes of LMs. We believe that in this way the differences
between the models concerning, e.g., the underlying assumptions, may become
easier to appreciate.

Part II focuses on LMs for independent observations. In Chap. 4, we recall the
main concepts of the theory of the classical LMs with homoscedastic residual errors.
Then, in Chap. 5, we present the tools available in R to fit such models. This allows
us to present the fundamental concepts used in R for statistical model building,
like model formula, model frame, etc. The concepts are briefly illustrated in Chap. 6
using the data from the ARMD trial.

6 1 Introduction

Subsequently, we turn our attention to models with heteroscedastic residual
errors. In Chap. 7, we review the basic elements of the theory. Chapter 8 presents
the function gls() from the package nlme, which can be used to fit the models.
In particular, the important concept of the variance function is introduced in the
chapter. The use of the function gls() is illustrated using data from the ARMD
trial in Chap. 9.

In Part III, we consider general LMs, i.e., LMs for correlated observations. In
Chap. 10, we recall the basic elements of the theory of the models. In particular, we
explain how the concepts used in the theory of the LMs with heteroscedastic residual
errors for independent observations, presented in Chap. 7, are extended to the case
of models for correlated observations. In Chap. 11, we describe additional features
of the function gls(), which allow its use for fitting general LMs. In particular,
we introduce the key concept of the correlation structure. The use of the function
gls() is illustrated in Chap. 12 using the data from the ARMD trial.

Finally, Part IV is devoted to LMMs. Chapter 13 reviews the fundamental
elements of the theory of LMMs. In the presentation, we demonstrate the links
between the concepts used in the theory of LMMs with those developed in the
theory of general LMs (Chap. 10). We believe that, by pointing to the links, the
exposition of the fundamentals of the LMM theory becomes more transparent and
easier to follow.

In Chap. 14, we describe the features of the function lme() from the package
nlme. This function is the primary tool in the package used to fit LMMs. In
particular, we describe in detail the representation of positive-definite matrices,
which are instrumental in the implementation of the routines that allow fitting
LMMs. Note that the concepts of the variance function and correlation structure,
introduced in Chaps. 8 and 11, respectively, are also important for the understanding
of the use of the function lme().

In Chap. 15, we present the capabilities of the function lmer() from the
package lme4.0. In many aspects, the function is used similarly to lme(), but
there are important differences, which we discuss. The basic capabilities of both
of the functions are illustrated by application of LMMs to the analysis of the
ARMD trial data in Chap. 16. More details on the use of the function lme() are
provided in Chaps. 17, 18, and 19, in which we apply LMMs to analyze the data
from the progressive resistance training (PRT) study, the study of instructional
improvement (SII), and the Flemish Community Attainment-Targets (FCAT) study,
respectively. Finally, in Chap. 20, we present somewhat more advanced material
on the additional R tools for LMMs, including the methods for power calculations,
influence diagnostics, and a new class of positive-definite matrices. The latter can be
used to construct LMMs with random effects having a variance–covariance matrix
defined as a Kronecker product of two or more matrices. Note that the newly defined
class is used in the analysis presented in Chap. 17.

Table 1.1 summarizes the successive classes of LMs, described in our book,
together with the concepts introduced in the context of the particular class. The
classes are identified by the assumptions made about the random part of the model.

Our book contains 67 figures, 46 tables, and 187 panels with R code.

1.3 The Structure of the Book 7

Table 1.1 Classes of linear models with the corresponding components (building
blocks) presented in the book. The R classes refer to the package nlme

Linear model Model component

Class (residual errors) Theory Syntax Name R class

Homoscedastic, indep. Ch. 4 Ch. 5 Data data.frame
Mean structure formula

Heteroscedastic, indep. Ch. 7 Ch. 8 Variance structure varFunc
Correlated Ch. 10 Ch. 11 Correlation structure corStruct
Mixed effects (LMM) Ch. 13 Ch. 14 Random-effects structure reStruct

Finally, we would like to outline the scope of the contents of the book:

• The book is aimed primarily at providing explanations and help with respect
to the tools available in R for fitting LMMs. Thus, we do not provide a
comprehensive account of the methodology of LMMs. Instead, we limit our-
selves to the main concepts and techniques, which have been implemented
in the functions lme() and lmer() from the packages nlme and lme4.0,
respectively, and which are important to the understanding of the use of the
functions. A detailed exposition of the methodology of LMMs can be found
in books by, e.g., Searle et al. (1992), Davidian and Giltinan (1995), Vonesh
and Chinchilli (1997), Pinheiro and Bates (2000), Verbeke and Molenberghs
(2000), Demidenko (2004), Fitzmaurice et al. (2004), or West et al. (2007).

• In our exposition of methodology, we focus on the likelihood-based estimation
methods, as they are primarily used in lme() and lmer(). Thus, we do not
discuss, e.g., Bayesian approaches to the estimation of LMMs.

• We describe the use of various functions, which are available in the packages
nlme and lme4.0, in sufficient detail. In our presentation, we focus on the main,
or most often used, arguments of the functions. For a detailed description of all
of the arguments, we refer the readers to R’s help system.

• It is worth keeping in mind that, in many instances, the same task can be
performed in R in several different ways. To some extent, the choice between
the different methods is a matter of individual preference. In our description
of the R code, we present methods, which we find to be the most useful. If
alternative solutions are possible, we may mention them, but we are not aiming
to be exhaustive.

• The analyses of the case studies aim principally at illustrating various linear
models and the possibility of fitting the models in R. While we try to conduct as
meaningful analyses as possible, they are not necessarily performed in the most
optimal way with respect to, e.g., the model-building strategy. Thus, their results
should not be treated as our contribution to the subject-matter discussion related
to the examples. However, whenever possible or useful, we make an attempt to
provide quantitative and/or qualitative interpretation of the results. We also try
to formulate practical recommendations or guidance regarding model-building
strategies, model diagnostics, etc. As mentioned earlier, however, the book is not
meant to serve as a complete monograph on statistical modeling. Thus, we limit
ourselves to providing recommendations or guidance for the topics which appear
to be of interest in the context of the analyzed case studies.

8 1 Introduction

1.4 Technical Notes

The book is aimed at helping readers in fitting LMMs in R. We do assume that
the reader has a basic knowledge of R. An introduction to R can be found in the
book by Dalgaard (2008). A more advanced exposition is presented by Venables
and Ripley (2010).

To allow readers to apply the R code presented in the book, we have created the
R package nlmeU. The package contains all the datasets and the code that we used
in the text. It also includes additional R functions, which we have developed.

We tried to use short lines of the R code to keep matters simple, transparent,
and easy to generalize. To facilitate locating the code, we placed it in panels. The
panels are numbered consecutively in each chapter and referred to, e.g., as R2.3,
where “2” gives the number of the chapter and “3” is the consecutive number of the
panel within the chapter. Each panel was given a caption explaining the contents.
In some cases, the contents of a panel were logically split into different subpanels.
The subpanels are then marked by consecutive letters and referred to by adding the
appropriate letter to panel’s number, e.g., R2.3a or R2.3b. Tables and figures are
numbered in a similar fashion.

Only in rare instances were a few lines of R code introduced directly into the
text. In all these cases (as in the examples given later in this section), the code was
written using the true type font and placed in separate lines marked with “>”,
mimicking R’s command-window style.

To limit the volume of the output presented in the panels, in some cases we
skipped a part of it. These interventions are indicated by the “. . . [snip]” string.
Also, long lines in the output were truncated and extra characters were replaced
with the “. . .” string.

The R functions are referred to in the text as function(), e.g., lme().
Functions’ arguments and objects are marked using the same font, e.g., argument
and object. For the R classes, we use italic, e.g., the lme class.

For the proper execution of the R code used in the book, the following packages
are required: lattice, lme4.0, nlme, Matrix, plyr, reshape, RLRsim, splines, and
WWGbook. Additionally, nlmeU is needed. Packages lattice, nlme, Matrix, and
splines come with basic distribution of R and do not need to be installed. The
remaining packages can be installed using the following code:

> pckgs <-

+ c("lme4.0", "nlmeU", "plyr", "reshape", "RLRsim", "WWGbook",

+ "ellipse")

> install.packages(pckgs)

1.4 Technical Notes 9

There are additional utility functions, namely, Sweave() (Leisch, 2002) and
xtable() in utils and xtable (Dahl, 2009) packages, respectively, which are not
needed to execute the code presented in the book, but which were extensively used
by us when preparing this manuscript.

It is worth noting that there are functions that bear the same name in the packages
nlme and lme4.0, but which have different definitions. To avoid unintentional
masking of the functions, the packages should not be attached simultaneously.
Instead, it is recommended to switch between the packages. For example, when
using nlme in a hypothetical R session, we attach the package by using the
library() or require() functions and execute statements as needed. Then,
before switching to lme4.0, it is mandatory to detach the nlme package by using
the detach() function. We also note that the conflicts() function, included for
illustration below, is very useful to identify names’ conflicts:

> library(nlme) # Attach package

> conflicts(detail = TRUE) # Identifies names' conflicts

... statements omitted

> detach(package:nlme) # Detach package

A similar approach should be applied when using the package lme4.0:

> library(lme4.0)

... statements omitted

> detach(package:lme4.0)

> detach(package:Matrix) # Recommended

Note that detaching Matrix is less critical, but recommended.
In the examples presented above, we refer to the packages nlme and lme4.0.

However, to avoid unintentional masking of objects, the same strategy may also be
necessary for other packages, which may cause function names’ conflicts.

When creating figures, we used "CMRoman" and "CMSans" Computer Modern
font families available in cmrutils package. These fonts are based on the CM-Super
and CMSYASE fonts (Murrell and Ripley, 2006). The full syntax needed to create
figures presented in the book is often extensive. In many cases, we decided to present
a shortened version of the code. A full version is available in the nlmeU package.

Finally, the R scripts in our book were executed by using R version 2.15.0

(2012-03-30) under the Windows 7 operating system. We used the following
global options:

> options(width = 65, digits = 5, show.signif.stars = FALSE)

Chapter 2
Case Studies

2.1 Introduction

In this chapter, we introduce the case studies that will be used to illustrate the models
and R code described in the book.

The case studies come from different application domains; however, they share a
few features. For instance, in all of them the study and/or sampling design generates
the observations that are grouped according to the levels of one or more grouping
factors. More specifically, the levels of grouping factors, i.e., subjects, schools,
etc., are assumed to be randomly selected from a population being studied. This
means that observations within a particular group are likely to be correlated. The
correlation should be taken into account in the analysis. Also, in each case there is
one (or more) continuous measurement, which is treated as the dependent variable
in the models considered in this book.

In particular, we consider the following datasets:

• Age-Related Macular Degeneration (ARMD) Trial: A clinical trial comparing
several doses of interferon-a and placebo in patients with ARMD. Visual acuity
of patients participating in the trial was measured at baseline and at four post-
randomization timepoints. The resulting data are an example of longitudinal data
with observations grouped by subjects. We describe the related datasets in more
detail in Sect. 2.2.

• Progressive Resistance Training (PRT) Trial: A clinical trial comparing low- and
high-intensity training for improving the muscle power in elderly people. For
each participant, characteristics of two types of muscle fibers were measured
at two occasions, pre- and post-training. The resulting data are an example of
clustered data, with observations grouped by subjects. We present more detailed
information about the dataset in Sect. 2.3.

• Study of Instructional Improvement (SII): An educational study aimed at as-
sessing improvement in mathematics grades of first-grade pupils, as compared
to their kindergarten achievements. It included pupils from randomly selected

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__2,
© Springer Science+Business Media New York 2013

11

12 2 Case Studies

classes in randomly selected elementary schools. The dataset is an example
of hierarchical data, with observations (pupils’ scores) grouped within classes,
which are themselves grouped in schools. We refer to Sect. 2.4 for more details
about the data.

• Flemish Community Attainment-Targets (FCAT) Study: An educational study,
in which elementary school graduates were evaluated with respect to reading
comprehension in Dutch. Pupils from randomly selected schools were assessed
for a set of nine attainment targets. The dataset is an example of grouped data,
for which the grouping factors are crossed. We describe the dataset in more detail
in Sect. 2.5.

The data from the ARMD study will be used throughout the book to illustrate
various classes of LMs and corresponding R tools. The remaining case studies will
be used in Part IV only, to illustrate R functions for fitting LMMs.

For each of the aforementioned case studies there is one or more datasets
included into the package nlmeU, which accompanies this book. In the next sections
of this chapter, we use the R syntax to describe the contents of these datasets. Results
of exploratory analyses of the case studies are presented in Chap. 3. Note that, unlike
in the other parts of the book, we are not discussing the code in much detail, as
the data-processing functionalities are not the main focus of our book. The readers
interested in the functionalities are referred to the monograph by Dalgaard (2008).

The R language is not particularly suited for data entry. Typically, researchers use
raw data created using other software. Data are then stored in external files, e.g., in
the .csv format, read into R, and prepared for the analysis. To emulate this situation,
we assume, for the purpose of this chapter, that the data are stored in a .csv-format
file in the “C:\temp” directory.

2.2 Age-Related Macular Degeneration Trial

The ARMD data arise from a randomized multi-center clinical trial comparing an
experimental treatment (interferon-a) versus placebo for patients diagnosed with
ARMD. The full results of this trial have been reported by Pharmacological Therapy
for Macular Degeneration Study Group (1997). We focus on the comparison
between placebo and the highest dose (6 million units daily) of interferon-a.

Patients with macular degeneration progressively lose vision. In the trial, vi-
sual acuity of each of 240 patients was assessed at baseline and at four post-
randomization timepoints, i.e., at 4, 12, 24, and 52 weeks. Visual acuity was
evaluated based on patient’s ability to read lines of letters on standardized vision
charts. The charts display lines of five letters of decreasing size, which the patient
must read from top (largest letters) to bottom (smallest letters). Each line with at
least four letters correctly read is called one “line of vision.” In our analyses, we
will focus on the visual acuity defined as the total number of letters correctly read.

2.2 Age-Related Macular Degeneration Trial 13

Another possible approach would be to consider visual acuity measured by the
number of lines correctly read. Note that the two approaches are closely linked,
as each line of vision contains five letters.

It follows that, for each of 240 patients, we have longitudinal data in the form
of up to five visual acuity measurements collected at different, but common to all
patients, timepoints. These data will be useful to illustrate the use of LMMs for
continuous, longitudinal data. We will also use them to present other classes of LMs
considered in our book.

2.2.1 Raw Data

We assume that the raw ARMD data are stored in the “C:\temp” directory in a .csv-
format file named armd240.data.csv. In what follows, we also assume that our
goal is to verify the contents of the data and prepare them for analysis in R.

In Panel R2.1, the data are loaded into R using the read.csv() function and
are stored in the data frame object armd240.data. Note that this data frame is not
included in the nlmeU package.

The number of rows (records) and columns (variables) in the object
armd240.data is obtained using the function dim(). The data frame contains 240
observations and 9 variables. The names of the variables are displayed using the
names() function. All the variables are of class integer. By applying the function
str(), we get a summary description of variables in the armd240.data data. In
particular, for each variable, we get its class and a listing of the first few values.

The variable subject contains patients’ identifiers. Treatment identifiers are
contained in the variable treat. Variables visual0, visual4, visual12, vi-
sual24, and visual52 store visual acuity measurements obtained at baseline and
week 4, 12, 24, and 52, respectively. Variables lesion and line0 contain additional
information, which will not be used for analysis in our book.

Finally, at the bottom of Panel R2.1, we list the first three rows of the data frame
armd240.data with the help of the head() function. To avoid splitting lines of
the output and to make the latter more transparent, we shorten variables’ names
using the abbreviate() function. After printing the contents of the first three rows
and before proceeding further, we reinstate the original names. Note that we apply a
similar sequence of R commands in many other R panels across the book to simplify
the displayed output.

Based on the output, we note that the data frame contains one record for each
patient. The record includes all information obtained for the patient. In particular,
each record contains five variables with visual acuity measurements, which are,
essentially, of the same format. This type of data storage, with one record per
subject, is called the “wide” format. An alternative is the “long” format with
multiple records per subject. We will discuss the formats in the next section.

14 2 Case Studies

R2.1 ARMD Trial: Loading raw data from a .csv-format file into the armd240.data
object and checking their contents

> dataDir <- file.path("C:", "temp") # Data directory

> fp <- # File path

+ file.path(dataDir, "armd240.data.csv")

> armd240.data <- # Read data

+ read.csv(fp, header = TRUE)

> dim(armd240.data) # No. of rows and cols

[1] 240 9

> (nms <- names(armd240.data)) # Variables' names

[1] "subject" "treat" "lesion" "line0" "visual0"

[6] "visual4" "visual12" "visual24" "visual52"

> unique(sapply(armd240.data, class)) # Variables' classes

[1] "integer"

> str(armd240.data) # Data structure

'data.frame': 240 obs. of 9 variables:

$ subject : int 1 2 3 4 5 6 7 8 9 10 ...

$ treat : int 2 2 1 1 2 2 1 1 2 1 ...

$ lesion : int 3 1 4 2 1 3 1 3 2 1 ...

$ line0 : int 12 13 8 13 14 12 13 8 12 10 ...

$ visual0 : int 59 65 40 67 70 59 64 39 59 49 ...

$ visual4 : int 55 70 40 64 NA 53 68 37 58 51 ...

$ visual12: int 45 65 37 64 NA 52 74 43 49 71 ...

$ visual24: int NA 65 17 64 NA 53 72 37 54 71 ...

$ visual52: int NA 55 NA 68 NA 42 65 37 58 NA ...

> names(armd240.data) <- abbreviate(nms) # Variables' names shortened

> head(armd240.data, 3) # First 3 records

sbjc tret lesn lin0 vsl0 vsl4 vs12 vs24 vs52

1 1 2 3 12 59 55 45 NA NA

2 2 2 1 13 65 70 65 65 55

3 3 1 4 8 40 40 37 17 NA

> names(armd240.data) <- nms # Variables' names reinstated

2.2.2 Data for Analysis

In this section, we describe auxiliary data frames, namely, armd.wide, armd0, and
armd, which were derived from armd240.data for the purpose of analyses of the
ARMD data that will be presented later in the book. The data frames are included
in the package nlmeU. In what follows, we present the structure, contents, and for
illustration purposes, how the data were created.

2.2 Age-Related Macular Degeneration Trial 15

2.2.2.1 Data in the “Wide” Format: The Data Frame armd.wide

Panel R2.2 presents the structure and the contents of the armd.wide data frame.
Note that the data are loaded into R using the data() function, without the

need for attaching the package nlmeU. The data frame contains 10 variables.
In particular, it includes variables visual0, visual4, visual12, visual24,
visual52, lesion, and line0, which are exactly the same as those in the
armd240.data. In contrast to the armd240.data data frame, it contains three
factors: subject, treat.f, and miss.pat. The first two contain patient’s identifier
and treatment. They are constructed from the corresponding numeric variables
available in armd240.data. The factor miss.pat is a new variable and contains
a missing-pattern identifier, i.e., a character string that indicates which of the four
post-randomization measurements of visual acuity are missing for a particular
patient. The missing values are marked by X. Thus, for instance, for the patient
with the subject identifier equal to 1, the pattern is equal to --XX, because there
is no information about visual acuity at weeks 24 and 52. On the other hand, for the
patient with the subject identifier equal to 6, there are no missing visual acuity

R2.2 ARMD Trial: The structure and contents of data frame armd.wide stored in
the “wide” format

> data(armd.wide, package = "nlmeU") # armd.wide loaded

> str(armd.wide) # Structure of data

'data.frame': 240 obs. of 10 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 2 3 4 5 6 ...

. . . [snip]
$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 1 2 1 9 1 1 1 ...

> head(armd.wide) # First few records

subject lesion line0 visual0 visual4 visual12 visual24

1 1 3 12 59 55 45 NA

. . . [snip]
6 6 3 12 59 53 52 53

visual52 treat.f miss.pat

1 NA Active --XX

. . . [snip]
6 42 Active ----

> (facs <- sapply(armd.wide, is.factor)) # Factors indicated

subject lesion line0 visual0 visual4 visual12 visual24

TRUE FALSE FALSE FALSE FALSE FALSE FALSE

visual52 treat.f miss.pat

FALSE TRUE TRUE

> names(facs[facs == TRUE]) # Factor names displayed

[1] "subject" "treat.f" "miss.pat"

16 2 Case Studies

measurements, and hence the value of the miss.pat factor is equal to ----. At the
bottom of Panel R2.2, we demonstrate how to extract the names of the factors from
a data frame.

Panel R2.3 presents the syntax used to create factors treat.f and miss.pat

in the armd.wide data frame. The former is constructed in Panel R2.3a from the
variable treat from the data frame armd240.data using the function factor().
The factor treat.f has two levels, Placebo and Active, which correspond to the
values of 1 and 2, respectively, of treat.

The factor miss.pat is constructed in Panel R2.3b with the help of the function
missPat() included in the nlmeU package. The function returns a character vector
of length equal to the number of rows of the matrix created by column-wise
concatenation of the vectors given as arguments to the function. The elements of the
resulting vector indicate the occurrence of missing values in the rows of the matrix.
In particular, the elements are character strings of the length equal to the number
of the columns (vectors). As shown in Panel R2.2, the strings contain characters
“-” and “X”, where the former indicates a nonmissing value in the corresponding
column of the matrix, while the latter indicates a missing value. Thus, application

R2.3 ARMD Trial: Construction of factors treat.f and miss.pat in the data frame
armd.wide. The data frame armd240.datawas created in Panel R2.1
(a) Factor treat.f

> attach(armd240.data) # Attach data

> treat.f <- # Factor created

+ factor(treat, labels = c("Placebo", "Active"))

> levels(treat.f) # (1) Placebo, (2) Active

[1] "Placebo" "Active"

> str(treat.f)

Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 1 2 1 ...

(b) Factor misspat

> miss.pat <- # Missing patterns

+ nlmeU:::missPat(visual4, visual12, visual24, visual52)

> length(miss.pat) # Vector length

[1] 240

> mode(miss.pat) # Vector mode

[1] "character"

> miss.pat # Vector contents

[1] "--XX" "----" "---X" "----" "XXXX" "----" "----" "----"

. . . [snip]
[233] "----" "----" "----" "----" "----" "----" "----" "----"

> detach(armd240.data) # Detach armd240.data

2.2 Age-Related Macular Degeneration Trial 17

of the function to variables visual4, visual12, visual24, and visual52 from
the data frame armd240.data results in a character vector of length 240 with
strings containing four characters as the elements. The elements of the resulting
miss.pat vector indicate that, for instance, for the first patient in the data frame
armd240.data visual acuity measurements at week 24 and 52 were missing, while
for the fifth patient, no visual acuity measurements were obtained at any post-
randomization visit.

Note that we used the nlmeU:::missPat() syntax, which allowed us to invoke
the missPat() function without attaching the nlmeU package.

2.2.2.2 Data in the “Long” Format: The Data Frame armd0

In addition to the armd.wide data stored in the “wide” format, we will need data
in the “longitudinal” (or “long”) format. In the latter format, for each patient, there
are multiple records containing visual acuity measurements for separate visits. An
example of data in “long” format is stored in the data frame armd0. It was obtained
from the armd.wide data using functions melt() and cast() from the package
reshape (Wickham, 2007).

Panel R2.4 presents the contents and structure of the data frame armd0. The
data frame includes eight variables and 1,107 records. The contents of variables
subject, treat.f, and miss.pat are the same as in armd.wide, while visual0
contains the value of the visual acuity measurement at baseline. Note that the values
of these four variables are repeated across the multiple records corresponding to a
particular patient. On the other hand, the records differ with respect to the values of
variables time.f, time, tp, and visual. The first three of those four variables are
different forms of an indicator of the visit time, while visual contains the value
of the visual acuity measurement at the particular visit. We note that having three
variables representing time visits is not mandatory, but we created them to simplify
the syntax used for analyses in later chapters.

The numerical variable time provides the actual week, at which a particular
visual acuity measurement was taken. The variable time.f is a corresponding
ordered factor, with levels Baseline, 4wks, 12wks, 24wks, and 52wks. Finally, tp
is a numerical variable, which indicates the position of the particular measurement
visit in the sequence of the five possible measurements. Thus, for instance, tp=0 for
the baseline measurement and tp=4 for the fourth post-randomization measurement
at week 52.

Interestingly enough, visual acuity measures taken at baseline are stored both in
visual0 and in selected rows of the visual variables. This structure will prove
useful when creating the armd data frame containing rows with post-randomization
visual acuity measures, while keeping baseline values.

The “long” format is preferable for storing longitudinal data over the “wide”
format. We note that storing of the visual acuity measurements in the data frame
armd.wide requires the use of six variables, i.e., subject and the five variables
containing the values of the measurements. On the other hand, storing the same

18 2 Case Studies

R2.4 ARMD Trial: The structure and contents of the data frame armd0 stored in the
“long” format

> data(armd0, package = "nlmeU") # From nlmeU package

> dim(armd0) # No. of rows and cols

[1] 1107 8

> head(armd0) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

1 1 Active 59 --XX Baseline 0 59 0

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

4 2 Active 65 ---- Baseline 0 65 0

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

> names(armd0) # Variables' names

[1] "subject" "treat.f" "visual0" "miss.pat" "time.f"

[6] "time" "visual" "tp"

> str(armd0) # Data structure

'data.frame': 1107 obs. of 8 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 1 1 2 2 2 ...

$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 2 2 2 2 2 ...

$ visual0 : int 59 59 59 65 65 65 65 65 40 40 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 4 4 1 1 1 1 1 ...

$ time.f : Ord.factor w/ 5 levels "Baseline"<"4wks"<..: 1 2 3 1 ...

$ time : num 0 4 12 0 4 12 24 52 0 4 ...

$ visual : int 59 55 45 65 70 65 65 55 40 40 ...

$ tp : num 0 1 2 0 1 2 3 4 0 1 ...

information in the data frame armd0 requires only three variables, i.e., subject,
time, and visual. Of course, this is achieved at the cost of including more rows in
the armd0 data frame, i.e., 1,107, as compared to 240 records in armd.wide.

We also note that variables, with values invariant within subjects, such as
treat.f, visual0, are referred to as time-fixed. In contrast, time, tp, and visual

are called time-varying. This distinction will have important implications for the
specification of the models and interpretation of the results.

2.2.2.3 Subsetting Data in the “Long” Format: The Data Frame armd

Data frame armd was also stored in a “long” format and was created from the
armd0 data frame by omitting records corresponding to the baseline visual acuity
measurements.

Panel R2.5 presents the syntax used to create the data frame armd. In particular,
the function subset() is used to remove the baseline measurements, by selecting

2.2 Age-Related Macular Degeneration Trial 19

R2.5 ARMD Trial: Creation of the data frame armd from armd0

> auxDt <- subset(armd0, time > 0) # Post-baseline measures

> dim(auxDt) # No. of rows & cols

[1] 867 8

> levels(auxDt$time.f) # Levels of treat.f

[1] "Baseline" "4wks" "12wks" "24wks" "52wks"

> armd <- droplevels(auxDt) # Drop unused levels

> levels(armd$time.f) # Baseline level dropped

[1] "4wks" "12wks" "24wks" "52wks"

> armd <- # Data modified

+ within(armd,

+ {

+ contrasts(time.f) <- # Contrasts assigned

+ contr.poly(4, scores = c(4, 12, 24, 52))

+ })

> head(armd) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

7 2 Active 65 ---- 24wks 24 65 3

8 2 Active 65 ---- 52wks 52 55 4

only the records, for which time>0, from the object armd0. By removing the base-
line measurements, we reduce the number of records from 1,107 (see Panel R2.4)
to 867.

While subsetting the data, care needs to be taken regarding the levels of the
time.f and, potentially, other factors. In the data frame armd0, the factor had
five levels. In Panel R2.5, we extract the factor time.f from the auxiliary data
frame auxDt. Note that, in the data frame, the level Baseline is not used in any
of the rows. For many functions in R it would not be a problem, but sometimes
the presence of an unused level in the definition of a factor may lead to unexpected
results. Therefore, it is prudent to drop the unused level from the definition of the
time.f factor, by applying the function droplevels(). It is worth noting that,
using the droplevels() function, the number of levels of the factors subject and
miss.pat is also affected (not shown).

After modifying the aforementioned factors, we store the resulting data in the
data frame armd. We also assign orthogonal polynomial contrasts to the factor
time.f using syntax of the form “contrasts(factor)<-contr.function”. We will
revisit the issue of assigning contrasts to a factor in Panel R5.9 (Sect. 5.3.2).

The display of the first six records of armd in Panel R2.5 confirms that the data do
not include the records corresponding to the baseline measurements of visual acuity.

20 2 Case Studies

Of course, the information about the values of the measurements is still available in
the variable visual0.

Both data frames armd0 and armd, introduced in this section, are stored in “long”
format. The armd0 will be primarily used for exploratory data analyses (Sect. 3.2).
On the other hand, armd will be the primary data frame used for the analyses
throughout the entire book.

2.3 Progressive Resistance Training Study

The PRT data originate from a randomized trial aimed for devising evidence-based
methods for improving and measuring the mobility and muscle power of elderly
men and women in the 70+ age category (Claflin et al., 2011). The working
hypothesis was that a 12-week program of PRT would increase: (a) the power output
of the overall musculature associated with movements of the ankles, knees, and
hips; (b) the cross-sectional area and the force and power of permeabilized single
fibers obtained from the vastus lateralis muscle; and (c) the ability of young and
elderly men and women to safely arrest standardized falls. The training consisted
of repeated leg extensions by shortening contractions of the leg extensor muscles
against a resistance that was increased as the subject trained using a specially
designed apparatus.

In the trial, healthy young (21–30 years) and older (65–80 years) male and female
subjects were randomized between a “high” and “low” intensity of a 12-week PRT
intervention. Randomization was stratified by age group (young or old) and sex. In
total, the dataset used in our book includes 63 subjects.

For each subject, multiple measurements characterizing two types of muscle
fibers were obtained before and after the 12-week PRT. The resulting data are thus an
example of clustered data. In particular, the measurements for a given characteristic
of muscle fibers for each subject correspond to a 2× 2 factorial design, with fiber
type (1, 2) and occasion (pre-training, post-training) as the two design factors, which
has important implications for the data analysis (Chap. 17).

2.3.1 Raw Data

We assume that subjects’ characteristics and experimental measurements
are contained in external files named prt.subjects.data.csv and
prt.fiber.data.csv, respectively.

In Panel R2.6, we present the syntax for loading and inspecting the two
datasets. As can be seen from the output presented in Panel R2.6a, the file
prt.subjects.data.csv contains information about 63 subjects, with one record
per subject. It includes one character variable and five numeric variables, three of
which are integer-valued. The variable id contains subjects’ identifiers, gender

34 2 Case Studies

2.5.2 Data for Analysis

In the analyses presented later in the book, we will be using the data frame fcat,
which is constructed based on the data frame crossreg.data. In Panel R2.16, we
present the syntax used to create the fcat data and to investigate data grouping
structure. First, in Panel R2.16a, we replace the variables id and target by
corresponding factors. For the factor target, the labels given in parentheses
indicate the number of items for a particular target.

In Panel R2.16b, we cross-tabulate the factors id and target and store the
resulting table in the object tab1. Given the large number of levels of the factor id,
it is difficult to verify the values of the counts for all cells of the table. By applying
the function all() to the result of the evaluation of expression tab1>0, we check
that all counts of the table are nonzero. On the other hand, with the help of the
range() function, we verify that all the counts are equal to 1. This indicates that,
in the data frame fcat, the levels of the factor target are crossed with the levels
of the factor id. Moreover, the data are balanced, in the sense that there is the same
number of observations, namely, one observation for each combination of the levels
of the two factors. Because all counts in the table are greater than zero, we can say
that the factors are fully crossed.

2.6 Chapter Summary

In this chapter, we introduced four case studies, which will be used for illustration
of LMs described in our book.

We started the presentation of each case study by describing study design and
considering that raw data are stored in a .csv file. We chose this approach in an
attempt to emulate a common situation of using external data files when analyzing
data using R. In the next step, we prepared the data for analysis by creating the
necessary variables and, in particular, factors. Including factors as part of data is a
feature fairly unique to R. It affects how a given variable is treated by graphical
and modeling functions. This approach is recommended, but not obligatory. In
particular, creating factors can be deferred to a later time, when, e.g., model formula
is specified. We will revisit this issue in Chap. 5.

The data frames, corresponding to the four case studies, are included in the
package nlmeU. As with other packages, the list of datasets available in the package
can be obtained by using the data(package = "nlmeU") command. For the
reader’s convenience, the datasets are summarized in Table 2.2. The table includes
the information about the R-session panels, which present the syntax used to create
the data frames, grouping factors, and number of rows and variables.

The four case studies introduced in this chapter are conducted by employing
different study designs. All of them lead to grouped data defined by one or more
nested or crossed grouping factors. The preferable way of storing this type of data

2.6 Chapter Summary 35

R2.16 FCAT Study: Construction and inspection of the contents of the data frame
fcat. The data frame crossreg.datawas created in Panel R2.14
(a) Construction of the data frame fcat

> nItms <- c(4, 6, 8, 5, 9, 6, 8, 6, 5) # See Table 2.1

> (lbls <- paste("T", 1:9, "(", nItms, ")", sep = ""))

[1] "T1(4)" "T2(6)" "T3(8)" "T4(5)" "T5(9)" "T6(6)" "T7(8)"

[8] "T8(6)" "T9(5)"

> fcat <-

+ within(crossreg.data,

+ {

+ id <- factor(id)

+ target <- factor(target, labels = lbls)

+ })

> str(fcat)

'data.frame': 4851 obs. of 3 variables:

$ target: Factor w/ 9 levels "T1(4)","T2(6)",..: 1 2 3 4 5 6 7 8 ...

$ id : Factor w/ 539 levels "1","2","3","4",..: 1 1 1 1 1 1 1 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...

(b) Investigation of the data grouping structure

> (tab1 <- xtabs(~ id + target, data = fcat)) # id by target table

target

id T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

. . . [snip]
539 1 1 1 1 1 1 1 1 1

> all(tab1 > 0) # All counts > 0?

[1] TRUE

> range(tab1) # Range of counts

[1] 1 1

is to use the “long” format with multiple records per subject. Although this term is
borrowed from the literature pertaining to longitudinal data, it is also used in the
context of other grouped data. Below, we describe the key features of the data in
each study.

In the ARMD trial, the armd.wide data frame stores data in the “wide” format.
Data frames armd and armd0 store data in the “long” format and reflect the
hierarchical data structure defined by a single grouping factor, namely, subject.
For this reason, and following the naming convention used in the nlme package, we
will refer to the data structure in our book as data with a single level of grouping.
Note that, more traditionally, these data are referred to as two-level data (West et al.,
2007).

36 2 Case Studies

Table 2.2 Data frames available in the nlmeU package

Study Data frame R-panel Grouping factors Rows × vars

ARMD Trial armd.wide R2.2 None 240×10
armd0 R2.4 subject 1,107 ×8
armd R2.5 subject 867×8

PRT Trial prt.subjects R2.7a None 63×5
prt.fiber R2.7b id 2,471 ×5
prt R2.8 id 2,471 ×9

SII Project SIIdata R2.10 classid nested ... 1,190 ×12
... in schoolid

FCAT Study fcat R2.16 id crossed ... 4,851 ×3
... with target

The hierarchical structure of data contained in the data frame SIIdata is defined
by two (nested) grouping factors, namely, schoolid and classid. Thus, in our
book, this data structure will be referred to as data with two levels of grouping.

This naming convention works well for hierarchical data, i.e., for data with nested
grouping factors. It is more problematic for structures with crossed factors. This is
the case for the FCAT study, in which the data structure is defined by two crossed
grouping factors, thus without a particular hierarchy.

As a result of data grouping, variables can be roughly divided into group-
and measurement-specific categories. In the context of longitudinal data they are
referred to as time-fixed and time-varying variables. The classification of the
variables has important implications for the model specification.

To our knowledge, the groupedData class, defined in the nlme package, appears
to be the only attempt to directly associate a hierarchical structure of the data
with objects of the data.frame class. We do not describe this class in more detail,
however, because it has some limitations. Also, its initial importance has diminished
substantially over time. In fact, the data hierarchy is most often reflected indirectly
by specifying the structure of the model fitted to the data. We will revisit this issue
in Parts III and IV of our book.

When introducing the SII case study, we noted that the nested data structure
can be specified by using two different approaches, namely, explicit and implicit
nesting, depending on the coding of the levels of grouping factors. The choice of the
approach is left to the researcher’s discretion. The issue has important implications
for the specification of LMMs, though, and it will be discussed in Chap. 15.

The different data structures of the cases studies presented in this chapter will
allow us to present various aspects of LMMs in Part IV of the book. Additionally,
the ARMD dataset will be used in the other parts to illustrate other classes of LMs
and related R tools.

The main focus of this chapter was on the presentation of the data frames related
to the case studies. In the presentation, we also introduced selected concepts related

2.6 Chapter Summary 37

to grouped data and R functions, which are useful for data transformation and
inspection of the contents of datasets. By necessity, our introduction was very
brief and fragmentary; a more in-depth discussion of those and other functions is
beyond the scope of our book. The interested readers are referred to, e.g., the book
by Dalgaard (2008) for a more thorough explanation of the subject.

Chapter 3
Data Exploration

3.1 Introduction

In this chapter, we present the results of exploratory analyses of the case studies
introduced in Chap. 2. The results will serve as a basis for building LMs for the data
in the following parts of the book.

While exploring the case-study data, we also illustrate the use of selected
functions and graphical tools which are commonly used to perform these tasks.
Note, however, that, unlike in the other parts of the book, we are not discussing the
functions and tools in much detail. The readers interested in the functionalities are
referred to the monograph by Venables and Ripley (2010).

3.2 ARMD Trial: Visual Acuity

In the ARMD data, we are mainly interested in the effect of treatment on the visual
acuity measurements. Thus, in Fig. 3.1, we first take a look at the measurements by
plotting them against time for several selected patients from both treatment groups.
More specifically, we selected every 10th patient from each group.

Based on the plots shown in Fig. 3.1, several observations can be made:

• In general, visual acuity tends to decrease in time. This is in agreement with the
remark made in Sect. 2.2 that patients with ARMD progressively lose vision.

• For some patients, a linear decrease of visual acuity over time can be observed,
but there are also patients for whom individual profiles strongly deviate from a
linear trend.

• Visual acuity measurements adjacent in time are fairly well correlated, with the
correlation decreasing with an increasing distance in time.

• Visual acuity at baseline seems to, at least partially, determine the overall level
of the post-randomization measurements.

• There are patients for whom several measurements are missing.

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__3,
© Springer Science+Business Media New York 2013

39

40 3 Data Exploration

Fig. 3.1 ARMD Trial: Visual-acuity profiles for selected patients (“spaghetti plot”)

These observations will be taken into account when constructing models for
the data.

R3.1 ARMD Trial: Syntax for the plot of visual acuity profiles for selected patients
in Fig. 3.1

> data(armd.wide, armd0, package = "nlmeU") # Data loaded

> library(lattice)

> armd0.subset <- # Subset

+ subset(armd0, as.numeric(subject) %in% seq(1, 240, 10))

> xy1 <- # Draft plot

+ xyplot(visual ~ jitter(time) | treat.f,

+ groups = subject,

+ data = armd0.subset,

+ type = "l", lty = 1)

> update(xy1, # Fig. 3.1

+ xlab = "Time (in weeks)",

+ ylab = "Visual acuity",

+ grid = "h")

> detach(package:lattice)

The syntax used to create Fig. 3.1 is shown in Panel R3.1. First, we load data to
be used for exploration from the nlmeU package. Note that the code used to create
figure employs the function xyplot() from the package lattice (Sarkar, 2008). The
function is applied to the subset of the data frame armd0 (Sect. 2.2.2). The formula
used in the syntax indicates that the variables visual and time are to be used on the

3.2 ARMD Trial: Visual Acuity 41

y- and x-axis, respectively. These variables are plotted against each other in separate
panels for different values of the treat.f factor. Within each panel, data points are
grouped for each subject and connected using solid lines. The function jitter()

is used to add a small amount of noise to the variable time, thereby reducing the
number of overlapping points.

In the next sections, we explore particular features of the ARMD data in more
detail.

3.2.1 Patterns of Missing Data

First, we check the number and patterns of missing visual acuity measurements.
Toward this end, we use the data frame armd.wide. As mentioned in Sect. 2.2.2,
the data frame contains the factor miss.pat that indicates which of the four
post-randomization measurements are missing for a particular patient. For example,
the pattern --X- indicates that the only missing measurement was at the third
post-randomization timepoint, i.e., at 24 weeks.

In Panel R3.2, we use three different methods to tabulate the number of patients
with different levels of the factor miss.pat. From the displayed results, we
can conclude that, for instance, there were 188 patients for whom all four post-
randomization visual acuity measurements were obtained. On the other hand, there
were six patients for whom the four measurements were missing.

R3.2 ARMD Trial: Inspecting missing-data patterns in the armd.wide data for the
post-randomization visual acuity measurements using three different methods

> table(armd.wide$miss.pat)

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

> with(armd.wide, table(miss.pat))

miss.pat

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

> xtabs(~miss.pat, armd.wide)

miss.pat

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

It is also worth noting that there are eight (= 4+ 1+ 2+ 1) patients with four
different nonmonotone missing-data patterns, i.e., with intermittent missing visual
acuity measurements. When modeling data with such patterns, extra care is needed
when specifying variance–covariance structures. We will come back to this issue in
Sect. 11.4.2.

42 3 Data Exploration

3.2.2 Mean-Value Profiles

In this section, we investigate the number of missing values and calculate the sample
means of visual acuity measurements for different visits and treatment groups.
Toward this end, in Panel R3.3, we use the “long”-format data frame armd0, which
was described in Sect. 2.2.2.

R3.3 ARMD Trial: Sample means and medians for visual acuity by time and
treatment
(a) Counts of nonmissing visual acuity measurements

> attach(armd0)

> flst <- list(time.f, treat.f) # "By" factors

> (tN <- # Counts

+ tapply(visual, flst,

+ FUN = function(x) length(x[!is.na(x)])))

Placebo Active

Baseline 119 121

4wks 117 114

12wks 117 110

24wks 112 102

52wks 105 90

(b) Sample means and medians of visual acuity measurements

> tMn <- tapply(visual, flst, FUN = mean) # Sample means

> tMd <- tapply(visual, flst, FUN = median) # Sample medians

> colnames(res <- cbind(tN, tMn, tMd)) # Column names

[1] "Placebo" "Active" "Placebo" "Active" "Placebo" "Active"

> nms1 <- rep(c("P", "A"), 3)

> nms2 <- rep(c("n", "Mean", "Mdn"), rep(2, 3))

> colnames(res) <- paste(nms1, nms2, sep = ":") # New column names

> res

P:n A:n P:Mean A:Mean P:Mdn A:Mdn

Baseline 119 121 55.336 54.579 56.0 57.0

4wks 117 114 53.966 50.912 54.0 52.0

12wks 117 110 52.872 48.673 53.0 49.5

24wks 112 102 49.330 45.461 50.5 45.0

52wks 105 90 44.438 39.100 44.0 37.0

> detach(armd0)

To calculate counts of missing values in Panel R3.3a, we use the function
tapply(). In general, this function is used to apply a selected function to each
(nonempty) group of values defined by a unique combination of the levels of one
or more factors. In our case, the selected function, specified in the FUN argument,

3.2 ARMD Trial: Visual Acuity 43

checks the length of the vector created by selecting nonmissing values from the
vector passed as an argument to the function. Using the tapply() function, we
apply it to the variable visual within the groups defined by combinations of the
levels of factors time.f and treat.f. As a result, we obtain a matrix with the
number of nonmissing visual acuity measurements for each visit and each treatment
group. We store the matrix in the object tN for further use. The display of the matrix
indicates that there were no missing measurements at baseline. On the other hand,
at week 4, for instance, there were two and seven missing measurements in the
placebo and active-treatment arms, respectively. In general, there are more missing
measurements in the active-treatment group.

In Panel R3.3b, we use the function tapply() twice to compute the sample
means and sample medians of visual acuity measurements for each combination of
the levels of factors time.f and treat.f. We store the results in matrices tMn and
tMd, respectively. We then create the matrix res by combining matrices tN, tMn,
and tMn by columns. Finally, to improve the legibility of displays, we modify the
names of the columns of res.

From the display of the matrix res, we conclude that, on average, there was very
little difference in visual acuity between the two treatment groups at baseline. This
is expected in a randomized study. During the course of the study, the mean visual
acuity decreased with time in both arms, which confirms the observation made based
on the individual profiles presented in Fig. 3.1. It is worth noting that the mean
value is consistently higher in the placebo group, which suggests lack of effect of
interferon-a.

Figure 3.2 presents box-and-whiskers plots of visual acuity for the five timepoints
and the two treatment arms. The syntax to create the figure is shown in Panel R3.4.
It uses the function bwplot() from the package lattice. Note that we first create
a draft of the plot, which we subsequently enhance by providing labels for the
horizontal axis. In contrast to Fig. 3.1, measurements for all subjects at all timepoints
are plotted. A disadvantage of the plot is that it does not reflect the longitudinal
structure of the data.

R3.4 ARMD Trial: Syntax for the box-and-whiskers plots in Fig. 3.2

> library(lattice)

> bw1 <- # Draft plot

+ bwplot(visual ~ time.f | treat.f,

+ data = armd0)

> xlims <- c("Base", "4\nwks", "12\nwks", "24\nwks", "52\nwks")

> update(bw1, xlim = xlims, pch = "|") # Final plot

> detach(package:lattice)

The box-and-whiskers plots illustrate the patterns implied by the sample means
and medians, presented in Panel R3.3b. The decrease of the mean values in time
is clearly seen for both treatment groups. It is more pronounced for the active-
treatment arm. As there was a slightly higher dropout in that arm, a possible

44 3 Data Exploration

Fig. 3.2 ARMD Trial: Box-and-whiskers plots for visual acuity by treatment and time

explanation could be that patients whose visual acuity improved dropped out of the
study. In such case, a faster progression of the disease in that treatment arm would
be observed.

To check this possibility, we take a look at Fig. 3.3. It shows the mean values of
visual acuity for patients with different monotone missing-data patterns. In addition,
the number of subjects for each pattern is also given. We note that the number of
subjects for the patterns with a larger number of missing values tends to be smaller.
Note that, to save space, we do not present the syntax used to create the figure, as it
is fairly complex.

The mean profiles, shown in Fig. 3.3, consistently decrease for the majority of
the patterns. In general, they do not suggest an improvement in visual acuity before
the drop off. Thus, they do not support the aforementioned explanation of a faster
decrease of the mean visual acuity in the active-treatment arm.

In Panel R3.5, we present the syntax to investigate the number and form of
monotone missing-data patterns for visual acuity. In particular, in Panel R3.5a,
we create the data frame armd.wide.mnt, which contains data only for patients
with monotone patterns. There are 232 such patients in total. Note that, despite
the fact that some patterns are not present in the data frame armd.wide.mnt,
they are still recognized as valid levels of the factor miss.pat. This might cause
problems when using some R functions. Similarly to Panel R2.5, we could use the
droplevels() function to remove the unused levels of the miss.pat variable.
Instead, in Panel R3.5b, we modify the levels of the factor miss.pat in the
armd.wide.mnt data with the help of the function factor(). Note that, instead
of using the levels argument of the function, we could have used the argument
exclude while indicating the levels to be excluded from the definition of the
miss.pat factor.

Finally, in Panel R3.5c, we use the function tapply() to obtain a matrix
containing the number of patients for each monotone missing-data pattern and for

3.2 ARMD Trial: Visual Acuity 45

Fig. 3.3 ARMD Trial: Mean visual acuity profiles by missing pattern and treatment (monotone
missing-data patterns only)

each treatment arm. The displayed results indicate that the mean-value profiles for
missing-data patterns with a larger number of missing values, shown in Fig. 3.3,
are based on measurements for a small number of patients. Thus, the variability of
these profiles is larger than for the patterns with a smaller number of missing values.
Therefore, Fig. 3.3 should be interpreted with caution.

3.2.3 Sample Variances and Correlations of Visual Acuity
Measurements

Figure 3.4 shows a scatterplot matrix for the visual acuity measurements for those
patients, for whom all post-randomization measurements are available. Scatterplots
for corresponding pairs of variables are given below the diagonal. The size of
the font for correlation coefficients reported above the diagonal is proportional
to its value. We do not present the syntax for constructing the figure, as it is
fairly complex. It can be observed that the measurements adjacent in time are
strongly correlated. The correlation decreases with an increasing time gap. Worth
noting is the fact that there is a substantial positive correlation between visual
acuity at baseline and at the other post-randomization measurements. Thus, baseline
values might be used to explain the overall variability of the post-randomization
observations. This agrees with the observation made based on Fig. 3.1. It is worth
noting that a scatterplot matrix of the type shown in Fig. 3.4 may not work well for
longitudinal data with irregular time intervals.

46 3 Data Exploration

R3.5 ARMD Trial: The number of patients by treatment and missing-data pattern
(monotone patterns only)
(a) Subset of the data with monotone missing-data patterns

> mnt.pat<- # Monotone patterns

+ c("----", "---X", "--XX", "-XXX", "XXXX")

> armd.wide.mnt <- # Data subset

+ subset(armd.wide, miss.pat %in% mnt.pat)

> dim(armd.wide.mnt) # Number of rows and cols

[1] 232 10

> levels(armd.wide.mnt$miss.pat) # Some levels not needed

[1] "----" "---X" "--X-" "--XX" "-XX-" "-XXX" "X---" "X-XX"

[9] "XXXX"

(b) Removing unused levels from the miss.pat factor

> armd.wide.mnt1 <-

+ within(armd.wide.mnt,

+ {

+ miss.pat <- factor(miss.pat, levels=mnt.pat)

+ })

> levels(armd.wide.mnt1$miss.pat)

[1] "----" "---X" "--XX" "-XXX" "XXXX"

(c) The number of patients with different monotone missing-data patterns

> with(armd.wide.mnt1,

+ {

+ fl <- list(treat.f, miss.pat) # List of "by" factors

+ tapply(subject, fl, FUN=function(x) length(x[!is.na(x)]))

+ })

---- ---X --XX -XXX XXXX

Placebo 102 9 3 1 1

Active 86 15 5 5 5

In Panel R3.6, we provide the estimates of the variance–covariance and cor-
relation matrices for visual acuity measurements. Toward this end, we create
the data frame visual.x from armd.wide by selecting only the five variables
containing the measurements. We then apply functions var() and cor() to
estimate the variance–covariance matrix and the correlation matrix, respectively.
Note that, for both functions, we specify the argument use = "complete.obs",
which selects only those rows of the data frame visual.x that do not con-
tain any missing values. In this way, the estimated matrices are assured to be

3.2 ARMD Trial: Visual Acuity 47

Fig. 3.4 ARMD Trial: Scatterplot matrix for visual acuity measurements. Scatterplots (below
diagonal) and correlation coefficients (above diagonal) for complete cases only (n = 188)

positive semidefinite. An alternative (not shown) would be to specify use =

"pairwise.complete.obs". In that case, the elements of the matrices would be
estimated using data for all patients with complete observations for the particular
pair of visual acuity measurements. This could result in estimates of variance–
covariance or correlation matrices, which might not be positive semidefinite.

The variance–covariance matrix for visual acuity measurements is stored in the
varx matrix. It indicates an increase of the variance of visual acuity measurements
obtained at later timepoints. The estimated correlation matrix suggests a moderate to
strong correlation of the measurements. We also observe that the correlation clearly
decreases with the time gap, as already concluded from Fig. 3.4.

At the bottom of Panel R3.6, we demonstrate how to extract the diagonal
elements of the matrix varx using the diag() function. We also present the use
of the function cov2cor() to compute a correlation matrix corresponding to the
variance–covariance. Note that we do not display the result of the use of the
function, as it is exactly the same as the one obtained for the function cor(), already
shown in Panel R3.6.

48 3 Data Exploration

R3.6 ARMD Trial: Variance–covariance and correlation matrices for visual acuity
measurements for complete cases only (n = 188)

> visual.x <- subset(armd.wide, select = c(visual0:visual52))

> (varx <- var(visual.x, use = "complete.obs")) # Var-cov mtx

visual0 visual4 visual12 visual24 visual52

visual0 220.31 206.71 196.24 193.31 152.71

visual4 206.71 246.22 224.79 221.27 179.23

visual12 196.24 224.79 286.21 257.77 222.68

visual24 193.31 221.27 257.77 334.45 285.23

visual52 152.71 179.23 222.68 285.23 347.43

> print(cor(visual.x, use = "complete.obs"), # Corr mtx

+ digits = 2)

visual0 visual4 visual12 visual24 visual52

visual0 1.00 0.89 0.78 0.71 0.55

visual4 0.89 1.00 0.85 0.77 0.61

visual12 0.78 0.85 1.00 0.83 0.71

visual24 0.71 0.77 0.83 1.00 0.84

visual52 0.55 0.61 0.71 0.84 1.00

> diag(varx) # Var-cov diagonal elements

visual0 visual4 visual12 visual24 visual52

220.31 246.22 286.21 334.45 347.43

> cov2cor(varx) # Corr mtx (alternative way)

. . . [snip]

3.3 PRT Study: Muscle Fiber Specific Force

In the PRT study, we are primarily interested in the effect of the intensity of the
training on the muscle fiber specific force, measurements of which are contained in
the variable spec.fo of the prt data frame (Sect. 2.3.2). In some analyses, we will
also investigate the effect on the measurements of the isometric force, which are
stored in the variable iso.fo.

First, however, we take a look at the information about subjects’ characteristics,
stored in the data frame prt.subjects (see Sect. 2.3.2). In Panel R3.7, we use
the function tapply() to obtain summary statistics for the variable bmi for
separate levels of the prt.f factor. The statistics are computed with the help of
the summary() function. The displayed values of the statistics do not indicate any
substantial differences in the distribution of BMI between subjects assigned to the
low- or high-intensity training. Given that the assignment was randomized, this
result is anticipated.

For illustration purposes, we also obtain summary statistics for all variables in
the prt.subjects data frame, except for id, with the help of the function by().
The function splits the data frame according to the levels of the factor prt.f and
applies the function summary() to the two data frames resulting from the split. As
a result, we obtain summary statistics for variables prt.f, age.f, sex.f, and bmi

64 3 Data Exploration

Fig. 3.11 Histograms of individual total scores for different attainment targets

3.6 Chapter Summary

In this chapter, we presented exploratory analyses of the four case studies introduced
in Chap. 2. The results of the analyses will be used in the next parts of our book to
build models for the case studies.

In parallel to the presentation of the results of the exploratory analyses, we intro-
duced a range of R tools, which are useful for such analyses. For instance, functions
cast() and melt() from the package reshape are very useful in transforming data
involving aggregated summaries. The importance of using graphical displays is also
worth highlighting. Toward this aim, the tools available in packages graphics (R
Development Core Team, 2010) and lattice (Sarkar, 2008) are very helpful. The
former package implements traditional graphical displays, whereas the latter offers
displays based on a grid-graphics system (Murrell, 2005).

3.6 Chapter Summary 65

Due to space limitations, our presentation of the tools was neither exhaustive
nor detailed. However, we hope that the syntax and its short description, which
were provided in the chapter, can help the reader in finding appropriate methods
applicable to the particular problem at hand.

Part IV
Linear Mixed-Effects Models

Chapter 13
Linear Mixed-Effects Model

13.1 Introduction

In Chap. 10, we presented models with fixed effects for correlated data. They are
examples of population-averaged models, because their mean-structure parameters
can be interpreted as effects of covariates on the mean value of the dependent
variable in the entire population. The association between the observations in a
dataset was a result of a grouping of the observations sharing the same level of a
grouping factor(s). An example of grouped data is longitudinal data, with multiple
measurements collected over time for an individual. This is an example of data with
a single level of grouping (Sect. 10.2): measurements are grouped at the level of an
individual. Such a hierarchy is present in the ARMD data (Sect. 2.2 and Chaps. 6, 9,
and 12), with multiple visual acuity measurements available for individual patients.
Another example of data with a single level of grouping is meta-analysis data, with
patients grouped within clinical trials.

An example of data with a multilevel hierarchy is student’s scores. Scores,
e.g., for the same course across several years, are grouped for a student, students
are grouped into classes, classes into schools, schools within districts, etc. Con-
sequently, the total variability of the scores can be seen as resulting from their
variability within students, between students, between classes within the same
school, between schools in the same district, etc. Such a structure is present in the
data for the Instructional Improvement Study, presented in Sect. 2.4.

Note that, because of grouping, a complex association structure of the observed
data can be anticipated. For instance, we can expect correlation not only between
the scores for an individual student, but also between scores from different students
from the same class or between scores for different students from the same school.
As argued in Part III of the book, the correlations should be taken into account in
the analysis of the data.

In this chapter, we consider the analysis of continuous, hierarchical data using
a different class of models, namely, LMMs. They allow taking into account the
correlation of observations contained in a dataset. Moreover, they allow us to

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__13,
© Springer Science+Business Media New York 2013

245

246 13 Linear Mixed-Effects Model

effectively partition overall variation of the dependent variable into components
corresponding to different levels of data hierarchy. The models are examples of
subject-specific models, because they include subject-specific coefficients.

In this chapter, we describe the specification of LMMs for hierarchical data.
We build upon the concepts introduced in Parts II and III of the book. We provide
only essential theoretical information, linked to the concepts and methods used in
R. For a more detailed exposition of the theory of LMMs, the reader is referred to
the monographs by, e.g., Searle et al. (1992), Davidian and Giltinan (1995), Vonesh
and Chinchilli (1997), Pinheiro and Bates (2000), Verbeke and Molenberghs (2000),
Demidenko (2004), Fitzmaurice et al. (2004), or West et al. (2007).

This chapter is structured as follows. In Sects. 13.2–13.4, we describe the formu-
lation of the model. Sections 13.5–13.7 are devoted to, respectively, the estimation
approaches, diagnostic tools, and inferential methods used for the LMMs, in which
the (conditional) residual variance-covariance matrix is independent of the mean
value. This is the most common type of LMMs used in practice. In Sect. 13.8, we
focus on the LMMs, in which the (conditional) residual variance-covariance matrix
depends of the mean value. Section 13.9 summarizes the contents of this chapter
and offers some general concluding comments.

In our presentation, we focus on the formulation and methods for LMMs
applicable to data with a single level of grouping, with N groups indexed by
i = 1, . . . , N, each containing ni observations. The extension of the formulation
to multilevel grouped data is presented at the end of Sect. 13.2 and in Sect. 13.8.

13.2 The Classical Linear Mixed-Effects Model

In this section, we describe specification of the classical LMMs in their general
form. Essentially, the formulation corresponds to the one proposed in the classical
paper by Laird and Ware (1982).

In particular, in Sect. 13.2.1, we provide model specification at a particular level
of grouping factor, while in Sect. 13.2.2 we describe a specification for all data.
Extension of the classical LMM is presented in Sect. 13.3. More detailed aspects of
the classical and extended model specification are discussed in Sect. 13.4.

13.2.1 Specification at a Level of a Grouping Factor

For hierarchical data with a single level of grouping, we can formulate the classical
LMM at a given level of a grouping factor as follows:

yi = Xib+Zibi + ei, (13.1)

13.2 The Classical Linear Mixed-Effects Model 247

where yi, Xi, b, and ei are the vector of continuous responses, the design matrix, and
the vector of residual errors for group i, specified in (10.2) and (10.3), respectively,
while Zi and bi are the matrix of covariates and the corresponding vector of random
effects:

Zi ≡

⎛

⎜

⎜

⎝

z(1)i1 z(2)i1 . . . z(q)i1
...

...
. . .

...

z(1)ini
z(2)ini

. . . z(q)ini

⎞

⎟

⎟

⎠

=
(

z(1)i z(2)i . . . z(q)i

)

, bi ≡

⎛

⎜

⎝

bi1
...

biq

⎞

⎟

⎠ . (13.2)

Similar to the design matrix Xi, the matrix Zi contains known values of q covariates,
with corresponding unobservable effects bi. Moreover,

bi ∼Nq(0,D), ei ∼Nni
(0,Ri), with bi ⊥ ei, (13.3)

i.e., the residual errors ei for the same group are independent of the random effects
bi. This particular assumption plays the key role in distinguishing a classical LMM
from an extended LMM. In addition, we assume that vectors of random effects
and residual errors for different groups are independent of each other, i.e., bi is
independent of ei′ for i �= i′.

We also specify that

D = s 2D and Ri = s 2Ri, (13.4)

where s 2 is an unknown scale parameter. In general, we will assume that D and Ri
are positive-definite, unless stated otherwise.

The representation (13.4), in its general form, is not unique. To make it
identifiable, similar to the case of the LM for correlated data (Sect. 10.3), we
will specify the structure of the matrix Ri in terms of a set of parameters for
a variance function and a correlation matrix (Sect. 13.4.2). The specification will
imply constraints on Ri making (13.4) identifiable.

In addition to the fixed-effects parameters b for the covariates used in con-
structing the design matrix Xi, model (13.1) includes two random components: the
within-group residual errors ei and the random effects bi for the covariates included
in the matrix Zi. The presence of fixed and random effects of known variables gives
rise to the name of the model.

In many cases, the (random) effects included in bi have corresponding (fixed)
effects, contained in b. Consequently, the matrix Zi is often created by selecting a
subset of appropriate columns of the matrix Xi. In such a situation, it is said that the
corresponding fixed and random effects are “coupled.”

Model (13.1)–(13.4) is commonly referred to as a two-stage model (Davidian
and Giltinan 1995) or two-level model (West et al. 2007). However, some authors,
e.g., Pinheiro and Bates (2000), call it a single-level LMM, because it applies to a
data hierarchy defined by a single level of grouping. In what follows, we will use
the latter terminology, as it is reflected in the nomenclature used in R.

248 13 Linear Mixed-Effects Model

The classical LMM, defined in (13.1)–(13.4), can be adapted to multilevel
grouped data. For instance, a model for data with two levels of grouping, with
observations grouped into N first-level groups (indexed by i = 1, . . . ,N), each with
ni second-level (sub-)groups (indexed by j = 1, . . . ,ni) containing nij observations,
can be written as

yij = Xijb+Z1,ijbi +Z2,ijbij + eij, (13.5)

with
bi ∼Nq1

(0,D1), bij ∼Nq2
(0,D2), and eij ∼Nnij

(0,Rij),

where the random vectors bi, bij, and eij are independent of each other. In
model (13.5), bi are the random effects associated with the first-level groups, while
bij are the random effects, independent of the first-level random effects, associated
with the second-level groups. Design matrices Z1,ij and Z2,ij can, but do not have to
be, identical. Following Pinheiro and Bates (2000), this model can be referred to as
a two-level LMM.

13.2.2 Specification for All Data

In this section, we briefly describe the specification of the single-level LMM, given
by (13.1)–(13.4), for all data. Generalization to multilevel LMMs is obvious, though
notationally more complex.

Let y≡ (y′1,y
′
2, . . . ,y

′
N)
′ be the vector containing all n = ∑N

i=1 ni observed values
of the dependent variable. Similarly, let b≡ (b′1,b

′
2, . . . ,b

′
N)
′ and e≡ (e′1,e

′
2, . . . ,e

′
N)
′

be the vectors containing all Nq random effects and n residual errors, respectively.
Define matrices

X ≡

⎡

⎢

⎢

⎢

⎣

X1

X2
...

XN

⎤

⎥

⎥

⎥

⎦

and Z≡

⎡

⎢

⎢

⎢

⎣

Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...
0 0 . . . ZN

⎤

⎥

⎥

⎥

⎦

, (13.6)

where 0 denotes a matrix with all elements equal to 0. Note that, to simplify notation,
we do not indicate the dimensions of the matrices, as they can be deduced from
(13.2). Overall, X is of dimension n× p, while Z is of dimension n×Nq.

Models (13.1)–(13.4) can then be written for all data as follows:

y = Xb+Zb+ e, (13.7)

with

b∼NNq(0,s
2D) and e∼Nn(0,s

2R), (13.8)

13.3 The Extended Linear Mixed-Effects Model 249

where

D≡ IN ⊗D =

⎡

⎢

⎢

⎢

⎣

D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

⎤

⎥

⎥

⎥

⎦

, R≡

⎡

⎢

⎢

⎢

⎣

R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RN

⎤

⎥

⎥

⎥

⎦

, (13.9)

with ⊗ denoting the (right) Kronecker product.
It is worth noting that the particular, block-diagonal form of matrices Z, D, and

R, given in (13.6), (13.8), and (13.9), respectively, results from the fact that the
single-level LMM, defined by (13.1)–(13.4), assumes a particular hierarchy of data
and random effects, as explicitly shown in (13.3). In particular, the model assumes
that random effects for different groups, defined by levels of a particular factor, are
independent. Informally, we can describe the hierarchy as generated by grouping
factors, with one being nested within the other.

It is possible, however, to formulate random-effects models by using
the representation (13.7) with non-block-diagonal matrices Z, D, and R. This is
the case, for instance, of models with crossed random effects. We will describe this
type of models in Chap. 15.

13.3 The Extended Linear Mixed-Effects Model

In some cases, the assumption that the residual errors ei are independent of the
random effects bi, as specified in (13.3), may be too restrictive. For instance,
as is done in the mean-variance models, we might postulate that the variance
of the residual errors depends on the subject-specific mean value. If we relax
the assumption, we obtain an extended LMM. The model is specified by using
(13.1)–(13.2) and replacing (13.3) by

bi ∼Nq(0,D), and ei | bi ∼Nni
(0,Ri), (13.10)

with D and Ri decomposed further as in (13.4). We will refer to the above
specification as a hierarchical specification.

Note that, if we assume that ei in (13.10) is independent of the random effects
bi, then we obtain the classical LMM, specified by (13.1)–(13.4). Thus, the
extended LMM allows for a more general modeling approach, as compared to the
classical LMM.

A hierarchical specification of a two-level, extended LMM, corresponding
to (13.5), would amount to assuming that

bi ∼Nq1
(0,D1), bij | bi ∼Nq2

(0,D2), and eij | bi,bij ∼Nnij
(0,Rij).

250 13 Linear Mixed-Effects Model

13.4 Distributions Defined by the y and b Random Variables

Both the classical (Sect. 13.2) and extended (Sect. 13.3) LMMs introduce two
continuous random variables b and y. They are described by two probability
density functions, which play essential role in defining LMMs. The first one is
an unconditional distribution of (unobserved) random effects b, defined by (13.8).
The second one is a conditional distribution of the (random) dependent variable
y, assuming that random effects are known. In the next two sections, we provide
a more detailed description of the two distributions, which completes the model
specification for the classical and extended LMMs. In Sect. 13.4.3, we will introduce
additional auxiliary distributions related to y and b random variables.

13.4.1 Unconditional Distribution of Random Effects

The unconditional distribution fb(bi) of the random effects bi, defined by (13.3), is
a multivariate normal distribution with zero mean and variance-covariance matrix
D. Taking into account (13.4), we write

D(s 2,qD) = s 2D(qD), (13.11)

where qD is a vector of parameters, which represent the (scaled by s 2) variances
and covariances of the elements of bi.

Note that, according to (13.11), the matrix D, used to define the variance-
covariance matrix of random effects bi, is parameterized using a vector of parameters
qD. In many cases, it is assumed that any two elements of the vector bi can be
correlated and there are no restrictions imposed on the matrix D, except that it is
positive-definite and symmetric. In this case, D has a general structure of a positive-
definite matrix, with q(q+ 1)/2 distinct elements corresponding to q variances and
q(q− 1)/2 covariances of the random effects included in bi. Consequently, qD
contains q(q+ 1)/2 distinct parameters. Although q is typically small, estimating
all of the parameters may be difficult if, e.g., the sample size n is limited. In such
a situation, a simplified structure of the matrix D can be chosen. For instance, a
diagonal form can be assumed, which is equivalent to assuming that all elements of
the vector bi are independent. Plausibility of the assumption will depend on the data
at hand. In this case, qD contains only q distinct parameters.

13.4.2 Conditional Distribution of y Given the Random Effects

Note that, from (13.1) to (13.4), it follows that, for the classical LMMs, the
conditional distribution, fy|b(yi|bi), of yi given bi is multivariate normal, with the
mean and variance defined as:

13.4 Distributions Defined by the y and b Random Variables 251

E(yi|bi) ≡ mi = Xib+Zibi (13.12)

Var(yi|bi) = s 2Ri, (13.13)

with mi ≡ (mi1, . . . ,mi,ni
)′ and

E(yij|bi)≡ mij = x′ijb+ z′ijbi, (13.14)

where xij ≡ (x(1)ij , . . . ,x(p)ij)′ and zij ≡ (z(1)ij , . . . ,z(q)ij)′ are column vectors, which
contain the values of predictors X and Z for the j-th observation from the i-th
group. Thus, conditionally on the (unknown) values of the random effects bi, the
mean value of the dependent-variable vector yi is defined by a linear combination
of the vectors of the X- and Z-covariates included, as columns, in the group-specific
design matrices Xi and Zi, corresponding to the fixed effects b and random effects
bi, respectively. Moreover, the conditional variance-covariance matrix of yi is equal
to the variance-covariance matrix of the residual errors ei.

In their most general form, LMMs are not identifiable, because of the nonunique-
ness of the representation (13.4) and because they potentially contain too many
unknown parameters (see similar comments in Sects. 7.2 and 10.3). To make them
identifiable, similarly to the matrix D, we can consider representing elements of Ri
as functions of a limited set of parameters qR, distinct from qD.

For the matrix Ri, similarly to the approach described in Sect. 10.3 and
implemented in R, we could consider the decomposition, given by (10.10), and
combine it with the use of variance functions (Sects. 7.2.2 and 7.3.1) and correlation
structures (Sect. 10.3.2). Thus, Ri would become parsimoniously parameterized in
terms of a set of parameters of a variance function and a correlation structure. In
this way not only the number of parameters of the model would be reduced, but the
representation (13.4) would become identifiable.

To allow for the use of variance functions from the <δ, μ>- and <μ>-
groups (Sect. 7.3.1), we follow the hierarchical specification (13.10) and apply the
decomposition (10.11) to the conditional distribution of ei given bi. Consequently,
we can postulate that

Var(eij | bi) = s 2l2(mij,d;vij), (13.15)

with mij defined in (13.14). It follows that, upon combining the use of the variance
function with a correlation structure (Sect. 10.3), we can write that

Var(ei | bi) = s 2Ri(mi,qR;vi), (13.16)

with qR ≡ (d,%), where d is a vector of variance parameters employed by the
variance function l(·), % is a vector of parameters related to the chosen correlation
structure for the matrix Ri, and vi ≡ (v′i1, . . . ,v

′
i,ni

)′ is a vector of variance covariates
for the observations from the ith group.

252 13 Linear Mixed-Effects Model

Equations (13.15) and (13.16) imply that, for models with mean-dependent
variance functions from the <δ, μ>- and <μ>-groups (Sect. 7.3.1), ei depend on
bi through mi. This violates the assumption of the classical LMM and leads to the
extended LMM.

Extended LMMs, defined with the use of variance functions from the <δ, μ>-
and <μ>-groups, pose theoretical and computational difficulties. For this reason,
in the current chapter we will mainly focus on the classical LMMs, defined by
(13.1)–(13.4), i.e., for which the matrix Ri is specified with the use of a mean-
independent variance function. Models defined with the use of mean-dependent
variance functions, which we term mean-variance models (see also Sects. 7.8
and 10.7), will be treated separately in Sect. 13.8.

For the mean-independent functions, such as those from the <δ>-group (see
Table 7.2), the definition (13.16) can be simplified as follows:

Var(ei | bi) = Var(ei) = s 2Ri(qR;vi). (13.17)

Note that (13.17) is concordant with the assumption that the residual errors ei
are independent of the random effects bi. Consequently, the hierarchical model
specification with mean-independent variance functions leads to the classical LMM,
with Ri = s 2Ri(qR;vi). Essentially, this is the LMM formulation developed by
Laird and Ware (1982).

It is worth noting that the choice of the structure of matrices D and Ri or,
equivalently, D and Ri has consequences for the form of the marginal variance-
covariance matrix of vector yi, implied by model (13.1)–(13.4). This form will be
discussed in Sect. 13.5.1.

13.4.3 Additional Distributions Defined by y and b

In this section, we introduce additional auxiliary distributions related to LMMs.
They build on distributions defined in Sects. 13.4.1 and 13.4.2 and play important
role in the various aspects of model fitting and checking model assumptions.

13.4.3.1 Joint Distribution of y and b

The joint distribution fy,b(yi,bi) of y and b for the classical LMMs can be specified
by taking the product of the unconditional distribution of the random effects b and
the conditional distribution of y defined in Sects. 13.4.1 and 13.4.2:

fy,b(yi,bi) = fy|b(yi | bi)fb(bi).

Given that the component distributions, fb(b) and fy|b(y | b)fb(b), are multivariate
normal, the joint distribution is also normal. We refer to the joint distribution in
Sect. 13.5.3.

13.4 Distributions Defined by the y and b Random Variables 253

13.4.3.2 Marginal Distribution of y

The marginal distribution fy(yi) of yi is obtained by “integrating out” the random
effects bi from the joint distribution of yi and bi. More specifically, we calculate the
density of the marginal distribution of yi as

fy(yi) =

∫

fy,b(yi,bi) dbi =

∫

fy|b(yi | bi)fb(bi) db, (13.18)

where fy,b is the density of the joint distribution of yi and bi, fy|b is the conditional
distribution of yi given bi, and fb is the density of the unconditional distribution of bi.
Given that fy,b and fb are densities of multivariate normal distributions, the marginal
distribution of y is also multivariate normal and it can be derived analytically. In
fact, it is given in (13.26).

13.4.3.3 Posterior Distribution of b Given y Is Known

The distribution fb(bi) of random effects bi defined in (13.3) does not depend on the
observed values of yi. Therefore, in the Bayesian setting, it is referred to as prior

distribution of bi. Assuming that the observed values of yi are equal to y(obs)
i , the

so-called posterior distribution of bi conditional on y(obs)
i can be calculated using

the following general formula:

fb|y(bi|yi)≡ fb|y(bi|yi = y(obs)
i) =

fy|b(yi | bi)fb(bi)
∫

fy|b(yi | bi)fb(bi) db
. (13.19)

Assuming that the parameters b,q are known, the posterior distribution fb|y(bi|yi)
for the classical LMMs is multivariate normal. Based on the observed data, we often
estimate this distribution using its (posterior) mean:

̂bi(b,q)≡ ̂bi = DZ′iV
−1
i (y(obs)

i −Xib). (13.20)

Since the posterior mean is a linear function of yi, the variance-covariance matrix
of the ̂bi estimator is equal to

Var(̂bi) = s 2DZ′i

⎧

⎨

⎩

V−1
i −V−1

i Xi

(

N

∑
i=1

X′iV
−1
i Xi

)−1

X′iV
−1
i

⎫

⎬

⎭

ZiD. (13.21)

To make inference about random effects, we are often interested in assessing the
variability of the ̂bi−bi difference. The following formula can be used:

Var(̂bi−bi) =D−Var(̂bi). (13.22)

254 13 Linear Mixed-Effects Model

It follows from the formula that, for any linear combination of random effects
represented by the column vector l, the following inequality (see (7.7) in Verbeke
and Molenberghs 2000) holds:

Var(l′̂bi)≤ Var(l′bi) = l′Dl. (13.23)

This inequality is one of many ways which illustrate “shrinkage” of the random
effects toward the prior mean of bi, i.e., toward zero. We revisit this issue in
Sect. 13.6.1. On a side, we note that, for the LMM defined by (13.1)–(13.4), the
posterior mean (13.20) is also the mode of the density of the posterior distribution of
bi, given yi. In fact, the use of the mode to predict the random effects can be applied
to mixed-effects models in general, including GLMMs and NLMMs. However, for
mixed-effects models other than the LMMs (13.1)–(13.4), the mode does not have,
in general, to be equal to the posterior mean.

13.5 Estimation

In this section, we present methods to obtain a set of estimates of parameters b,
s 2, qD, and qR for the classical LMM, defined by (13.1)–(13.4). The case of the
extended, mean-variance model will be discussed separately in Sect. 13.8.

In Sect. 13.5.1, we present the marginal model, implied by the classical LMM.
The marginal model allows estimating the LMM using the methods presented
in Sect. 10.4 for the LM with fixed effects and correlated residual errors. In
Sect. 13.5.2, we briefly describe the necessary modifications of the methods. In
particular, we focus on the approaches that are implemented in R. Section 13.5.4
briefly discusses the issue of the parameterization of the classical LMM, while
in Sect. 13.5.5 we describe the methods to assess the uncertainty of the parameter
estimates. To complete the description of the estimation approaches, in Sect. 13.5.6,
we briefly discuss approaches alternative to those presented in Sect. 13.5.2.

13.5.1 The Marginal Model Implied by the Classical Linear
Mixed-Effects Model

For the classical LMM, Equations (13.12)–(13.13) and (13.17) imply that the
marginal mean and variance-covariance matrix of yi are given as follows:

E(yi) = Xib, (13.24)

Var(yi) ≡ Vi(s
2,q;vi)

= s 2Vi(q;vi) = s 2[ZiD(qD)Z
′
i +Ri(qR;vi)], (13.25)

13.5 Estimation 255

where q ′ ≡ (q ′D,q
′
R)
′. Note that, to simplify the notation, from now on, we will, in

general, suppress the use of q and vi in the formulae, in line with conventions used
in Parts II and III of the book.

From (13.24) and (13.25), it follows that, marginally,

yi ∼Nni
(Xib,s

2ZiDZ′i +s 2Ri). (13.26)

The marginal mean value of the dependent variable vector yi, similarly to the linear
model (10.1)–(10.5), is defined by a linear combination of the vectors of covariates
included, as columns, in the group-specific design matrix Xi, with parameters b.
Moreover, the variance-covariance matrix of yi consists of two components. The
first one, s 2ZiDZ′i, is contributed by the random effects bi. The second one, s 2Ri,
is related to the residual errors ei. Hence, strictly speaking, the model employing
random effects, specified in (13.1)–(13.4), implies a marginal normal distribution,
defined by (13.26), which is similar to distributions considered in Chap. 10 in the
context of LMs for correlated data, but with the variance-covariance matrix of yi of
a very specific parametric form, given by (13.25).

It is worth observing that the marginal model, defined by (13.24)–(13.26), does
not involve the random effects bi. Thus, the matrixD does not have to be treated as a
variance-covariance matrix. Consequently, it does not have to be positive-definite, as
long as the matrix Vi is positive-definite. The matrix D does need to be symmetric,
though, to assure that the matrix Vi is symmetric. It follows that, while every LMM
of the form, specified in (13.1)–(13.4), implies a marginal model, defined by (13.26),
not every model of the form (13.26) can be interpreted as resulting from an LMM.
Thus, the two models are not equivalent.

From the above it follows that LMs with fixed effects and correlated residual
errors, presented in Chap. 10, are less restrictive than LMMs. Thus, in this respect,
the former are more flexible than the latter. On the other hand, in general, LMs with
fixed effects and correlated residual errors do not allow making inference about the
variability that may be related to different levels of the data hierarchy.

It is worth noting that the effects of the covariates, included in the design
matrix Xi, are quantified by the same parameters b in both the conditional (13.12)
and unconditional (13.24) mean. Thus, although the parameters are defined in
the context of the subject-specific model (13.1), they can also be interpreted as
quantifying effects at the population level. This possibility of a dual interpretation
of fixed-effects b is a unique feature of the classical LMM, given by (13.1)–(13.4).
It does not hold, for instance, for GLMMs, not described in this book.

The fact that the classical LMM implies the marginal model (13.26) is also
important from a practical point of view. This is because it allows the construction
of effective estimation approaches for the LMM. This topic is discussed in the
next section.

256 13 Linear Mixed-Effects Model

13.5.2 Maximum-Likelihood Estimation

In general, the ML estimation involves constructing the likelihood function based
on appropriate probability distribution function for the observed data. The uncondi-
tional distribution of bi and the conditional distribution of yi given bi, which were
defined in Sect. 13.4 for the classical LMM, are not suitable for constructing the
likelihood function, because the random effects bi are not observed. For a similar
reason, the joint distribution of yi and bi cannot be used.

Instead, estimation of LMMs is based on the marginal distribution of yi.
In fact, it coincides with the distribution given in (13.26). For this reason, the

estimation of parameters of the classical LMM can be accomplished by using the
ML or REML estimation for the implied marginal model, along the lines similar to
those described in Sect. 10.4.2.

In particular, the ML estimation is based on the marginal log-likelihood resulting
from (13.26). Following (10.25), the log-likelihood can be expressed as follows:

�Full(b,s
2,q) ≡ −N

2
log(s 2)− 1

2

N

∑
i=1

log[det(Vi)]

− 1

2s 2

N

∑
i=1

(yi−Xib)
′V−1

i (yi−Xib), (13.27)

where Vi, defined in (13.25), depends on q.
Estimates of b, s 2, and q are usually obtained using a log-profile-likelihood for q

(see Sect. 10.4.2). The log-profile-likelihood results from plugging into (13.27) the
estimators of b and s 2, given by

̂b(q) ≡
(

N

∑
i=1

X′iV
−1
i Xi

)−1 N

∑
i=1

X′iV
−1
i yi, (13.28)

ŝ 2
ML(q) ≡

N

∑
i=1

r′iV
−1
i ri/n, (13.29)

where ri ≡ ri(q) = yi−Xi
̂b(q). Note that the expressions correspond to (10.26) and

(10.27), presented in Sect. 10.4.2. By maximizing the log-profile-likelihood function
over q, we obtain estimators of these parameters. Plugginĝq into (13.28) and (13.29)
yields the corresponding estimators of b and s 2, respectively.

As has been mentioned in Sects. 4.4.2, 7.4.2, and 10.4.2, the ML estimates of the
variance-covariance parameters are biased. For this reason, the parameters are better
estimated using the REML estimation. Toward this end, the log-restricted-likelihood
function, corresponding to (10.30), is considered. From this function, the parameter
s 2 is profiled out by replacing it by the following estimator, corresponding to
(10.31):

13.5 Estimation 257

ŝ 2
REML(q) ≡

N

∑
i=1

r′iV
−1
i ri/(n− p), (13.30)

with ri defined as in (13.29). This leads to a log-profile-restricted-likelihood
function, which only depends on q:

�∗REML(q) ≡ −
n− p

2
log

(

N

∑
i=1

r′iri

)

− 1
2

N

∑
i=1

log[det(Vi)]

−1
2

log

[

det

(

N

∑
i=1

X′iV
−1
i Xi

)]

. (13.31)

Maximization of (13.31) yields an estimator of q, which is then plugged into (13.28)
and (13.30) to provide estimators of b and s 2, respectively.

For the mean-variance model, i.e., when the conditional variance of random
errors is defined with the use of a variance function (13.15) that does depend on
mij (Sect. 7.3.1), the estimates of the parameters b, s 2, and q can be obtained using
GLS approaches similar to those described in Sects. 7.8.1.1 and 10.4.2. We discuss
these approaches in Sect. 13.8.

13.5.3 Penalized Least Squares

In this section, we outline a slightly different approach to the estimation of
parameters b, s 2, q for the classical LMM, defined by (13.1)–(13.4). Essentially,
the approach is based on the log-profile-restricted-likelihood for q, as defined in
Sect. 13.5.2. However, the numerical algorithm based on sparse matrices allows
for a numerically efficient implementation of this penalized least squares (PnLS)
approach. In our presentation we follow Bates (2012) who describes in detail a more
general version of this algorithm, namely, penalized weighted least squares (PWLS)
used in the context of GLMMs and NLMMs and implemented in the package
lme4.0. For the sake of future reference and simplicity, we briefly summarize the
methodology. We consider a single-level LMM, specified for all data (Sect. 13.2.2).
Moreover, we assume the conditional independence model and homogeneous
residual-error variance, i.e., R≡ In.

In the PnLS estimation approach, the starting point is the density of the joint
distribution of y and random effects b introduced in general terms in Sect. 13.4.3.
The logarithm of the density of the joint distribution of y and random effects b is
given by

hJoint(y,b;b,s 2,q) ≡ −n+Nq
2

log(s 2)− 1
2

log[det(D)]

− (y−Xb−Zb)′(y−Xb−Zb)+b′D−1b

2s 2 , (13.32)

258 13 Linear Mixed-Effects Model

where X and Z were defined in (13.7), while D was specified in (13.9). Note that,
given the assumption that R ≡ In, in (13.32) for the remainder of the section, we
have q≡ qD.

Upon applying the following form of the Cholesky representation:

D = TSST′, (13.33)

where T is a lower-triangular matrix with all diagonal elements equal to 1 and S is a
diagonal matrix with nonnegative diagonal elements, we can express b as follows:

b = TSu, with u∼NNq(0,s
2INq).

By allowing for zero elements on the diagonal matrix S used in (13.33), we consider
a general case with a potentially singular (positive semi-definite) matrix D.

It follows that, conditionally on u, y is normally distributed with

E(y | u) = Xb+ZTSu≡ Xb+A′u,

Var(y | u) = s 2In, (13.34)

while the marginal mean and variance of y can be expressed as

E(y) = Xb,

Var(y) = s 2(A′A+ In). (13.35)

Using the representation introduced above, (13.32) can be written as follows:

hPnLS(y,b;b,s 2,q) ≡ −n+Nq
2

log(s 2)

− (y−Xb−A′u)′(y−Xb−A′u)+u′u
2s 2

≡ −n+Nq
2

log(s 2)− d(b,q)
2s 2 . (13.36)

Note that term d(b,q) in (13.36) resembles a penalized sum of squares. In fact, it
can be seen as a residual sum of squares in a linear regression model

E

(

y
0

)

=

[

A′ X
INq 0

](

u
b

)

≡ X∗
(

u
b

)

.

The solution (ũ′,˜b
′
)′ for the linear regression problem satisfies

(X∗)′X∗
(

ũ
˜b

)

= (X∗)′
(

y
0

)

,

13.5 Estimation 259

which can be explicitly written as

[

AA′+ INq AX
X′A′ X′X

]

(

ũ
˜b

)

=

(

Ay
X′y

)

. (13.37)

It is worth noting that (13.37) corresponds to a general form of the LMM equations
considered by Henderson (1984), which allow for a singular estimate of D.

To reduce the storage space requirements and numerical complexity, it is
advantageous to introduce a sparse lower-triangular Cholesky decomposition matrix

L =

[

LZ 0
LZX LX

]

,

which satisfies

LL′ = P(X∗)′X∗P′, (13.38)

where the orthogonal matrix P is a “fill-reducing” permutation matrix, determined
from the pattern of nonzero elements in Z. The matrix reduces the number of
nonzero elements in L and hence has a large impact on the storage space required
for L. It is important to stress that, although this has not been explicitly indicated in
(13.38), L depends on q.

If we assume that the matrix P is of a block-diagonal form

P =

[

PZ 0
0 PX

]

,

then we get

[

P′ZLZ 0
P′XLZX P′XLX

][

L′ZPZ L′ZXPX

0 L′XPX

]

=

[

AA′+ INq AX
X′A′ X′X

]

. (13.39)

Consequently, we can rewrite (13.36) as follows:

hPnLS(y,b;b,s 2,q) = −n+Nq
2

log(s 2)−
˜d(q)
2s 2

− 1

2s 2

(

PZ(u− ũ)
PX(b−˜b)

)′
LL′

(

PZ(u− ũ)
PX(b−˜b)

)

, (13.40)

where ˜d(q) is the value of penalized sum of squares d(b,q), defined in (13.36),

computed at solution (ũ′,˜b
′
)′ of system of (13.37). Thus, ˜d(q) is the minimum value

of penalized sum of squares, assuming q is known.

260 13 Linear Mixed-Effects Model

The marginal log-likelihood, corresponding to (13.40), is given by

�ML(b,s
2,q) ≡ −n

2
log(s 2)− 1

2
log{[det(LZ)]

2]}−
˜d(q)
2s 2

− 1

2s 2

[

L′XPX(b−˜b)
]′

L′XPX(b−˜b). (13.41)

Essentially, it is a re-parameterized form of (13.27).
Given q, the resulting estimator of b is ˜b, defined in (13.37), while for s 2 the

estimator is given by

s̃ 2
ML ≡

˜d(q)
n

. (13.42)

By plugging ˜b and s̃ 2 into (13.41), we obtain the log-profile-likelihood for q:

�∗ML(q) ≡ −
1
2

log{[det(LZ)]
2}− n

2
log[˜d(q)]. (13.43)

The log-profile-likelihood is a re-parameterized version of the function obtained
from plugging the estimators (13.28) and (13.29) into (13.27) (see Sect. 13.5.2).

Maximization of (13.43) over q yields the ML estimator of the parameter vector.
The estimator is then used to obtain the ML estimators of s 2 and b from (13.42)
and (13.37), respectively. The estimators correspond to those given in (13.28) and
(13.29).

The REML estimator of q is obtained by maximizing the log-profile-restricted-
likelihood:

�∗REML(q) ≡ −
1
2

log{[det(LZ)det(LX)]
2}− n− p

2
log[˜d(q)]. (13.44)

The function is, essentially, a re-parameterized form of (13.31). The resulting
estimator is then used to obtain the estimator of s 2, which corresponds to the one
given in (13.30):

s̃ 2
REML ≡

˜d(q)
n− p

. (13.45)

An estimate of b is computed from (13.37).
As mentioned at the beginning of this section, the PnLS approach, described

above, has been implemented in the package lme4.0, a developmental branch
version of lme4. In the latter package, the implementation has been modified in
several ways (Bates et al. 2012). First, the decomposition (13.33) of the matrix D
has been replaced by the classical Cholesky decomposition D = QQ′. Additionally,
the lower-triangular matrix on the right-hand side of (13.39) has been assumed to
take the following form:

13.5 Estimation 261

[

P′ZTZ 0
T′ZX T′X

]

,

where matrices TZ (lower-triangular), PZ (permutation), TX , and TZX (upper-
triangular) are defined by the following relationships:

TZT′Z ≡ PZ(AA′+ INq)P
′
Z ,

TZTZX ≡ PZAX,

T′ZXTZX ≡ X′X−T′XTX ,

with A ≡ Q′Z′. By using the resulting decomposition, we obtain formulae for
the log-profile-likelihood and log-profile-restricted-likelihood similar to (13.43)
and (13.44), respectively, but with det(LZ) and det(LX) replaced, respectively, by
det(TZ) and det(TX). Moreover, Equation (13.37), defining the PnLS estimates ũ
and ˜b, can now be equivalently expressed as

TX
˜b = cb,

T′ZPZũ = cu−TZX
˜b,

where the vectors cb and cu are defined by

TZcu = PZAy,

T′Xcb = X′y−TZXcu.

13.5.4 Constrained Versus Unconstrained Parameterization
of the Variance-Covariance Matrix

Solving of maximization problems, necessary to obtain the estimators described
in Sects. 13.5.2 and 13.5.3, is difficult from a numerical point of view. This
is because the solution should lead to symmetric and positive-definite variance-
covariance matrices D and Ri, defined in (13.3). A possible solution is to
parameterize the matrices in such a way that the optimization problem becomes
unconstrained.

Toward this end, for matrix Ri, one can use representation (13.4) and
parameterize Ri by the parameterizations described in Sect. 10.4.3. For matrix D,
several solutions are possible (Pinheiro and Bates 1996).

For instance, we could consider parameterizing D in terms of variances and
correlations. By using the log-transformation for the variances and Fisher’s z-
transform, defined in (10.33), for correlations, we would obtain a set of uncon-
strained parameters. This parameterization would reflect the individual constraints,
i.e., that variances need to be positive and correlation coefficients are constrained

262 13 Linear Mixed-Effects Model

to lie within the [0,1] interval. However, in general, it would not reflect the joint
restriction, i.e., that the set of back-transformed parameters has to define a positive-
definite matrix. Thus, while this parameterization could be used for positive-definite
matrices of some particular structure like, e.g., the compound-symmetry structure,
i.e., with equal diagonal elements and equal off-diagonal elements (see Sect. 11.4.1),
it is not suitable for the numerical optimization purposes in general. However, it is
useful for the construction of confidence intervals for the elements of matrix D, as
it will be explained in Sect. 13.7.3.

An alternative, which addresses the issue, uses (13.4) and considers the
representation of D in terms of the elements of its Cholesky decomposition, i.e., in
terms of the elements of the upper-triangular matrix U, where D = U′U. The main
advantage of this approach is that it is computationally simple and stable. However,
one of its disadvantages is that the resulting parameterization is not unique. This
problem is removed by requiring that the diagonal elements of U are positive. In that
case, an unconstrained parameterization of D is obtained using the logarithms of
the diagonal elements of U together with the off-diagonal elements of U. Pinheiro
and Bates (1996) call this parameterization a “log-Cholesky parameterization”.
Another disadvantage of this approach, however, is that there is no straightforward
relationship between the elements of D and U, except for the fact that | U1,1 |=
√

D1,1. This latter relationship does allow deriving confidence intervals for the
diagonal elements of D, i.e., variances, but not for the off-diagonal elements, i.e.,
covariances.

Another approach to obtaining an unconstrained parameterization of D is to use
the matrix logarithm (Pinheiro and Bates (1996, 2000), pp. 78–79). In particular, D
is expressed using its singular value decomposition (SVD):

D = QTQ′, (13.46)

where T is a diagonal matrix with all diagonal elements positive, and Q is an
orthogonal matrix. Let us denote by log(T) a diagonal matrix with the diagonal
elements equal to the logarithms of diagonal elements of T. Next, define

D∗ ≡ Q log(T)Q′. (13.47)

The D∗ matrix is logarithm of D, i.e., D = exp(D∗), where

exp(D∗)≡
∞

∑
k=0

(D∗)k

k!
. (13.48)

The relationship D = exp(D∗) allows expressing the parameters qD (Sect. 13.4),
which define the matrix, as a function of the elements of the upper triangle of the
matrix D∗. The latter elements form a set of unconstrained parameters that can be
used for numerical optimization purposes. However, there is no straightforward rela-
tion between the elements of D and D∗. Thus, the matrix-logarithm parameterization
is not suitable for the construction of confidence intervals for the elements of D.

13.5 Estimation 263

In some situations, it may not be possible to find a solution of the optimization
problem that would lead to a positive-definite D. This may happen if, e.g., the
assumed form of the LMM, defined by (13.1)–(13.4), is not correct. In this case,
a possible alternative is to consider the implied marginal model (13.26). As was
mentioned in Sect. 13.5.1, in the marginal model, the important constraint is that the
marginal variance-covariance matrix Vi, given in (13.25), is positive-definite; the
positive-definiteness of D is not a necessary condition. Thus, in principle, one could
consider fitting the LMM with the only constraint that Vi is positive-definite. The re-
sulting solution, if feasible, may lead, however, to a non-positive-definite D, which
would violate the interpretation of the model as a hierarchical one (Sect. 13.5.1), but
would lead to a valid marginal model nevertheless. Such an option is not routinely
available in functions used for fitting LMMs in R.

13.5.5 Uncertainty in Parameter Estimation

Similar to the case of the LM for correlated data (Sect. 10.4.4), the variance-
covariance matrix of ̂b is estimated by

̂Var(̂b) ≡ ŝ 2

(

N

∑
i=1

X′îV
−1
i Xi

)−1

, (13.49)

where ŝ 2 and ̂Vi are estimated by one of the methods described in Sect. 13.5.2. Note

that, in the computation of ̂Var(̂b), given in (13.49), the extra variability resulting
from the use of the estimate ̂Vi is not accounted for. For this reason, the computed

variance underestimates the true variability of ̂b.
The variance-covariance matrix of ŝ 2 and ̂q can be estimated in various ways.

A possible solution, implemented in the lme() function of the nlme package in
R, is to use the inverse of the negative Hessian of the log-restricted-likelihood
(see (10.30) and Sect. 13.5.2), evaluated at the estimated values of s 2 and q.
An alternative is to consider the inverse of the negative Hessian of the log-profile-
likelihood, which results from replacing b in (13.27) with the estimator given by
(13.28). Obviously, the validity of these computations depends on the validity of the
likelihood functions, i.e., on the correct specification of the model.

It is worth mentioning that the variance-covariance matrix of ̂b can be expressed
in a form similar to (10.45), with Ri replaced by the model-based marginal
variance-covariance Vi, given in (13.25) (see, e.g., Equation (6.2) in Verbeke and
Molenberghs (2000)). Consequently, similarly to the situation described Sect. 10.7
for LMs for correlated data, if Vi �≡ Var(yi), i.e., if the LMM is not correctly spec-
ified, (13.49) will result in a biased (underestimated) assessment of the variability
of ̂b.

264 13 Linear Mixed-Effects Model

13.5.6 Alternative Estimation Approaches

Although the ML- and REML-based approaches, described in Sect. 13.5.2, are the
most popular estimation methods for LMMs, other approaches are also possible.
Among them one discerns, for instance, a Bayesian approach, a noniterative min-
imum variance quadratic unbiased estimation (MIVQUE), and the EM-algorithm.
Neither the Bayesian approach nor MIVQUE is implemented in the most popular
packages used to fit LMMs in R. The EM-algorithm is used in the function lme()

from the package nlme only to refine the initial values of the parameters qD in the
first iterations of the optimization routine. For these reasons, we will not provide a
more detailed description of these approaches here. The interested reader is referred
to the monographs by Davidian and Giltinan (1995), Gelman et al. (1995), or
Verbeke and Molenberghs (2000).

13.6 Model Diagnostics

In analogy with other types of LMs (see Sects. 4.5, 7.5, and 10.5), after fitting
an LMM, and before making any inferences based on it, it is important to
check whether the model assumptions are fulfilled. The two main distributional
assumptions pertain to the normality of the random effects bi and of the residual
errors ei. Evaluation of the influence of individual observations on the model fit
(Sect. 4.5.3) may also be of importance. These topics are discussed in this section.
Note that, as in Sect. 13.5, we focus on the classical LMM, defined by (13.1)–(13.4),
in which the matrix Ri is specified with the use of a variance function, which does
not depend on the mean values mij (Table 7.2).

13.6.1 Normality of Random Effects

In the LMM defined by (13.1)–(13.4), it is assumed that the random effects bi are
normally distributed with the mean zero and the variance-covariance matrix s 2D.
To check the assumption, some “estimates” of the random effects bi are needed.
Toward this end, usually the conditional expectations of the random effects, given
the observed responses of yi, are used:

̂bi ≡ ̂DZ′îV
−1
i (y(obs)

i −Xi
̂b). (13.50)

The conditional expectations are often called empirical Bayes (EB) estimates,
because they are obtained by using the estimated values of the fixed parameters b
and variance-covariance parameters q in (13.20). Note that, strictly speaking, the
random effects bi are not parameters, so that rather than estimating their values,

13.6 Model Diagnostics 265

we are predicting them. Following this convention, the conditional expectations
(13.50) might be called “predictors.” In fact, they are often referred to as best linear
unbiased predictors (BLUPs) or empirical BLUPs (EBLUPs). This term follows
from the fact that it can be shown that the conditional expectations are BLUPs of bi
in the sense that they are unbiased and have minimum variance among all unbiased
estimators, which are linear combinations of yi (see, e.g., Verbeke and Molenberghs
(2000, Sect. 7.4)). In what follows, we will be referring to the random-effects
predictors, given by (13.50), as EBLUPs.

Similarly to (13.23), shrinkage of EBLUPs can be illustrated by noting that the
following inequality,

var(l′̂bi)≤ l′ ̂Dl, (13.51)

is true for any linear transformation l. We refer to this inequality in Fig. 17.1 and
Panel R19.7.

It appears that using histograms or Q-Q plots of the predicted random errors
for the purpose of checking their normality is of limited value. That is because the
observed distribution of ̂bi does not necessarily reflect the true distribution of bi
(Verbeke and Molenberghs 2000, Sec.7.8.1). However, the plots of the conditional
modes can be used to detect, e.g., outlying values that might warrant further
inspection. Also, if the histogram is, e.g., bimodal, it may indicate that a covariate
has been omitted from the Zi matrix.

In practice, checking the normality assumption for bi should be based on the
comparison of the results obtained for a LMM with and without assuming the
normality (Verbeke and Molenberghs 2000, Sec.7.8.4). This requires software for
fitting LMMs with relaxed distributional assumptions about the random effects.
Such an approach will not be presented in our book.

It is worth noting, however, that if the inferential goal focuses on the marginal
model (13.26), and especially on the fixed effects b, valid inference can be obtained
even if the random effects do not follow a normal distribution (Verbeke and
Molenberghs 2000, Sec.7.8.4).

13.6.2 Residual Diagnostics

The main tools for checking the assumption of the normality of residual errors ei
are based on residuals. Note that, given the structure of the classical LMM, defined
in (13.1)–(13.4), various types of raw residuals can be defined.

One set is the conditional residuals, which follow from the conditional mean
representation (13.12), and are defined as

ê(c)i ≡ yi−Xi
̂b−Zi

̂bi, (13.52)

where the formula for ̂bi is given in (13.50).

266 13 Linear Mixed-Effects Model

Another set is the marginal residuals, resulting from the marginal mean repre-
sentation, given by (13.24). The marginal residuals are defined as

ê(m)i ≡ yi−Xi
̂b. (13.53)

The raw residuals are useful to check heterogeneity of the conditional or marginal
variance. They are less recommended, however, for checking normality assumptions
and/or detecting outlying observations. This is because, usually, raw residuals will
be correlated and their variances will differ. Therefore, studentized and Pearson
residuals are more often used (see Sects. 4.5.1 and 7.5). However, as in the case
of the LM for correlated data (see Sect. 10.5), even the scaled residuals are
not appropriate for, e.g., checking the normality of the residual errors. This is
because the model (13.1)–(13.4) allows for a correlation between the errors. An
approximate solution is to consider the transformation of the raw conditional or
marginal residuals, which were defined in (13.52) and (13.53), respectively, based
on the Cholesky decomposition of the (estimate of) residual variance-covariance
matrix s 2Ri or the marginal variance-covariance matrix s 2Vi, respectively (see
Sects. 4.5.1 and 10.5). That is, to define

ê∗(c)i ≡ (ŝ ̂U
′
(c)i)

−1ê(c)i, (13.54)

or

ê∗(m)i ≡ (ŝ ̂U
′
(m)i)

−1ê(m)i, (13.55)

where the upper-triangular matrices ̂U(c)i and ̂U(m)i are defined by ̂U
′
(c)i
̂U(c)i = ̂Ri

and ̂U
′
(m)i

̂U(m)i = ̂Vi, respectively. Then, ê∗(c)i (Pinheiro and Bates 2000, pp. 239)
and ê∗(m)i (Schabenberger 2004) should be approximately normally distributed with
mean zero and variance-covariance matrix equal to an identity matrix. Thus, e.g.,
the normal Q-Q plot of the residuals should show approximately a straight line.
Also, the scatterplot of the residuals against the estimated marginal mean values
can be used to detect patterns suggesting a possible problem in the specification of
the mean structure of the data or to check for outliers. Note that in R, in the nlme
package, the transformed conditional residuals (13.54) are available.

Santos Nobre and da Motta Singer (2007) argue that the marginal residuals are
pure, in the sense that the residuals are a function of only the marginal errors
e(m)i ≡ yi − Xib, which they are supposed to estimate. On the other hand, the
conditional residuals, which estimate the residual errors ei, are confounded with the
random effects bi, because the residuals are a function of bi and ei. For this reason,
they suggest that the conditional residuals may not be suitable for checking, e.g., the
normality of ei. In particular, Santos Nobre and da Motta Singer (2007) recommend
to use the plots of marginal residuals against covariates to check the linearity
assumption for the covariates. On the other hand, the plots of the conditional
residuals against the estimated conditional means m̂i can be used to detect outlying
observations or heteroscedasticity of the residual errors.

13.7 Inference and Model Selection 267

13.6.3 Influence Diagnostics

The basic tool to investigate the influence of a given observation on the estimates
of b, q, and s 2 is the likelihood displacement. It was introduced in the context of
the classical LM in Sect. 4.5.3. Recall that the likelihood displacement, LDi, as in
(4.27), is defined as the change between the maximum log-likelihood computed
when using all data and when excluding the i-th observation. For the LMM,
given by (13.1)–(13.4), the likelihood-displacement definition (4.27) is modified by
specifying ̂Θ≡ (̂b ′,̂q ′, ŝ 2

)′ and using the log-likelihood (13.27).

13.7 Inference and Model Selection

The inference for the classical LMM, specified by (13.1)–(13.4), focuses on
the fixed-effect parameters b and/or the variance-covariance parameters q. For these
models, as described in Sect. 13.5.2, the estimation of the parameters uses the
methods based on the marginal log-likelihood (13.27). Consequently, the inferential
tools are very similar to those used for the LMs for correlated data. Thus, in what
follows, we will frequently refer to the material contained in Sect. 10.6.

In Sect. 13.7.1, we describe statistical significance tests for the fixed effects,
while in Sect. 13.7.2 we discuss the tests for variance-covariance parameters.
Section 13.7.3 briefly discusses the construction of confidence intervals for the
parameters of the model (13.1)–(13.4).

13.7.1 Testing Hypotheses About the Fixed Effects

Hypotheses about the parameters b are tested using the same methods that are
applied for LMs for correlated data (see Sect. 10.6). In particular, linear hypotheses
may be tested using the F-test, given by (4.36). The issue related to the computation
of the degrees of freedom for the approximation of the distribution of the F-statistic
by a central F distribution applies here as well. In the package nlme, this issue is
ignored and the functions, available for fitting LMMs, and the null distribution of the
F-statistic is crudely approximated with rank(L) numerator and n− p denominator
degrees of freedom. In the package lme4.0, the issue is addressed using a Bayesian
approach (see, e.g., Davidian and Giltinan (1995), Sect. 3.2.3) and by applying
the Markov chain Monte Carlo (MCMC) technique to sample from the posterior
distribution of the parameters (Baayen et al. 2008).

An alternative is to use ML-based LR tests (Sect. 7.6.1). Pinheiro and Bates
(2000, Sect. 2.4.2) argue that the LR tests for hypotheses about b can be “anti-
conservative”, i.e., yield p-values smaller than those resulting from the postulated c2

distribution. For this reason they suggest to condition on the estimates of variance-
covariance parameters q and use the F-tests. Based on the example they provided,

268 13 Linear Mixed-Effects Model

it appears, though, that the problem is more pronounced in the case when several
fixed effects are tested at once and sample size is relatively small. Therefore, for
some models considered in Chap. 18, fitted to a large sample size data, we in fact
used the LR test to test the selected hypotheses about fixed effects.

Note that, instead of using a c2 distribution for an LR test, one could use an
empirical distribution of the test statistic, obtained by fitting the alternative and null
models to multiple datasets simulated under the null model (Pinheiro and Bates
2000, Sect. 2.4.1).

Finally, if the hypothesis about the parameters b cannot be expressed in a way
that it would lead to alternative and null models, we can apply information criteria,
like AIC or BIC (Sect. 4.7.2), to select the model that seems to best fit the data.
Of course, strictly speaking, this is not a formal statistical testing approach. In this
respect, it is also worth mentioning that the use of the log-restricted-likelihood-
based criteria for LMMs with different mean structures is generally not advocated
(see, e.g., Verbeke and Molenberghs (2000, Sect. 6.4)). For such cases, the use of
the ML-based criteria is recommended. However, Gurka (2006) provides empirical
arguments that this may not be necessarily a general recommendation. Thus, the
issue is still debatable.

13.7.2 Testing Hypotheses About the Variance-Covariance
Parameters

Similarly to the case of testing hypotheses about the parameters b (Sect. 13.7.1),
inference about q uses the methods, which are applied for LMs for correlated data
(Sect. 10.6). In particular, LR tests (Sect. 4.6.1) and information criteria (Sect. 4.7.2)
are used for this purpose. The comments related to the need of the use of the REML-
based tests apply to the LMMs as well. However, for the latter models, several
additional issues need to be mentioned.

One issue concerns the distribution of the LR tests for testing null hypotheses
about parameters qD, related to the matrix D. The distribution depends on the type
of the null hypothesis. In this respect, two cases can be considered. The first one
pertains to the situation when the values of the variance-covariance parameters,
compatible with the null hypothesis, do not lie on the boundary of the parameter
space. This is, e.g., the case when we test a hypothesis that a correlation coefficient
is equal to 0. In this case, the null distribution of the LR test is a c2 distribution
with the number of degrees of freedom equal to the difference in the number of
variance-covariance parameters between the null and alternative models.

The second case pertains to the situation when the values of the variance-
covariance parameters, compatible with the null hypothesis, do lie on the boundary
of the parameter space. In such situations, the null distribution of the LR test is
not a c2 distribution. In certain cases (see, e.g., Verbeke and Molenberghs 2000,
Sect. 6.3.4), it is possible to show that the null distribution is a mixture of several
c2 distributions. As an example, consider the case of the model (13.1)–(13.4) with

13.7 Inference and Model Selection 269

only the group-level random effects, i.e., random intercepts. In this case, the vectors
bi ≡ bi and qD ≡ qD are unidimensional (scalars), and D≡ qD. Now, let us consider
the null hypothesis, which specifies that no group-level random effects are needed.
We can express the null hypothesis as H0 : qD = 0. The alternative is that a random
effect is required, expressed as HA : qD > 0. Clearly, H0 specifies a value of the
variance parameter qD on the boundary of the parameter space, as variance cannot
be negative. In this case, the results developed by Self and Liang (1987), Stram and
Lee (1994), and Liang and Self (1996), suggested that the null distribution of the
LR test statistic is a 50:50 mixture of c2

0 and c2
1 distributions. However, Crainiceanu

and Ruppert (2004) show that the mixture is actually a conservative approximation
to the finite-sample distribution of the LR test, which they derive.

It is important to note that the issue of testing a hypothesis on the boundary of the
parameter space applies only when a fully hierarchical view of the classical LMM,
specified by (13.1), (13.2), (13.10), and (13.4), is taken. When a purely marginal
view, corresponding to (13.26), is adopted, the issue does not apply. Indeed, in the
latter case, as it was argued in Sect. 13.5.4, D does not have to be positive-definite,
as long as Vi, given in (13.25), is positive definite. This means that, in our example,
values of qd ≤ 0 are possible for the alternative hypothesis as well. More details on
this issue can be found in, e.g., Verbeke and Molenberghs (2003) and Molenberghs
and Verbeke (2007).

If the null distribution of the LR test cannot be derived analytically, a potential
solution is to use an empirical distribution obtained by fitting the alternative and
null model to multiple datasets, with the dependent variable simulated under the
null model.

Another issue is related to the approach based on the information criteria.
The approach is used when the hypothesis about q cannot be expressed in the
way that it would lead to alternative and null models. In this case, we can apply
information criteria, like AIC or BIC (Sect. 4.7.2), to select the model that seems to
best fit the data. Strictly speaking, this is not a formal statistical testing approach.
Also, recent work (Gurka 2006) suggests that none of the information criteria is
optimal to select LMMs, and that more work is still needed to understand the role
that information criteria play in the selection of LMMs.

Obviously, irrespectively of the approach selected, before conducting any
statistical significance tests, the fit of the chosen final model should be formally
checked using the residual diagnostic methods described in Sect. 13.6.

13.7.3 Confidence Intervals for Parameters

Confidence intervals for the individual components of the parameter vector b can
be constructed based on the t-distribution, used as an approximate distribution for
the t-test statistic (see Sects. 4.6.2, 10.6, and 13.7.1). On the other hand, confidence
intervals for the parameters qR, related to the matrix Ri, and for s can be obtained in
the same way as it was described for the case of LMs for correlated data (Sect. 10.6).

270 13 Linear Mixed-Effects Model

Confidence intervals for parameters describing the structure of the matrix D can
be obtained by considering a representation of the matrix in terms of variances
(or standard deviations) and correlations. As explained in Sect. 13.5.4, application
of the logarithmic transformation to the variances and Fisher’s z-transform to
the correlations yields a set of unconstrained parameters. After fitting an LMM,
confidence intervals for the transformed parameters can be constructed using
the normal approximation to the distribution of the ML or REML estimators
(Sect. 10.6). The confidence intervals can then be back-transformed (see (7.33)
in Sect. 7.6.2 and (10.41) in Sect. 10.6) to yield the corresponding intervals for
variances (or standard deviations) and correlations.

13.8 Mean-Variance Models

In this section, we discuss the estimation approaches and inferential issues related
to the use of the extended, mean-variance LMM.

As mentioned in Sect. 13.2, to define the model, we specify the conditional
variance of residual errors with the help of a mean-dependent variance function,
defined in (13.15), i.e., a function from the <δ, μ>- or <μ>-group of variance
functions (Sect. 7.3.1). The use of a mean-dependent variance function implies that,
in the hierarchical model, defined by (13.1), (13.2), (13.10), and (13.4), residual
errors and random effects for the same group are no longer independent. This
violates the assumption of the classical LMM (13.1)–(13.4) and raises theoretical
and computational issues. In this section, we describe the issues and possible
solutions.

In particular, in Sect. 13.8.1, we focus on the single-level mean-variance LMM.
Section 13.8.2 briefly describes the formulation of multilevel mean-variance LMMs.
In Sect. 13.8.3, issues related to the inference, model diagnostics, and other aspects
of the use of the mean-variance LMMs are summarized.

13.8.1 Single-Level Mean-Variance Linear Mixed-Effects
Models

In Sect. 13.4, we pointed out that the marginal distribution for the classical LMM
was a normal distribution of the form given in (13.26). Thus, the estimation of the
model could be based on the use of the likelihood functions derived from the normal
distribution (Sect. 13.5.2).

However, for the mean-variance LMM, defined by (13.1), (13.2), (13.10), (13.4),
and (13.15), the marginal distribution does not have a closed form expression. In
fact, it is not obvious that it is a normal distribution. Thus, the estimation approaches,
described in Sect. 13.5.2, cannot be applied.

13.8 Mean-Variance Models 271

To estimate mean-variance LMMs, we might use the fact that, following (13.10)
and (13.16),

Var(ei) = E
[

s 2Ri(mi,qR;vi)
]

, (13.56)

where the expected value is taken with respect to the distribution of the random
effects bi, indicated in (13.10). Thus, the unconditional variance (13.56) does not
depend on the random effects, which could, in principle, simplify the estimation
of the model. However, analytical computation of the unconditional variance is,
generally, not feasible, because the variance function (13.15) is usually nonlinear
in bi.

A computationally feasible alternative is to estimate (13.56) by plugging-
in suitable predictors of bi. Then, mean-variance LMMs can be estimated by
algorithms similar to those presented in Sects. 7.8.1 and 10.7.

In particular, consider an LMM, defined by (13.1), (13.2), (13.10), (13.4), and
(13.15), with a variance function from the <δ, μ>-group (see Table 7.3). Then,
the following algorithm, similar to the one described in Sects. 7.8.1 and 10.7, can
be used:

1. Assume an initial value ̂b
(0)

of b, ̂q
(0)

of q, ̂b
(0)
i of bi, and set the iteration counter

k = 0.
2. Increase k by 1.

3. Use ̂b
(k−1)

to compute m̂(k)
i and (re)define the matrix function V(k)

i (q).

Calculate m̂(k)
i ≡ xi

̂b
(k−1)

+ zi
̂b
(k−1)
i (see Sect. 13.6.1).

(Re)define the variance function l(k)(d; m̂(k)
ij)≡ l(m̂(k)

ij ,d).
(Re)define diagonal elements of matrix function L(k)(d; m̂(k)

i).

(Re)define the matrix function R(k)
i (qR) ≡ L(k)(d; m̂(k)

i)C(%)L(k)(d; m̂(k)
i), and

V(k)
i (q)≡ ZiD(qD)Z

′
i +R(k)

i (qR).

4. Keep ̂b
(k−1)

fixed and compute ̂q
(k)

.

While keeping the value ̂b
(k−1)

of b fixed and using the matrix functions

V(k)
i (q), compute an estimate ̂q

(k)
of q by maximizing an appropriate log-profile-

likelihood.
5. Keep ̂q

(k)
fixed. Compute b(k) and ̂b

(k)
i .

Based on the formula in step 3, compute the matrices V(k)
i (̂q

(k)
) and use them to

obtain estimates ̂b
(k)

of b from (13.28) and ̂b
(k)
i of bi from (13.50).

6. Iterate between steps 2 and 5 until convergence or until a predetermined number
of iterations k.

7. Compute the estimate of s 2 from (13.29) using the estimates of q and b.

An ML-based version of the algorithm is obtained by using, in step 4, the fixed

value ̂b
(k−1)

of b and the redefined form of the matrices V(k)
i (q) to express s 2 as in

(13.29). The resulting expression for s 2 is then plugged in (13.27), and the estimate
̂q
(k)

of q is computed by maximizing the so-obtained log-profile-likelihood.

272 13 Linear Mixed-Effects Model

A REML-based version of the algorithm results from using, in step 4, the log-

profile-restricted-likelihood (13.31) to compute the estimate ̂q
(k)

of q (Sects. 7.8.1
and 10.7). Then, in step 7, s 2 is computed from (13.30).

Note that the algorithm involves two iterative loops: the “external” one, related to

the computation of the values ̂b
(k)

of b and m̂(k)
i of m̂i, and the “internal” one, related

to the computation (in step 4) of the value ̂q
(k)

of q. It is also worth noting that, in
step 3, the redefined variance function l(k)(·) does not depend on mij, and therefore
it belongs to the <δ>-group. This allows for the use of the marginal-model-based
log-(profile)-likelihood functions, like (13.31), in step 4.

LMMs, defined by (13.1), (13.2), (13.4)–(13.10), and (13.15), with a variance
function that depends only on mij, i.e., which belongs to the <μ>-group (see
Table 7.4), can be estimated by using an IRLS procedure similar to the one described
in Sect. 7.8.1, with obvious modifications.

Algorithms equivalent to the PL-GLS and IRLS procedures, described above,
can be formulated for the PnLS estimation technique (Sect. 13.5.3), resulting in a
penalized, iteratively re-weighted, least squares (PnIRLS) approach (Bates 2012).

13.8.2 Multilevel Hierarchies

To extend the mean-variance formulation to, e.g., two-level LMMs, which were
defined in (13.5), the definition of the variance function, given in (13.15), needs to
be modified. In particular, we can assume that

Var(eijk | bi,bij) = s 2l2(mijk,d;vijk), (13.57)

where
E(yijk | bi,bij)≡ mijk = x′ijkb+ z′1,ijkbi + z′2,ijkbij, (13.58)

where xijk, z1,ijk, and z2,ijk are column vectors containing the values of the x-, z1-,
and z2-covariates for the k-th observation from the j-th subgroup of the i-th group.

The estimation algorithms, described in Sect. 13.8.1 for a single-level LMM, can
be adapted to the two-level model case. Needless to say, they become more involved
numerically.

13.8.3 Inference

For the mean-variance LMMs, estimates of b are asymptotically approximately
normally distributed with a variance-covariance matrix, which can be estimated
as in (13.49). Consequently, tests for linear hypotheses and CIs for the elements
of b can be obtained along the lines described in Sect. 13.7.1. Note, however, that

13.9 Chapter Summary 273

the use of LR tests is problematic given the fact that the algorithms described in
Sect. 13.8.1 are not likelihood-based. It should also be born in mind that, especially
for small sample sizes, standard errors computed from (13.49) may be too small, as
the precision of estimation of b is influenced by the precision of the estimation of q
(see Sects. 7.8.2 and 10.7).

Inference on the parameters q and s 2 is complicated by problems similar to those
described in Sects. 7.8.2 and 10.7. Thus, we do not discuss it further here.

13.9 Chapter Summary

In this chapter, we reviewed the essential concepts and methods underlying the
formulation of an LMM for hierarchical data. In our presentation, we were focusing
on the theoretical constructions, which are linked to the implementation of LMMs in
R. Readers interested in a more detailed account of the theory of LMMs are referred
to the monographs mentioned in the introduction to this chapter.

In Sect. 13.2, we described the formulation of the classical LMM, while in
Sect. 13.3 we discussed the formulation of the extended model. Details of the
formulation of both types of LMMs were discussed in Sect. 13.4. In the formulation,
the concepts of variance function and correlation structure, developed in Chaps. 7
and 10, respectively, were used. An additional, novel element was the introduction
of the random effects in the mean structure of the model. The use of the random
effects allows to directly address the hierarchical structure of the data.

Sections 13.5, 13.6, and 13.7 were devoted to, respectively, the estimation
approaches, diagnostic tools, and inferential methods used for the classical LMM.
This type of LMMs is most commonly used in practice. In Sect. 13.8, we described
the estimation and inferential techniques used for the extended LMM defined using
a mean-dependent variance function.

To the extent possible, we used in our presentation the concepts and theory
introduced in Chaps. 4, 7, and 10. Especially relevant was the material from
Chap. 10, because, as mentioned in Sect. 13.5, the estimation of classical LMM
is based primarily on the marginal likelihood or restricted likelihood functions,
which are special cases of the likelihood functions presented in Sect. 10.4.2. We note
that, if the missing at random (MAR) assumption about missing data mechanism is
tenable, the ML estimation for the classical linear mixed-effect models yields valid
estimates. Thorough discussion of this important topic can be found in Verbeke and
Molenberghs (2000).

As compared to LMs for correlated data, described in Part III of the book,
LMMs address directly the hierarchy present in grouped data. They allow drawing
conclusions about the partition of the total variability of observations between the
different levels of the hierarchy. This additional insight can be considered as an
advantage of LMMs. On the other hand, as mentioned in Sect. 13.5.1, LMs for
correlated errors are more flexible than LMMs. Thus, the choice between them
depends on the goals of a particular analysis.

In the next two chapters, we describe the tools available for fitting LMMs in R.

Chapter 14
Fitting Linear Mixed-Effects Models:
The lme() Function

14.1 Introduction

In Chap. 13, we summarized the main theoretical concepts underlying the construc-
tion of LMMs. Compared to the LMs introduced in Chaps. 4, 7, and 10, LMMs
allow taking the hierarchical structure of data into account in the analysis. This is
achieved by introducing, in addition to the mean (fixed-effects) structure, a random-
effects structure.

There are several packages in R, which contain tools for fitting LMMs, like, e.g.,
nlme, lme4.0, or MCMCglmm. In the current chapter, we describe the use of the
popular and well-established package nlme. The primary tool to fit LMMs in this
package is the function lme(). In the next chapter, we will describe the use of the
package lme4.0. Note that both packages allow to fit GLMMs and NLMMs, but
these models are outside of the scope of this book.

The chapter is organized as follows. In Sect. 14.2, we describe objects of class
pdMat, which represent positive-definite matrices. In particular, the class is used to
represent variance–covariance matrices of random effects. In Sect. 14.3, we describe
the class reStruct, used to represent the random-effects structure of an LMM. The
random part of an LMM is represented using the lmeStruct class described in
Sect. 14.4. All the aforementioned classes are related to the function lme(), which
is the key function in the nlme package to fit LMMs. The use of the function is
reviewed in Sect. 14.5. On the other hand, in Sect. 14.6, we summarize the methods,
which allow extracting information from model-fit objects of class lme. Section 14.7
is devoted to the implementation of inferential tools for LMMs. A summary of the
chapter is provided in Sect. 14.8.

As the basic example, we use the classical, single-level LMM, defined by
(13.1)–(13.4). However, to illustrate the features of the syntax, we refer, in a few
instances, to the two-level LMM, specified in (13.5).

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__14,
© Springer Science+Business Media New York 2013

275

276 14 Fitting Linear Mixed-Effects Models: The lme() Function

14.2 Representation of a Positive-Definite Matrix:
The pdMat Class

As compared to the LMs, introduced in Chaps. 4, 7, and 10, an important, new com-
ponent of LMMs is the random-effects structure. By the random-effects structure,
we mean the levels of the model hierarchy, the Zi design matrices for the random
effects bi, and the parameterized form of the matrix D, as defined in Equations
(13.1)–(13.4) for the classical, single-level LMM. In this section, we provide details
of the implementation of various forms of positive-definite matrices available in the
package nlme. The forms are used for specifying the matrix D.

In particular, in Sect. 14.2.1, we describe the classes of such matrices and the
corresponding constructor functions, while in Sect. 14.2.2, we discuss the methods
to extract information from the objects constructed with the help of the functions.

14.2.1 Constructor Functions for the pdMat Class

Positive-definite matrices are represented in the package nlme by objects inheriting
from the pdMat class. By issuing the ?pdClasses command at the command
prompt we obtain a list of standard classes of pdMat structures. We itemize them
below for the reader’s reference:

pdIdent a multiple of identity
pdDiag a diagonal matrix
pdCompSymm compound symmetry
pdLogChol a general positive-definite matrix using the log-Cholesky param-

eterization
pdSymm a general positive-definite matrix with a parameterization based

on SVD
pdNatural a general-positive-definite matrix with the “natural” parameteri-

zation, i.e., in terms of standard deviations and correlations
pdBlocked a blocked-diagonal matrix, with blocks defined by structures/

classes defined above

The classes listed above are ordered roughly according to the increasing order
of complexity of the represented matrix structures. The main difference between
the pdLogChol, pdSymm, and pdNatural classes, which all represent a general
variance–covariance matrix, lies in the used parameterization (Sect. 13.5.4) and will
be illustrated in Sect. 14.2.2.

The constructor function, used to create or to modify objects that inherit from a
particular class, is named after the corresponding class. For example, the pdDiag()
function creates/modifies an object of class pdDiag. Note that the created object
inherits also from the pdMat class. The pdMat constructors are primarily used in
the specification of the random-effects structure of an LMM, with the help of the
random argument of the model-fitting function lme().

In the next section, we describe the arguments of the constructor functions.

14.2 Representation of a Positive-Definite Matrix: The pdMat Class 277

14.2.1.1 Arguments of the Constructor Functions

The arguments of the pdMat constructor functions are value, form, nam, and data.
We will focus on the value and form arguments. Arguments data and nam are
merely used to assign names to the rows and columns of a positive-definite matrix.
As such, they are less important, so we do not describe them. A description of all the
arguments for a specific pdMat class is obtained by issuing a command like, e.g.,
?pdSymm.

The argument form is simply an optional one-sided formula. When used together
with the data argument, the formula is evaluated and, subsequently, the appropriate
names are assigned to the rows/columns of the matrix represented by the object. By
default, the value of the form argument is NULL. If the value argument contains a
one-sided formula, the argument form is ignored.

Although value is the main argument of a pdMat constructor function, we
describe it as the last, because it can be used to specify the components of pdMat
objects, defined by the arguments described above. The main role of this argument
is to assign coefficients to pdMat objects by supplying a positive-definite matrix or
a numeric vector. Other possible values of the value argument include: a pdMat-
class object, a one-sided linear formula, or a vector of character strings. By default,
its value is numeric(0), which results in an uninitialized object.

The code in Panel R14.1 presents examples of application of constructor func-
tions pdCompSymm() and pdSymm() to create objects of class pdCompSymm and
pdSymm, respectively, which inherit from the pdMat class.

In Panel R14.1a, the pdCompSymm() function applies the argument value in the
form of a one-sided formula ~agex. Thus, it does not assign any numeric values.
Consequently, the resulting object pdCS0 of class pdCompSymm, representing a
compound-symmetry matrix with constant diagonal and off-diagonal elements, is
uninitialized.

In Panel R14.1b, the object mtxUN is a positive-definite, 2×2 matrix, while dt1 is
an auxiliary data frame with a single numeric variable agex with four observations.
The pdSymm() function uses the matrix mtxUN as the value argument. Additionally,
it specifies the one-sided formula ~agex as the form argument and uses the data
frame dt1 to evaluate the variable agex. The resulting object pdSm of class pdSymm,
which represents a general positive-definite matrix, is initialized.

To explain the names of the rows and columns of the matrix, contained in the
object pdSm, we note that the formula ~agex, used in Panel R14.1b, assumes the
presence of an intercept and is equivalent to the formula ~1 + agex. It follows
that object pdSm can be interpreted as the variance–covariance matrix of a vector of
random effects generated by the formula. Given that the variable agex is numeric
(continuous), the formula implies the use of random intercepts and of random slopes
(for agex). Hence, the use of the names (Intercept) and agex for the rows and
columns of the matrix, contained in the object pdSm.

In Panel R14.1c, we illustrate how to construct an initialized object of class
pdCompSymm. The object mtxCS is a positive-definite, 3× 3 compound-symmetry

278 14 Fitting Linear Mixed-Effects Models: The lme() Function

R14.1 R syntax: Creating objects inheriting from the pdMat class
(a) Uninitialized object of class pdCompSymm

> library(nlme)

> (pdCS0 <- pdCompSymm(~agex))

Uninitialized positive definite matrix structure of class pdCompSymm

> isInitialized(pdCS0) # Not initialized

[1] FALSE

(b) Initialized object of class pdSymm

> mtxUN <- matrix(c(4, 1, 1, 9), nrow = 2) # pdSymm matrix

> dt1 <- data.frame(agex = c(15, 45, 71, 82)) # Numeric age

> (pdSm <- pdSymm(mtxUN, ~agex, data = dt1))

Positive definite matrix structure of class pdSymm representing

(Intercept) agex

(Intercept) 4 1

agex 1 9

> isInitialized(pdSm) # Initialized

[1] TRUE

(c) Initialized object of class pdCompSymm

> mtxCS <- matrix(4 * diag(3) + 1, nrow = 3) # CompSymm matrix

> dt2 <- data.frame(agef=c("Y", "M", "O", "O")) # Factor age

> (pdCSf <- pdCompSymm(mtxCS, ~-1 + agef, data = dt2))

Positive definite matrix structure of class pdCompSymm representing

agefM agefO agefY

agefM 5 1 1

agefO 1 5 1

agefY 1 1 5

matrix, with all diagonal elements equal to 5 and all off-diagonal elements equal
to 1. The auxiliary object dt2 is a data frame with a single-variable agef, which
is a factor with three levels and four observations. The pdCompSymm() constructor
function uses the object mtxCS as the value argument. Additionally, it specifies the
one-sided formula ~-1+agef in the argument form and uses the data frame dt2

to evaluate the variable agef. The resulting object pdCsf of class pdCompSymm,
which represents a compound-symmetry matrix, is initialized. Note that its row and
column names are defined by the levels of the factor agef. This is because the
formula, used in the form argument, does not use an intercept and includes the
factor agef (Sect. 5.2.1). Thus, the formula implies the use of three random effects,
associated with the levels of the factor. Hence, the use of the factor-level names for

14.2 Representation of a Positive-Definite Matrix: The pdMat Class 279

the rows and columns of pdCSf. Note that the names are obtained by referring to
the data frame dt2, which was provided in the argument data. Had the formula
been changed to, e.g., ~agef, it would have implied the use of an intercept, and the
name of the first row and column of the object pdSm would have been changed to
(Intercept). The names of the remaining two rows and columns would remain
unchanged.

In many cases, e.g., when specifying an LMM, it is sufficient to work with
uninitialized pdMat objects, such as the one defined in Panel R14.1a. Initialized
objects, i.e., objects with defined, known numerical values, such as those shown
in Panels R14.1b and R14.1c, can be useful if initial values for coefficients of a
positive-definite matrix need to be specified for a model-fitting routine.

14.2.2 Inspecting and Modifying Objects of Class pdMat

A list of methods available for probing and modifying objects of class pdMat is
obtained by issuing the command methods(class="pdMat"). In Panel R14.2, we
present examples of the use of selected methods, which can be applied to extract
information from such objects.

More specifically, in Panel R14.2a, we present methods for an object of class
pdSymm. As an example, we use the object pdSm defined in Panel R14.1. The
summary() function displays the standard deviations and correlations associated
with the positive-definite matrix represented by the object. Specific attributes of the
object can be displayed using appropriate functions like, e.g., formula(),Names(),
or Dim(). The function logDet() prints out the value of the logarithm of the
determinant of the Cholesky factor of the positive-definite matrix represented by
the pdSymm-class object.

In Panel R14.2b, we show the results of the application of selected methods
to the object pdCSf of class pdCompSymm. Essentially, all the methods used in
Panel R14.2a could be applied to the object as well.

Panel R14.3 is devoted entirely to the use of the coef() method for extracting
coefficients of an initialized pdMat-class object. The method returns a vector with
coefficients associated with the object. It allows for an optional logical argument
unconstrained. If unconstrained=FALSE, a vector of constrained coefficients
is returned (Sect. 13.5.4). Depending on the class of the object, the vector may
contain upper-triangular elements of the positive-definite matrix represented by a
pdSymm-class object or the standard deviation and correlation coefficient corre-
sponding to a compound-symmetry matrix from a pdCompSymm-class object. If
unconstrained=TRUE, the coefficients are returned in unconstrained form, suitable
for the optimization purposes. By default, unconstrained=TRUE.

In Panel R14.3a, we extract coefficients from the object pdSm. This is an
object of class pdSymm, i.e., it represents a positive-definite matrix of a general
form. First, by specifying the argument unconstrained=FALSE, we obtain the
upper-triangular elements of the matrix. Subsequently, using the default value of

280 14 Fitting Linear Mixed-Effects Models: The lme() Function

R14.2 R syntax: Probing objects inheriting from the pdMat class. Objects pdSm and
pdCSf were created in Panel R14.1
(a) Extracting information from the object pdSm of class pdSymm

> summary(pdSm) # Summary

Formula: ~agex

Structure: General positive-definite

StdDev Corr

(Intercept) 2 (Intr)

agex 3 0.167

> formula(pdSm) # Formula

~agex

> Names(pdSm) # Row/col names

[1] "(Intercept)" "agex"

> (Dmtx <- as.matrix(pdSm)) # D matrix

(Intercept) agex

(Intercept) 4 1

agex 1 9

> Dim(pdSm) # Dimensions of D

[1] 2 2

> logDet(pdSm) # log |D1/2|
[1] 1.7777

> # VarCorr(pdSm) # Variances, correlation coefficients

> # corMatrix(pdSm) # Corr(D)

(b) Extracting information from the object pdCSf of class pdCompSymm

> Names(pdCSf) # Row/col names

[1] "agefM" "agefO" "agefY"

> as.matrix(pdCSf) # D matrix

agefM agefO agefY

agefM 5 1 1

agefO 1 5 1

agefY 1 1 5

the argument, we obtain the unconstrained coefficients, which result from applying
the matrix-logarithm transformation (Sect. 13.5.4). We will explain the computation
of the unconstrained coefficients in Panel R14.4.

Panel R14.3b illustrates the method of obtaining coefficients from the object
pdCSf. The object is of class pdCompSymm and represents a compound-symmetry
matrix. First, by setting the argument unconstrained=FALSE, we obtain the stan-
dard deviation and the correlation coefficient, which define the compound-symmetry

14.2 Representation of a Positive-Definite Matrix: The pdMat Class 281

R14.3 R syntax: Extracting coefficients from an object inheriting from a pdMat
class. Objects pdSm and pdCSf were created in Panel R14.1
(a) Extracting coefficients from the object pdSm of class pdSymm

> coef(pdSm, unconstrained = FALSE) # Constrained coefficients

var((Intercept)) cov(agex,(Intercept))

4 1

var(agex)

9

> coef(pdSm) # Unconstrained coefficients

[1] 0.68424 0.08184 1.09344

(b) Extracting coefficients from the object pdCSf of class pdCompSymm

> coef(pdCSf, unconstrained = FALSE) # Constrained coefficients

std. dev corr.

2.2361 0.2000

> coef(pdCSf) # Unconstrained coefficients

[1] 0.80472 -0.13353

> log(5)/2 # First coefficient verified

[1] 0.80472

> rho <- 0.2 # %
> nc <- 3 # No. of columns

> aux <- (rho + 1/(nc - 1))/(1 - rho) # Modified Fisher's z: (10.35)

> log(aux) # Second coefficient verified

[1] -0.13353

structure. The use of the default value of the argument, TRUE, results in two
coefficients. The first one is the logarithm of the standard deviation. The second
one is the modified Fisher’s z-transform (10.35) of the correlation coefficient.
The computations of the values of the two unconstrained coefficients are verified
at the end of Panel R14.3b.

In Panel R14.4, we illustrate different parameterizations of a general
positive-definite matrix, represented by different pdMat classes. The parameteri-
zations were described in Sect. 13.5.4.

First, in Panel R14.4a, we show explicitly the link between the unconstrained
coefficients of an object of class pdSymm and the logarithm of a positive-definite
matrix (Sect. 13.5.4). Toward this end, we create the object pdSm0 of class pdSymm
from the matrix mtxUN and we list the unconstrained coefficients by applying
the coef() method to the object. Next, by applying the function pdMatrix(),
we obtain the positive-definite matrix, represented by the object, and store it in
the object Dmtx. With the help of the chol() function, we compute the Cholesky

282 14 Fitting Linear Mixed-Effects Models: The lme() Function

R14.4 R syntax: Various unconstrained parameterizations of a general positive-
definite (variance–covariance) matrix. The matrix mtxUNwas created in Panel R14.1
(a) The matrix-logarithm parameterization – pdSymm class

> pdSm0 <- pdSymm(mtxUN)

> coef(pdSm0) # Unconstrained qD

[1] 0.68424 0.08184 1.09344

> Dmtx <- pdMatrix(pdSm0) # Matrix D
> CholD <- chol(Dmtx) # Cholesky factor U of D: D= U′U
> vd <- svd(CholD, nu=0) # SVD of U: (13.46)

> vd$v %*% (log(vd$d) * t(vd$v)) # (13.47)

[,1] [,2]

[1,] 0.68424 0.08184

[2,] 0.08184 1.09344

(b) The log-Cholesky parameterization – pdLogChol class

> pdLCh <- pdLogChol(mtxUN)

> coef(pdLCh) # Unconstrained coefficients qD

[1] 0.69315 1.08453 0.50000

> LChD <- CholD # U
> diag(LChD) <- log(diag(LChD)) # diag(U) log-transformed

> LChD

[,1] [,2]

[1,] 0.69315 0.5000

[2,] 0.00000 1.0845

(c) The “natural” parameterization – pdNatural class

> pdNat <- pdNatural(mtxUN)

> coef(pdNat) # Unconstrained qD

[1] 0.69315 1.09861 0.33647

> log(sqrt(diag(Dmtx))) # log(SDs)

[1] 0.69315 1.09861

> corD <- cov2cor(Dmtx) # Corr(D)
> rho <- corD[upper.tri(corD)] # %ij (for i < j)
> log((1+rho)/(1-rho)) # Fisher's z: (10.33)

[1] 0.33647

decomposition of the matrix Dmtx and store the resulting Cholesky factor in the
object CholD. Then, we apply the function svd() to compute SVD of CholD.
The components of the decomposition are stored in the object vd. By extracting
the components vd$v and vd$d, we compute the logarithm of the matrix CholD.

14.3 Random-Effects Structure Representation: The reStruct class 283

The upper-triangular elements of the resulting matrix-logarithm correspond to the
unconstrained coefficients obtained by applying the coef() method to the object
pdSm0. It is worth mentioning that the matrix logarithm of the matrix Dmtx can
be obtained by simply doubling the elements of the matrix logarithm of the matrix
CholD.

In Panel R14.4b, we show the pdLogChol representation of the matrix mtxUN.
Toward this end, we apply the pdLogChol() constructor function to mtxUN and
display the resulting unconstrained coefficients using the coef() method. The
representation is based on the Cholesky decomposition of the matrix, obtained
with the requirement that the diagonal elements of the resulting Cholesky factor
are positive (Sect. 13.5.4). The coefficients are obtained from the elements of the
Cholesky factor matrix, but with the diagonal elements replaced by their logarithms.
To illustrate the computation of the coefficients explicitly, we reuse the matrix
CholD, created in Panel R14.4a. Then, we replace the diagonal elements of the
resulting matrix, LChD, by their logarithms. The upper-triangular elements of the
so-obtained matrix correspond to the unconstrained coefficients of the pdLogChol
representation.

Finally, in Panel R14.4c, we present the pdNatural representation of the ma-
trix mtxUN. Toward this end, we apply the pdNatural() constructor function.
The representation is based on the use of standard deviations and correlation
coefficients, which correspond to mtxUN. The coefficients are obtained by log-
transforming the standard deviations and by applying Fisher’s z-transform to the
correlation coefficients (Sect. 13.5.4). The transformations are shown explicitly
in this subpanel. In the process, the function cov2cor() is used to compute
the correlation matrix, corresponding to mtxUN (Sect. 12.3.2), while the function
upper.tri() is applied to define the correlation coefficients as the upper-triangular
elements of the computed correlation matrix.

Following the discussion, presented in Sect. 13.5.4, and the description given
above, it is clear that the pdLogChol- and pdSymm-class representations are suitable
for the numerical optimization purposes. On the other hand, the representation used
in the pdNatural class does not guarantee that the represented matrix is positive
definite. Thus, it should not be used in numerical optimization. However, it is
suitable for the construction of the confidence intervals for the elements of the
matrix, as explained in Sect. 13.7.3.

14.3 Random-Effects Structure Representation:
The reStruct class

As mentioned in Sect. 14.2, the random-effects structure of an LMM includes the
information about the levels of the model hierarchy, the Zi design matrices, and the
parameterized form of the matrix (or matrices) D.

284 14 Fitting Linear Mixed-Effects Models: The lme() Function

In the package nlme, the structure is represented by specialized list-objects of
class reStruct. Every component of the list is in itself an object of class pdMat,
corresponding to an appropriate level of model hierarchy.

14.3.1 Constructor Function for the reStruct Class

The function reStruct() is a constructor function for an object of class reStruct.
The arguments of the function include object, pdClass, REML, data, x, sigma,
reEstimates, and verbose. Description of these arguments can be obtained by
issuing the command ?reStruct.

The argument object is the most important one. We will describe its use in
more detail, because the syntax is very similar to that of the random argument of
the lme() function, which is the key function to fit LMMs in the package nlme.
The syntax of the lme() function will be described in Sect. 14.5.

The essential role of the object argument is to pass the information necessary
for the specification of the random-effects structure. In particular, the argument is
used to provide the information about the model hierarchy and about the formulae
associated with the pdMat objects, which are later used to create the design matrices
Zi. In addition, the argument can be used to specify the information about the
structure of the matrix (or matrices) D, including the values of their elements.

In Table 14.1, we provide examples of four forms of the syntax that can be used
for the argument object of the reStruct() constructor function. To maintain
generality of the presentation, the examples are given for a hypothetical, two-level
LMM, as defined in (13.5). We assume that the two levels of grouping are defined
by grouping factors g1 and g2. The variables z1 and z2, together with random
intercepts, are used as random-effects covariates at the grouping levels defined by
g1 and g2, respectively.

All forms of the syntax, shown in Table 14.1, allow a direct specification of the
hierarchical structure of the model using grouping factors, such as g1 and g2 in our
example. However, they differ in the flexibility of specifying other components of
the random-effects structure. To illustrate the differences, we consider the use of the
variables z1 and z2 to introduce random effects associated with covariates.

In Table 14.2, we point to the limitations of the different forms of the syntax,
which were presented in Table 14.1. In part (a) of the table, we present an example
of syntax for a single-level LMM, with grouping defined by the factor g1 and a
single random-effects covariate z1. In part (b) of the table, we show the four forms
of the syntax for the same setting as in Table 14.1, i.e., for a two-level LMM.

The syntax (a) is the most flexible. It essentially allows incorporating the infor-
mation about all components of the random-effects structure, which are supported
by the lme() function. In particular, for a two-level LMM (see (13.5)), it allows
specifying different structures of the D matrices at different levels of the model
hierarchy. In the example presented in Table 14.1, the different matrix structures are
represented by objects of classes pdSymm and pdDiag. That is, the matrix D1 is
assumed to have a general form, while the matrix D2 is assumed to be diagonal.

14.3 Random-Effects Structure Representation: The reStruct class 285

Table 14.1 R syntax: Syntaxa for the argument object of the reStruct() constructor
function

Syntax form Description

(a) List with named components of class pdMat and with
grouping factorsb,c used as names of the components,
e.g., list(g1 = pdSymm(~z1), g2 = pdDiag(~z2))

(b) Unnamed list of one-sided formulae with | operator, e.g.,
list(~z1 | g1, ~z2 | g2)

(c) Named list of one-sided formulae without | operator, with
grouping factors used as names of the components, e.g.,
list(g1 = ~z1, g2 = ~z2)

(d) One-sided formula with | operator, e.g., ~z1 | g1/g2
aThe examples of the syntax are given for a hypothetical two-level model (13.5)
bVariables z1 and z2 are used as the random-effects covariates.
cVariables g1 and g2 are considered grouping factors

Table 14.2 R syntax: Limitations of the different forms of the syntax for the object argument of
the reStruct() function

(a) A single-level LMM. Grouping factor: g1. Z-covariate: z1
Form Syntax of the argument Limitation

(a) list(g1 = pdSymm(~z1)) Most flexible
(b) list(~z1 | g1) No structure for D; pdLogChol class by defaulta

(c) list(g1 = ~z1) Same as above
(d) ~z1 | g1 Same as above
(b) A two-level LMM. Grouping factors: g1, g2. Z-covariates: z1, z2
Form Syntax of the argument Limitation
(a) list(g1 = pdSymm(~z1), g2 =

pdDiag(~z2))

Most flexible

(b) list(~z1 | g1, ~z2 | g2) The same D structure (pdLogChol class) used
for both grouping factorsa

(c) list(g1 = ~z1, g2 = ~z2) Same as above
(d) ~z1 | g1/g2 Same as above Additionally, the same

Z-covariate(s) for both levels.
a The default value of the second argument, pdClass = "pdLogChol", is assumed

The remaining forms of the syntax, (b)–(d), are notationally simpler, but also
less flexible, as compared to (a). One complication is that the structure of the matrix
(matrices) D has to be determined from the value of another argument of the function
reStruct(), namely, pdClass. By default, the argument specifies the pdLogChol
class, which results in a general positive-definite matrix. To change this default
choice, the argument pdClass needs to be specified explicitly, and the call to the
reStruct() function has to assume the form reStruct(object,pdClass).

For LMMs for data with two or more levels of grouping, an additional limitation
of the forms (b)–(d) of the syntax is that the structures of matrices D at different
levels of grouping are forced to be the same.

286 14 Fitting Linear Mixed-Effects Models: The lme() Function

A specific limitation of the syntax (d) for multilevel LMMs is that it also requires
that the random-effects covariates are assumed to be the same at different grouping
levels. For some models, this limitation is irrelevant; however, this is the case for,
e.g., LMMs with random intercepts only.

It is worth mentioning that, regardless of the form of the syntax used, the order of
specifying the grouping factors is important. More specifically, even if the grouping
factors are coded as crossed with each other, they are effectively treated as nested,
with the nesting order corresponding to the order, in which the factors are specified
in the syntax. In particular, the grouping factors specified later in the syntax are
nested within the factors specified earlier. For example, according to the syntax (a)
in Table 14.1, the factor g2 would be treated as nested within the factor g1.

14.3.2 Inspecting and Modifying Objects of Class reStruct

In Panel R14.5, we demonstrate how to create and extract information from objects
of class reStruct. We use the syntax form (a) (Table 14.1) to create the reStruct-
class object reSt. The object is constructed for a hypothetical two-level LMM, as
defined in (13.5). We assume that the two levels of grouping are defined by the
grouping factors g1 and g2. The structures of the variance–covariance matrices D1
and D2 of random effects at the two levels of grouping are defined by the objects
pdSm of class pdSymm and pdCSf of class pdCompSymm, respectively.

Using the function isInitialized(), we verify whether the object reSt is
initialized. Given that both pdSm and pdCSf were initialized objects that inherited
from the pdMat class (see Panel R14.1), the resulting reStruct-class object is also
initialized. By applying the function names(), we get the names of the components
of the list, contained in reSt, i.e., the names of factors g1 and g2. The function
formula() extracts the formula from each of the components. The displayed
formulae correspond to those used in the definition of the objects pdSymm and pdDCf
in Panel R14.1.

The function getGroupsFormula() provides information about the grouping
of the data, used in the definition of the reStruct-class object. It refers to the
conditioning expression, i.e., the expression used after the | operator in the
formula(e) defining the object (see the syntax forms shown in Table 14.2). In our
example, the structure is defined by the factors g1 and g2, with levels of g2 nested
within the levels of g1. Note that the function getGroupsFormula() allows two
optional arguments, asList and sep. Information about the use of these arguments
can be obtained by issuing the command ?getGroupsFormula.

In Panel R14.5, we also apply the function Names() to the object reSt.
The function returns the names of rows/columns for the matrices, represented by the
pdMat-class objects, which define the reStruct-class object (see also Panel R14.2).

14.3 Random-Effects Structure Representation: The reStruct class 287

R14.5 R syntax: Creating an object of class reStruct, representing a two-level LMM
for data with two levels of grouping, and extracting information from the object.
Auxiliary objects pdSm and pdCSf, which inherit from the pdMat class, were created
in Panel R14.1

> reSt <- reStruct(list(g1=pdSm, # D1
+ g2=pdCSf)) # D2
> isInitialized(reSt)

[1] TRUE

> names(reSt) # Note: order g1, g2 reversed

[1] "g2" "g1"

> formula(reSt) # Formulae for pdMat components

$g2

~-1 + agef

$g1

~agex

> getGroupsFormula(reSt) # Model hierarchy

~g1/g2

<environment: 0x0000000003d6efd8>

> Names(reSt) # Row/col names for pdMat components

$g2

[1] "agefM" "agefO" "agefY"

$g1

[1] "(Intercept)" "agex"

In Panel R14.6, we show the methods of extracting information about the
matrices corresponding to the pdMat-class objects, which define a reStruct-class
object. As an example, we use the object reSt, which was created in Panel R14.5.
The function as.matrix() used in Panel R14.6a displays the positive-definite
matrices, corresponding to the two variance–covariance matrices of random effects
at the two levels of grouping. The displayed matrices are, obviously, equivalent to
those stored in the objects pdSm and pdCSf, which were used to define the object
reSt (see Panel R14.1). By applying the function coef(), we list the unconstrained
coefficients corresponding to the matrices. They correspond to the values displayed
in Panel R14.3.

The individual pdMat-class objects, defining the reStruct-class object, can be
obtained by extracting the appropriate components of the list, which is contained in
the latter object. One possible way to achieve that goal is illustrated in Panel R14.6b.
Additionally, using the all.equal() function, we confirm that the object, extracted
as the g2 component of reSt, is equivalent to the pdMat-class object pdCsf.

288 14 Fitting Linear Mixed-Effects Models: The lme() Function

R14.6 R syntax: Extracting information about pdMat-class objects directly from an
object of class reStruct, representing a two-level LMM for data with two-levels of
grouping. The object reSt, which inherits from the reStruct class, was created in
Panel R14.5
(a) Listing information about positive-definite matrices from a reStruct object

> as.matrix(reSt) # D1, D2

$g1

(Intercept) agex

(Intercept) 4 1

agex 1 9

$g2

agefM agefO agefY

agefM 5 1 1

agefO 1 5 1

agefY 1 1 5

> coef(reSt) # Unconstrained coeff. for D2, D1

g21 g22 g11 g12 g13

0.80472 -0.13353 0.68424 0.08184 1.09344

(b) Extracting individual pdMat-class components from a reStruct object

> reSt[["g1"]] # See pdSm in Panel R14.1b

Positive definite matrix structure of class pdSymm representing

(Intercept) agex

(Intercept) 4 1

agex 1 9

> g2.pdMat <- reSt[["g2"]] # See pdCSf in Panel R14.1c

> all.equal(pdCSf, g2.pdMat) # g2.pdMat and pdCSf are equal

[1] TRUE

Panel R14.7 demonstrates how to evaluate an object of class reStruct in the context
of a dataset. Toward this end, we use data frames dt1 and dt2, which were created
in Panel R14.1, together with the object reSt, which was created in Panel R14.5.

In Panel R14.7, we first apply the default method of the generic
model.matrix() function (Sect. 5.3.2) to formulae extracted from the pdMat-class
objects pdSm and pdCSf. The formulae are evaluated using the data stored in data
frames dt1 and dt2, respectively. The created random-effects design matrices, Z1
and Z2, are stored in the objects Zmtx1 and Zmtx2, respectively, and displayed with
the help of the matrix-printing function prmatrix().

Next, we create the random-effects design matrix Z corresponding to the
object reSt. Toward this end, we first create the data frame dtz by merging the
data frames dt1 and dt2. Then, we apply the function model.matrix() with

14.3 Random-Effects Structure Representation: The reStruct class 289

R14.7 R syntax: Creation of the design matrix Z by evaluating an object of class
reStruct for (hypothetical) data containing random-effects covariates. Objects dt1,
dt2, pdSm, and pdCSf were created in Panel R14.1. The object reSt was created in
Panel R14.5

> Zmtx1 <- model.matrix(formula(pdSm), dt1)

> prmatrix(Zmtx1) # Design matrix Z1 for pdSm

(Intercept) agex

1 1 15

2 1 45

3 1 71

4 1 82

> Zmtx2 <- model.matrix(formula(pdCSf),dt2)

> prmatrix(Zmtx2) # Design matrix Z2 for pdCSf

agefM agefO agefY

1 0 0 1

2 1 0 0

3 0 1 0

4 0 1 0

> dtz <- data.frame(dt1,dt2) # Data frame to evaluate reSt

> Zmtx <- model.matrix(reSt, dtz) # Design matrix Z for reSt

> prmatrix(Zmtx) # Matrix Z w/out attributes

g2.agefM g2.agefO g2.agefY g1.(Intercept) g1.agex

1 0 0 1 1 15

2 1 0 0 1 45

3 0 1 0 1 71

4 0 1 0 1 82

arguments object=reSt and data=dtz. Note that, because the object reSt is of
class reStruct, the generic function model.matrix() does not dispatch its default
method, but the model.matrix.reStruct() method from the nlme package. As
a result, the random-effects design matrices for the objects pdSm and pdCSf, which
define the object reSt, are created and merged. The outcome is stored in the matrix-
object Zmtx, which is displayed with the use of the function prmatrix(). Note
that, in Zmtx, the three first columns come from the design matrix corresponding
to the object pdSm, which was used to define the variance–covariance matrix of
random effects present at the level of grouping corresponding to the factor g2. When
defining the object reSt, the factor was specified as the second one, after the factor
g1 (see Panel R14.5).

It is worth noting that, as compared to the default method of the function
model.matrix(), the model.matrix.reStruct() method also allows for an
optional argument contrast. The argument can be used to provide a named list of
the contrasts, which should be used to decode the factors present in the definition of
the reStruct-class object. Unless the argument is explicitly used, the default contrast
specification is applied (see Sect. 5.3.2).

290 14 Fitting Linear Mixed-Effects Models: The lme() Function

Table 14.3 R syntax: Extracting results from a hypothetical object reSt of class
reStruct

Random- effects structure component
to be extracted Syntax

Summary summary(reSt)

The reStruct formula formula(reSt)

Groups formula getGroupsFormula(reSt)

Constrained coefficients coef(reSt, unconstrained=FALSE)

Unconstrained coefficients coef(reSt)

List of D matrices as.matrix(reSt)

pdMatrix(reSt)

Log-determinants of D1/2 matrices logDet(reSt)

For the reader’s convenience, in Table 14.3, we summarize the methods used to
extract the information about the components of an reStruct-class object.

14.4 The Random Part of the Model Representation:
The lmeStruct Class

The lmeStruct class is an auxiliary class, which allows us to compactly store the
information about the random part of an LMM, including the random effects struc-
ture, correlation structure, and variance function. Objects of this class are created
using the lmeStruct() function with three arguments: reStruct, corStruct,
and varStruct. The arguments are given as objects of class reStruct, corStruct,
and varFunc, respectively. The classes were described in Sects. 14.3, 11.2, and 8.2,
respectively.

The argument reStruct is mandatory, while corStruct and varStruct are
optional, with the default value equal to NULL.

The function lmeStruct() returns a list determining the model components.
The list contains at least one component, namely, reStruct.

When specifying an LMM with the help of the lme() function, the use of
an lmeStruct-class object is not needed. Such an object is nevertheless created
very early during the execution of the lme()-function call. The importance of the
lmeStruct class will become more apparent in Sect. 14.6, where we demonstrate how
to extract results from an object containing a fit of an LMM.

In Panel R14.8, we demonstrate how to create and extract information from an
object of class lmeStruct.

First, we create an object of class reStruct. Toward this end, we use the
reStruct() constructor function (Sect. 14.3.1). The created object, reSt, is the
same as the one constructed in Panel R14.5. It defines the random-effects structure
of a two-level LMM, with grouping specified by factors g1 and g2 (Sect. 14.3.2).
The variance–covariance matrices of random effects at the two levels of grouping
are defined by the objects pdSm of class pdSymm (a general positive-definite matrix)
and pdCSf of class pdCompSymm (a compound-symmetry matrix), respectively.

14.4 The Random Part of the Model Representation: The lmeStruct Class 291

R14.8 R syntax: Creating and probing objects of class lmeStruct. Objects pdSm and
pdCSf, which inherit from the pdMat class, were created in Panel R14.1

> reSt <- reStruct(list(g1=pdSm, g2=pdCSf)) # reStruct class

> corSt <- corExp(c(0.3,0.1), form=~tx, nugget=TRUE) # corStruct class

> vF <- varExp(0.8, form=~agex) # varFunc class

> (lmeSt<- lmeStruct(reStruct=reSt, corStruct=corSt, # lmeStruct class

+ varStruct = vF)) # ... created.

reStruct parameters:

g21 g22 g11 g12 g13

0.80472 -0.13353 0.68424 0.08184 1.09344

corStruct parameters:

range nugget

0.3 0.1

varStruct parameters:

expon

0.8

> coefs <- coef(lmeSt,unconstrained=FALSE)# Constrained coefficients...

> (as.matrix(coefs)) # ... printed more compactly

[,1]

reStruct.g2.std. dev 2.23607

reStruct.g2.corr. 0.20000

reStruct.g1.var((Intercept)) 4.00000

reStruct.g1.cov(agex,(Intercept)) 1.00000

reStruct.g1.var(agex) 9.00000

corStruct.range 1.34986

corStruct.nugget 0.52498

varStruct.expon 0.80000

In the next step, we create an object of class corStruct (Sect. 11.2). As an
example, we consider the corExp class, which represents the exponential correlation
structure (Sect. 11.4.3). The object corSt corresponds to an exponential structure
with the range parameter % = 0.3 and the nugget equal to 0.1 (see Sects. 10.3.2
and 11.2.1 and Panel R11.1).

Finally, we specify the object vF of class varFunc (Sect. 8.2). As an example,
we consider the varExp class, which represents a variance structure defined by an
exponential function of the covariate agex (see Table 7.2 in Sect. 7.3.1).

Using the objects reSt, corSt, and vF as the arguments reStruct, corStruct,
and varStruct, respectively, of the lmeStruct() function, we create the object
lmeSt of class lmeStruct. With the help of the coef() function, combined with the
use of the unconstrained=FALSE argument, we display the coefficients, defining
the various components of the lmeStruct-class object, in the constrained form (see
Sects. 8.3, 11.3.1, and 14.2.2).

292 14 Fitting Linear Mixed-Effects Models: The lme() Function

14.5 Using the Function lme() to Specify and Fit Linear
Mixed-Effects Models

The generic lme() function is the most frequently used function to fit LMMs in R. It
allows to specify and fit models described in Sect. 13.2 with nested random effects
and correlated and/or heteroscedastic within-group residual errors. In general, to
define the LMM in full, we need at least to specify the mean structure and the
random-effects structure, including the grouping factors defining model hierarchy.
In addition, the correlation structure, variance function, and model frame need to be
defined.

In Table 14.4, we summarize selected arguments used by the function lme(),
together with a reference to the section describing the appropriate syntax and an
indication of the implied LMM components. In what follows, we briefly summarize
the use of the arguments.

The principal argument fixed is primarily used to define the mean structure
of an LMM. The argument can accept objects of classes formula, groupedData, or
lmList. Depending on the class of the object, the corresponding method of the lme()
function, i.e., lme.formula(), lme.groupedData(), or lme.lmList(), is used.

The most common choice for the fixed argument is a two-sided formula
(Sect. 5.2).

The argument can be specified using an object of class groupedData. This way
allows providing the information about the mean structure and about the model
hierarchy defined by (nested) grouping factors. An important limitation of this form
of specification of the fixed argument is that it allows only for mean structures
with one (primary) covariate.

The argument can also be specified by providing an lmList-class object, i.e., a
list of lm-class linear-model-fit objects (Sect. 5.5) for all levels of a grouping factor.
This method is rarely used and we do not present it here.

Table 14.4 R syntax: Selected arguments of the function lme() used to specify a linear
mixed-effects model defined in Sect. 13.2

Argument

Name Class Syntax Component(s) created/defined

fixed formula Sect. 5.2 Mean structure
groupedData Sect. 2.6 Mean structure; grouping factors
lmList – –

random reStructa Sect. 14.3 Random-effects structure;
grouping factors (optionally)

correlation corStructa Sect. 11.2 Correlation structure
weights varFunca Sect. 8.2 Variance function
data data.frame Sect. 5.4 Data

groupedData Sect. 2.6 Data; grouping factors
method Sect. 5.4 Estimation method
aOther choices of the class for the corresponding argument are possible but not listed.

14.6 Extracting Information from a Model-Fit Object of Class lme 293

The random argument is the primary argument used to define the random-effects
structure. In the argument, the syntax forms (a)–(d), shown in Table 14.1, can be
used. They allow specifying all aspects of the random-effects structure, including
the model hierarchy defined by grouping factors.

The specification of the random argument can be simplified by omitting the
reference to grouping factors in the forms (a)–(c) of syntax from Table 14.1. For
example, in the syntax (a), the names of the list components g1 and g2 can
be omitted. That is, a list with unnamed components, i.e., list(pdSymm(~z1),
pdDiag(~z2)), can be used. The simplified syntax has disadvantages. For instance,
it does not include the information about the grouping factors defining the model
hierarchy. The information needs to be supplemented using a groupedData-class
object in the fixed or data argument.

If the random argument is not specified, then, by default, it is assumed that the
design matrices for the fixed and random effects are equal (Xi ≡ Zi) and that the
variance–covariance matrix for the random effects is defined by an object of class
pdSymm. That is, a general variance–covariance matrix is assumed. Also in this
case, the information about the model hierarchy needs to be supplemented using a
groupedData-class object in the fixed or data argument.

The syntax of the arguments weights and correlation is the same as for
the corresponding arguments of the gls() function (Sects. 8.4 and 11.5). The two
arguments allow to specify the residual variance–covariance matrix Ri, as defined in
(13.4), using the decomposition given by (10.8). The default values for the weights
and correlation arguments imply independent and homoscedastic conditional
residual errors.

The data argument is used to provide the raw data and, optionally, the
information about the data hierarchy. Similarly to other model-fitting functions,
additional arguments subset and na.action can be used together with data to
define the model frame (Sect. 5.3.1). For the definition of these arguments, we refer
to Sect. 5.3.1.

The default value of the method argument is method="REML". That is, the model
parameters are estimated using the restricted likelihood (Sect. 13.5.2). An alternative
is method="ML". It is worth mentioning that the initial values for the qD parameters
are refined using an EM-based algorithm (Sect. 13.5.6).

14.6 Extracting Information from a Model-Fit Object
of Class lme

In Table 14.5, we present several methods to extract information from a model-fit
object of class lme. We assume that an object lme.fit is available, which contains
the results of fitting a single-level LMM, defined in (13.1)–(13.4).

294 14 Fitting Linear Mixed-Effects Models: The lme() Function

Table 14.5 R syntax: Extracting results from a hypothetical object lme.fit of class lme,
which represents a single-level linear mixed-effects model fitted using the lme() function

Model-fit Function: lme()
component to Package: nlme
be extracted Object: lme.fit

Class: lme
Summary (summ <- summary(lme.fit))

Estimation method lme.fit$method
̂b fixef(lme.fit)
̂b, se(̂b), t-test summ$tTable
̂Var(̂b) vcov(lme.fit)

95% CI for b intervals(lme.fit, which="fixed")

ŝ summ$sigma

95% CI for q,s intervals(lme.fit, which="var-cov")

95% CI for qD intervals(lme.fit,

which="var-cov")$reStruct

̂bi ranef(lme.fit)
̂b + “coupled” ̂bi coef(lme.fit)

coef(summ)

̂D getVarCov(lme.fit)
̂D and ŝ VarCorr(lme.fit)
̂Ri getVarCov(lme.fit, type="conditional")
̂Vi getVarCov(lme.fit, type="marginal")

ML value logLik(lme.fit, REML = FALSE)

REML value logLik(lme.fit, REML = TRUE)

AIC AIC(lme.fit)

BIC BIC(lme.fit)

Fitted values:
- conditional, (13.12) fitted(lme.fit)

- marginal, (13.24) fitted(lme.fit, level=0)

Raw residuals:
- conditional, (13.52) resid(lme.fit, type="response")

- marginal, (13.53) resid(lme.fit, type="response", level=0)

Normalized residuals:
- conditional, (13.54) resid(lme.fit, type="normalized")

- marginal, (13.55) –
Pearson residuals, Sect. 7.5.1 resid(lme.fit, type="pearson")

Predicted values:
- conditional predict(lme.fit, newdata)

- marginal predict(lme.fit, newdata, level= 0)

Using the generic function summary() allows us to obtain general information
about the fitted form of the model, including the information about the estimated
values of the fixed effects, the fitted random-effects structure, and the estimated
residual variance–covariance matrix.

If information about only a specific aspect of the fitted model is needed, it can be
obtained by extracting a specific component of the model-fit object or by applying

14.6 Extracting Information from a Model-Fit Object of Class lme 295

a special function to the object. For instance, the estimation method, used to fit the
model, is displayed by extracting the lme.fit$method component. Estimates of
the fixed effects b are displayed using the function fixef(), while the estimated
variance–covariance of the estimates (Sect. 13.5.5) is obtained using the function
vcov().

Confidence intervals for the model parameters (see Sect. 13.7.3) are obtained by
applying the generic function intervals(). Intervals for a specific subgroup of the
parameters are selected using the argument which. For instance, which="fixed"
provides CIs for the fixed effects, while which="var-cov" yields the intervals
for all variance–covariance parameters. By default, which="all", i.e., CIs for all
model parameters are provided. The confidence level can be chosen with the help
of the level argument. By default, level=0.95. The result of the application of
the function intervals() to a model-fit object of class lme is a list with named
components. Each of the components is a data frame, with rows corresponding to
the parameters of the model, and columns representing the estimated values and the
confidence limits for the parameters. The possible components are the following:
fixed (fixed effects), reStruct (parameters of the variance-covariance matrices
of the random effects), corStruct (residual correlation-structure parameters),
varFunc (residual variance-function parameters), and sigma (scale parameter). In
Table 14.5, we present how to display CIs only for the parameters of the variance–
covariance matrices of the random effects by extracting the reStruct component
of the object resulting from the intervals() function call.

By applying the function ranef() to a model-fit object of class lme, the
estimated random effects are displayed. By default, the effects at all levels of
grouping are displayed. The levels can be selected with the help of the level

argument. Information about other arguments, available for the function ranef(),
can be obtained by issuing the command ?ranef.

The function coef(), applied to an lme-class model-fit object, displays the
estimated coefficients for a particular (or all) levels of grouping. The coefficients
are obtained by summing the fixed effects and, if appropriate, the “coupled”
random effects (Sect. 13.2.1). The levels can be selected with the help of the
level argument. Information about other arguments of the function coef() can
be obtained by issuing command ?coef.lme.

Estimates of the variance–covariance matrices of the random effects and
residual errors, as well as the marginal variance–covariance matrix, are ob-
tained using the function getVarCov(). The argument type allows choosing
the matrix to be displayed. In particular, type="random.effects" (the default)
prints out the estimates of the variance–covariance matrices of random effects,
type="conditional" prints out the estimate of the residual variance–covariance
matrix, and type="marginal" provides the estimate of the marginal variance-
covariance matrix. With the help of the individuals argument, it is possible to
select the group(s) of observations, for which the function getVarCov() should
display the (residual or marginal) variance–covariance matrices.

An alternative method to extract the variance–covariance matrix of the random
effects is to use the function VarCorr(). When applied to an lme-class model-

296 14 Fitting Linear Mixed-Effects Models: The lme() Function

fit object, the function extracts the estimated variances, standard deviations, and
correlations of the random effects. Additionally, it provides the estimates of s 2

and s . The function uses three arguments: x, sigma, and rdig. The first one
specifies the model-fit object; the second one is an optional numeric value that
indicates a multiplier for the standard deviations and assumes the value of 1 as
default; and the last one is an optional integer value, which indicates the number of
digits (by default, 3) that are to be used to represent the correlation estimates.

Fitted values, residuals, and predicted values are obtained by applying the
functions fitted(), resid(), and predict(), respectively. All the functions
allow for an optional argument level, in the form of a vector of integers, which
indicates the level(s) of grouping, for which the values are to be extracted. The
levels increase from 0, i.e., the population level, to the highest level of grouping,
i.e., the level corresponding to the grouping factor, which is nested within all the
other factors. Thus, level=0 yields the estimates of the marginal mean values
or marginal residuals, while for nonzero levels, the conditional mean values or
conditional residuals are provided. In particular, the conditional mean values at a
particular level, k say, are obtained by adding the marginal mean values and the
predictors of the random effects at the grouping levels lower or equal to k. The
conditional residuals at level k are obtained by subtracting the conditional mean
values at that level from the dependent-variable vector. By default, level specifies
the highest level of grouping.

An important argument of the function resid() is type. It indicates the
type of residuals to be computed (Sect. 13.6.2). The possible choices are
type="response" (raw residuals), type="pearson" (Pearson residuals), and
type="normalized" (normalized residuals). It is worth mentioning that the
Pearson/normalized residuals are standardized/transformed based on the ele-
ments of the residual variance–covariance matrix ̂Ri, and not on the marginal
variance–covariance matrix ̂Vi. Hence, the use of arguments type="pearson" or
type="normalized" in combination with a nondefault value of level argument
is not meaningful. This remark applies, for example, to marginal residuals obtained
using level=0.

The function predict() allows for an optional argument newdata. It indicates
a data frame for which the predictions are to be calculated. The data frame should
contain all variables that were used to specify the fixed effects and the random
effects of the fitted LMM, as well as the grouping factors. If the argument is missing,
the function will employ data used to fit the model. Consequently, it returns the fitted
values corresponding to the level specified in the level argument.

In Table 14.6, we present methods of extracting the details about the lme()-
function call which was used to create a model-fit object of class lme. The methods
are similar to those presented in Tables 5.5, 8.2, and 11.1 for a gls-class model-fit
object. Note that the function model.matrix() (Sect. 5.3.2) provides the design
matrix for the mean structure, i.e., the matrix Xi. Extracting the design matrix for
the random effects, Zi, from an lme-class model-fit object is difficult. As it requires
extra programming, we do not present the required code.

14.7 Tests of Hypotheses About the Model Parameters 297

Table 14.6 R syntax: Extracting components of the lme()-function call from
a hypothetical object lme.fit, which represents a fitted single-level linear
mixed-effect model

R call component Syntax

R call (cl <- getCall(lme.fit))

Formula for the mean structure (form <- formula(lme.fit))

Argument random cl$random

Argument correlation cl$correlation

Argument weights cl$weights

Data name (df.name <- cl$data)

Data frame (df <- eval(df.name))

Model frame (mf <- model.frame(form, df))

Design matrix model.matrix(form, mf)

Table 14.7 R syntax: Extracting information about the random components from a hypothetical
object lme.fit, which represents a fitted single-level linear mixed-effect model

Auxiliary objects to be extracted (R class) Syntax

Random part of the model (lmeStruct) see Section 14.4 lmeSt <- lme.fit$modelStruct

Random-effects structure (reStruct) see Section 14.3.2 reSt <- lmeSt$reStruct

Variance-function structure (varFunc) see Table 8.2b vF <- lmeSt$varStruct

Correlation structure (corStruct) see Table 11.1b cSt <- lmeSt$corStruct

In Table 14.7, we summarize methods to extract information about the random
components of a fitted LMM. As mentioned in Sect. 14.4, the random part of
the model, which includes the random effects structure, the residual correlation
structure, and the residual variance function, is represented by an object of class
lmeStruct. The object can be accessed by referring to the modelStruct component
of the lme-class model-fit object. The random effects structure, as described in
Sect. 14.3, is represented by an object of class reStruct, which is stored as the
reStruct component of the lmeStruct-class object. If a correlation structure
and/or a variance function were used in defining the residual variance–covariance
matrix of the LMM, they are represented by objects of classes corStruct and
varFunc, respectively, which are stored as components corStruct and varStruct,
respectively, of the lmeStruct-class object.

14.7 Tests of Hypotheses About the Model Parameters

As was the case for LMs for independent, heteroscedastic observations (Sect. 8.5)
or fixed-effects LMs for correlated data (Sect. 11.6), results of the F-tests for
linear hypotheses about the fixed effects (Sect. 13.7.1), based on a fitted LMM,
are accessed by applying the anova() method to the model-fit object of class lme.
By default, the sequential-approach tests are obtained (Sect. 4.7.1). To obtain the

298 14 Fitting Linear Mixed-Effects Models: The lme() Function

marginal-approach tests, the argument type="marginal" should be used. F-tests
for individual/multiple terms can be obtained by applying the argumentTerms in the
form of an integer vector or a character vector that specifies the terms in the model
that should be jointly tested. If a character vector is used, it should contain the names
of the terms used in the model formula. If an integer vector is used, its elements
should correspond to the order in which terms are included in the model formula.
Additional arguments that can be used in the anova() method for lme-class model-
fit objects include test, adjustSigma, L, and verbose. The information about the
use of these arguments can be obtained by issuing the command ?anova.lme.

The t-tests for individual coefficients are provided by applying, e.g., the sum-

mary() method to the model-fit object. Note that, in this case, the marginal-
approach tests are obtained.

As was discussed in Sect. 13.7.1, neither the p values for the F-tests, nor the ones
for the t-tests, adjust for the fact that the null distribution of the test statistics is only
approximated by F- or t-distributions, respectively. Thus, the degrees of freedom
for the tests are computed as in a balanced, multilevel ANOVA design (Schluchter
and Elashoff 1990; Pinheiro and Bates 2000). In particular, assuming G levels of
grouping, the number of denominator degrees of freedom ddfg for the tests of fixed
effects at level g (g = 1, . . . ,G+ 1) is equal to

ddfg = Ng− (Ng−1 + pg), (14.1)

where Ng is the number of groups at the g-th grouping level and pg is the number
of fixed-effects coefficients estimated at that level. The latter is the number of
coefficients related to the variables whose values change across the values of the
grouping factor(s) at the grouping level g, but do not change across the values of
the grouping factor(s) at the level g− 1. Note that the intercept, if present in the
model, is treated as being estimated at the level g = 0, but its denominator degrees
of freedom are calculated from the level G+ 1, i.e., at the level of observations. An
example of the calculation of the denominator degrees of freedom is presented in
Sect. 16.7.1.

When the function anova() is applied to two or more objects of class lme, it
provides LR-test statistics, calculated based on pairs of the LMMs represented by
the consecutive objects. If the models are nested, have the same structure of random
effects and of residual variance–covariance matrix, and are fitted using ML, the
results of the LR tests, reported by the function, provide valid tests for hypotheses
about the fixed effects (Sect. 7.6.1). On the other hand, if the nested models are fitted
using REML and have the same mean structure, but different random structures,
the reported LR tests are valid tests of hypotheses about the parameters defining
random-effects structure.

In Sect. 13.7.1 it was mentioned that, instead of using a c2 distribution for an LR
test of a hypothesis about fixed effects, one could use an empirical distribution of the
test statistic, obtained by fitting the alternative and null models to multiple datasets
simulated under the null model. A similar comment was made in Sect. 13.7.2 for

14.7 Tests of Hypotheses About the Model Parameters 299

the LR test of hypotheses about random effects, when the values of the variance–
covariance parameters, compatible with the null hypothesis, lie on the boundary
of the parameter space. To address this issue, the function simulate() from the
package nlme can be used. It computes the ML- and/or REML-based log-likelihood
values for multiple datasets simulated from the null and alternative LMMs. This
allows the calculation of the empirical distribution of the LR-test statistic.

The function admits the following arguments: object, m2, nsim, method, seed,
niterEM, and useGen. The first four are the most important ones and we describe
them in more detail below. A description of all of the arguments can be obtained by
issuing the command ?simulate.

The argument object defines the null model. The argument can be provided
either as an object of class lme, which represents a fitted LMM, or as a named list
with components fixed, data, and random, which should define a valid call of the
function lme() to fit the LMM (Sect. 14.5). The argument m2 defines the alternative
model and can be specified in a similar way as the object argument. If it is specified
as a list, only those components that change between the null and alternative models
need to be specified. The argument nsim is a positive integer which indicates the
number of simulations to be performed. By default, nsim=1. Thus, although the
arguments is optional, in practice, it should be always specified.

Finally, the argument method, which is an optional character array, allows
choosing the form of the likelihood on which the LR-test statistic is to be based.
By default, method=c("REML", "ML"), i.e., both ML- and REML-based LR-test
statistics are used.

The function returns an object of class simulate.lme, which is a named list
with two components: null and alt. Each of them has components ML and/or
REML, which are matrices. The matrices contain, in particular, the column logLik

which provides the ML- or REML-based log-likelihood value for each of the nsim
simulations. Additional attributes of the simulate.lme-class object include, among
others, seed and df. The former gives the random seed used in the random number
generator, while the latter gives the difference in the number of parameters between
the null and alternative models.

One way to present the result of the simulate()-function call is to plot the
empirical and nominal p values. The former are obtained from the empirical
distribution of the LR-test statistic values corresponding to the simulated values
of the ML- or REML-based log-likelihood, while the latter are computed from
applying a c2 distribution or a mixture of c2 distributions to the simulated values
of the LR-test statistic. The plot can be obtained by a call like plot(object,df),
where object is a simulate.lme-class object, while df is a vector of integers, which
defines the degrees of freedom of a c2 distribution to be used to compute the nominal
p values. If the vector contains more than one integer, multiple plots of nominal
versus empirical p values are created by computing the nominal p values from the
c2 distribution with the number of degrees of freedom equal to each of the integers.
Additionally, a plot for an equal-weight mixture of the c2 distributions is created.

An example of the use of the function simulate() is provided in Sect. 16.6.2.

300 14 Fitting Linear Mixed-Effects Models: The lme() Function

For the case of using the REML-based LR test for testing a hypothesis about
the random-effects structure, a possible alternative is the function exactRLRT()

from the package RLRsim. The function simulates values of the REML-based LR-
test statistic for testing the null hypothesis that the variance of a random effect is
0 in an LMM with a known correlation structure of the tested random effect and
independent and identically distributed random errors. The simulations are based
on the finite-sample distribution of the test statistic (Sect. 13.7.2) which was derived
by Crainiceanu and Ruppert (2004). The performance of the simulations was studied
by Scheipl (2010).

The main arguments of the function exactRLRT() are m, m0, and mA. The first
one is a model-fit object of class lme or lmer. For LMMs with a single variance
component (random effect), it provides the fitted model under the alternative
hypothesis. For models with multiple variance components, it should provide
the model containing only the random effect to be tested. Arguments mA and m0

apply only to models with multiple variance components. The former specifies
the model fitted under the alternative hypothesis, while the latter gives the model
fitted under the null hypothesis. Additional arguments include nsim, which is
used to specify the number of values of the test statistic to be simulated. By
default, nsim=10000. The list of all arguments of the function exactRLRT() can
be obtained by issuing the command ?exactRLRT (after attaching the package
RLRsim). An example of the use of the function exactRLRT() is provided in
Sect. 16.6.1.

It is worth noting that the functions simulate() and exactRLRT() have
important limitations. For instance, they both only apply to conditional indepen-
dence LMMs (Sect. 13.4). Additionally, the function exactRLRT() allows only
for independent random effects; simulate() can accommodate correlated random
effects, i.e., LMMs with nondiagonal variance–covariance matrices of random
effects D.

Finally, it is worth mentioning that the function anova(), when applied to two
or more objects of class lme, also provides the information criteria (Sect. 4.7.2) that
can be used to choose the best-fitting models from a set of nonnested models with
different mean and/or variance–covariance structures. The AIC and BIC can also be
obtained using the functions AIC() and BIC(), respectively (see Table 14.5).

14.8 Chapter Summary

In this chapter, we presented the tools available for fitting LMMs in the R package
nlme. In particular, we focused on the function lme().

The use of the function involves the concepts of model formula, grouped data,
variance function, and correlation structure. The concepts were introduced in the
previous chapters in the context of simpler LMs to facilitate their description
and explanation. A new, important component was the random-effects structure.

14.8 Chapter Summary 301

We described several tools related to it, including the pdMat class for representing
positive-definite matrices (Sect. 14.2) and the reStruct class for representing the
random-effects structure (Sect. 14.3). In Sect. 14.4, we explained the representation
of the random part of an LMM in the form of objects of class lmeStruct. The
objects are created when the function lme() is used to fit an LMM (Sect. 14.5).
In Sect. 14.6, we described how to extract information about the estimated model
from an lme-class model-fit object. Finally, in Sect. 14.7, we briefly reviewed the
tools available for inference based on a fitted LMM.

The use of the R tools presented in this chapter will be illustrated in Chap. 16,
where the application of LMMs to the analysis of the ARMD case study will be
described.

It is worth noting that, as was mentioned in Sect. 14.3.1, when a reStruct-class
object is created, the grouping factors are effectively treated as nested. This means
that the function lme() is not particularly suitable to fit LMMs with, e.g., crossed
random effects. Such models can be easily fitted by applying the function lmer()

from the package lme4.0, which we present in the next chapter.

Chapter 16
ARMD Trial: Modeling Visual Acuity

16.1 Introduction

In Chap. 12, we presented an analysis of the age-related macular degeneration
(ARMD) data using LM with fixed effects for correlated data. The analysis took
into account the correlation between visual acuity measurements obtained for the
same patient. To apply the models, we used the function gls() from the R package
nlme. Note that the models can be seen as population-averaged (marginal) models.

An alternative approach to the analysis of the ARMD data, which allows
taking into account the correlation between the measurements, is to use linear
mixed-effects models (LMMs). In this approach, the hierarchical structure of the
data is directly addressed, with random effects that describe the contribution of
the variability at different levels of the hierarchy to the total variability of the
observations.

In this chapter, we fit several LMMs to the ARMD data. We primarily use the
function lme() from the package nlme. For illustration purposes, several models
are refitted by applying the function lmer() from the package lme4.0.

In particular, in Sect. 16.2, we consider a random-intercept model with ho-
moscedastic residual errors, while in Sect. 16.3, we present a random-intercept
model with heteroscedastic errors, with residual variance specified as a power
function of time. A series of models with random intercepts and random slopes for
time and with heteroscedastic residual errors is described in Sects. 16.4 and 16.5.
In Sect. 16.6, we look at the issue of testing hypotheses about the random effects.
In Sect. 16.7, we repeat the analysis for selected models using the function lmer()

from the package lme4.0. A summary of the analyses is provided in Sect. 16.8.

16.2 A Model with Random Intercepts and Homogeneous
Residual Variance

We start with a simple model, which we label M16.1. It contains subject-specific
random intercepts and homoscedastic residual errors. Consequently, observations
for the same individual, which share the random intercept, are correlated with

A. Gałecki and T. Burzykowski, Linear Mixed-Effects Models Using R: A Step-by-Step
Approach, Springer Texts in Statistics, DOI 10.1007/978-1-4614-3900-4__16,
© Springer Science+Business Media New York 2013

327

328 16 ARMD Trial: Modeling Visual Acuity

a constant (positive) correlation coefficient. Marginally, this corresponds to a
compound-symmetry correlation structure with a correlation parameter greater than
zero. A compound-symmetry marginal model was fitted to the ARMD data as
model M12.1 in Sect. 12.3. As was mentioned in that section, the compound-
symmetry structure is too simple to describe the variance-covariance structure of
the visual acuity measurements. Thus, we present model M16.1 mainly to illustrate
the fundamental steps in specifying and fitting an LMM.

16.2.1 Model Specification

Model M16.1 is specified as follows:

VISUALit = b0 +b1×VISUAL0i +b2×TIMEit +b3×TREATi

+b4×TREATi×TIMEit

+ b0i + eit. (16.1)

The term VISUALit in (16.1) denotes the value of visual acuity measured for
patient i (i = 1, . . . ,240) at time t (t = 1,2,3,4, corresponding to values of 4, 12, 24,
and 52 weeks, respectively). In the fixed-effects part of the model, given by the first
two lines of (16.1), VISUAL0i is the value of visual acuity measured at baseline;
TIMEit is the time of the measurement, corresponding to t; TREATi is the treatment
indicator, equal 1 for the active group and 0 otherwise; and TREATi×TIMEit is their
interaction. The parameter b0 is an overall intercept, b1 describes the change in the
mean visual acuity due to a unit increase in visual acuity at baseline, b2 describes the
change due to a one week change in time, b3 gives an overall treatment effect, and b4
describes the additional change due to a one week change in time for patients treated
with the active treatment. Note that we use a linear time effect, following the findings
based on the final marginal model M12.3. However, contrary to these findings, we
include the interaction between time and treatment in (16.1), to “enrich” the fixed
part of the mean structure. Also, as it will become clear shortly, we simplify the
variance-covariance structure.

In the random-effects part of the model, given by the last line of (16.1), b0i
is a patient-specific random intercept, assumed to be normally distributed with
mean 0 and variance d11, while eit is a residual random error assumed to be
normally distributed with mean 0 and variance s 2. Note that, formally speaking,
the random intercept b0i is a subject-specific deviation from the fixed intercept b0.
It is, however, customary to call b0i a subject-specific random intercept, despite the
fact that, actually, b0 and b0i are “coupled” (Sect. 13.2.1) and they both contribute
to the subject-specific intercept. Typically, this convention does not lead to any
misunderstanding.

16.2 A Model with Random Intercepts and Homogeneous Residual Variance 329

The fixed part of model M16.1 assumes that the average profile is linear in time,
with different intercepts and slopes for the placebo and active treatment groups. The
subject-specific profiles are assumed to also be linear in time, with subject-specific
(random) intercepts that shift the individual profiles from the average linear trend.

In matrix notation, the model for the subject i with a complete set of four visual
acuity measurements is expressed as follows:

⎛

⎜

⎜

⎝

VISUALi1

VISUALi2

VISUALi3

VISUALi4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1 VISUAL0i 4 TREATi 4 ·TREATi

1 VISUAL0i 12 TREATi 12 ·TREATi

1 VISUAL0i 24 TREATi 24 ·TREATi

1 VISUAL0i 52 TREATi 52 ·TREATi

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b0

b1

b2

b3

b4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎠

× b0i+

⎛

⎜

⎜

⎝

ei1

ei2

ei3

ei4

⎞

⎟

⎟

⎠

. (16.2)

Solid vertical lines in (16.2) are used to separate the columns in the subject-specific
design matrix Xi for the subject i.

Note that (16.2) can easily be written in the form of (13.1)–(13.3), upon defining

yi ≡

⎛

⎜

⎜

⎝

VISUALi1

VISUALi2

VISUALi3

VISUALi4

⎞

⎟

⎟

⎠

, (16.3)

Xi ≡

⎛

⎜

⎜

⎝

1 VISUAL0i 4 TREATi 4 ·TREATi

1 VISUAL0i 12 TREATi 12 ·TREATi

1 VISUAL0i 24 TREATi 24 ·TREATi

1 VISUAL0i 52 TREATi 52 ·TREATi

⎞

⎟

⎟

⎠

, Zi ≡

⎛

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎠

, (16.4)

ei ≡

⎛

⎜

⎜

⎝

ei1

ei2

ei3

ei4

⎞

⎟

⎟

⎠

, b≡

⎛

⎜

⎜

⎜

⎜

⎜

⎝

b0

b1

b2

b3

b4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, and bi ≡ b0i, (16.5)

with

D ≡ d11, and Ri ≡ s 2I4, (16.6)

where I4 is the 4× 4 identity matrix.

330 16 ARMD Trial: Modeling Visual Acuity

The random part of model M16.1, specified by (16.6), leads, according to
(13.25), to the following marginal variance-covariance matrix for the subject i with
four observations:

Vi ≡ ZiDZ′i +s 2I4 =

⎛

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎠

d11

(

1 1 1 1
)

+

⎛

⎜

⎜

⎜

⎝

s 2 0 0 0
0 s 2 0 0
0 0 s 2 0
0 0 0 s 2

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

s 2 + d11 d11 d11 d11

d11 s 2 + d11 d11 d11

d11 d11 s 2 + d11 d11

d11 d11 d11 s 2 + d11

⎞

⎟

⎟

⎟

⎠

. (16.7)

Consequently, the implied marginal variance-covariance structure is that of com-
pound symmetry with a common correlation equal to % = d11/(s

2 + d11). Note
that, because the variance component d11 is constrained to be nonnegative, % is also
forced to be nonnegative.

16.2.2 R Syntax and Results

In Panel R16.1, we use the function lme() to fit model M16.1, specified by
(16.1)–(16.6).

The formula lm2.form, used in Panel R16.1, defines the fixed part of the
model, as specified in (16.1), including an interaction between time and treatment.
The factor treat.f is parameterized with “Placebo” as the reference level. The
argument random=~1|subject specifies random subject-specific intercepts. By
default, lme() assumes independent residual errors with a constant variance, s 2.
Also, because there is no method argument in the lme() function call, the default
REML estimation is used. To change it to the ML estimation, we should add the
method="ML" argument to the function call.

In addition to the model specification, in Panel R16.1, we also display the results
of the fit of model M16.1. Note that the model formula is explicitly displayed in
the printout. This was achieved by applying, before printing the results, the function
update() to the object fm16.1 to evaluate the formula lm2.form with the help of
the function eval(). To simplify the code, this step is not shown in Panel R16.1.

Additionally, we print out the estimated fixed-effects table using the
printCoefmat() function. The argument has.Pvalue=TRUE specifies that the
last column of the table contains p-values which should be printed (P.values=
TRUE). A description of all of the arguments of the function printCoefmat() can
be obtained by issuing the command ?printCoefmat.

16.2 A Model with Random Intercepts and Homogeneous Residual Variance 331

R16.1 ARMD Trial: Model M16.1 fitted using the function lme()

> lm2.form <- # (16.1)

+ formula(visual ~ visual0 + time + treat.f + treat.f:time)

> (fm16.1 <- # M16.1
+ lme(lm2.form,

+ random = ~1|subject, data = armd)) # b0i:(16.5)

Linear mixed-effects model fit by REML

Data: armd

Log-restricted-likelihood: -3289

Fixed: visual ~ visual0 + time + treat.f + time:treat.f

(Intercept) visual0 time

9.288078 0.826440 -0.212216

treat.fActive time:treat.fActive

-2.422000 -0.049591

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 8.9782 8.6275

Number of Observations: 867

Number of Groups: 234

> printCoefmat(summary(fm16.1)$tTable, # Print fixed-effects, etc.

+ has.Pvalue = TRUE, P.values = TRUE) # ... with p-values

Value Std.Error DF t-value p-value

(Intercept) 9.2881 2.6819 631.0000 3.46 0.00057

visual0 0.8264 0.0447 231.0000 18.50 < 2e-16

time -0.2122 0.0229 631.0000 -9.26 < 2e-16

treat.fActive -2.4220 1.5000 231.0000 -1.61 0.10774

time:treat.fActive -0.0496 0.0336 631.0000 -1.48 0.14002

Results presented in Panel R16.1 indicate that the standard deviation
√

d11 of
the random intercepts, as specified in (16.6), is estimated to be equal to 8.98, while
the residual standard deviation, s , is estimated to be equal to 8.63. Note that, as
was mentioned in Sect. 14.7, the p-values, corresponding to the t-test statistics for
the fixed-effects coefficients, are for the marginal-approach tests. A summary of the
REML-based estimates for model M16.1 is also given in Table 16.1.

In Panel R16.2, we demonstrate how to extract information about the grouping of
data or, equivalently, about the data hierarchy implied by the fitted model. By using
the function getGroupsFormula() (see Panel R14.5), we obtain the conditioning
expression used in the specification of the random argument. It indicates a single
level of grouping, defined by the levels of the factor subject. By applying the
function getGroups() to the model-fit object, we extract the grouping factor
and store it in the object grpF. With the help of the function str(), we display
the structure of the object. The printout implies that the grouping factor had 234
levels (subjects). Moreover, we can conclude that, e.g., for the first subject we had

332 16 ARMD Trial: Modeling Visual Acuity

Table 16.1 ARMD Trial: REML-based parameter estimatesa for models M16.1 and M16.2 with
subject-specific random intercepts

Parameter fm16.1 fm16.2

Model label M16.1 M16.2
Log-REML value −3288.99 −3260.56

Fixed effects
Intercept b0 9.29(2.68) 7.07(2.30)
Visual acuity at t=0 b1 0.83(0.04) 0.87(0.04)
Time (in weeks) b2 −0.21(0.02) −0.21(0.03)
Trt(Actv vs. Plcb) b3 −2.42(1.50) −2.31(1.24)
Tm × Treat(Actv) b4 −0.05(0.03) −0.05(0.04)

reStruct(subject)
SD(bi0)

√
d11 8.98(7.99,10.09) 7.71(6.83,8.69)

Variance function

Power (TIMEd) d 0.31(0.23,0.39)
Scale s 8.63(8.16,9.12) 3.61(2.87,4.54)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses

R16.2 ARMD Trial: Data grouping/hierarchy implied by model M16.1. The model-
fit object fm16.1 was created in Panel R16.1

> getGroupsFormula(fm16.1) # Grouping formula

~subject

<environment: 0x000000001a310670>

> str(grpF <- getGroups(fm16.1)) # Grouping factor

Factor w/ 234 levels "1","2","3","4",..: 1 1 2 2 2 2 3 3 3 4...

- attr(*, "label")= chr "subject"

> grpF[1:17]

[1] 1 1 2 2 2 2 3 3 3 4 4 4 4 6 6 6 6

234 Levels: 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19... 240

> levels(grpF)[1:5]

[1] "1" "2" "3" "4" "6"

> range(xtabs(~grpF)) # Min, Max no. of observations

[1] 1 4

two observations, for the second subject we had four observations, etc. Similar
information is obtained by listing a subset of elements of the grouping factor. The
minimum and maximum number of observations across all subjects are obtained by
applying the function range() to the result of a cross tabulation of the levels of the
factor grpF, provided by the function xtabs().

To get more insight into the estimated variance-covariance structure of model
M16.1, we use the getVarCov() and VarCorr() functions, as shown
in Panel R16.3.

16.2 A Model with Random Intercepts and Homogeneous Residual Variance 333

R16.3 ARMD Trial: The estimated variance-covariance matrices for random effects
(D) and residual errors (Ri) for model M16.1. The model-fit object fm16.1 was
created in Panel R16.1
(a) The D-matrix estimate

> getVarCov(fm16.1, individual = "2") # ̂d11:(16.6)

Random effects variance covariance matrix

(Intercept)

(Intercept) 80.608

Standard Deviations: 8.9782

> VarCorr(fm16.1) # ̂d11, ̂s 2

subject = pdLogChol(1)

Variance StdDev

(Intercept) 80.608 8.9782

Residual 74.434 8.6275

(b) The Ri-matrix estimate

> getVarCov(fm16.1,

+ type = "conditional", # ̂Ri:(16.6)
+ individual = "2")

subject 2

Conditional variance covariance matrix

1 2 3 4

1 74.434 0.000 0.000 0.000

2 0.000 74.434 0.000 0.000

3 0.000 0.000 74.434 0.000

4 0.000 0.000 0.000 74.434

Standard Deviations: 8.6275 8.6275 8.6275 8.6275

The getVarCov()-function call, used in Panel R16.3a, does not include the
type argument (see Sect. 14.6 and Table 14.5). This means that the default value of
the argument, i.e., type="random.effect", is employed. As a result, the function
provides the estimated variance-covariance matrix D of the random effects. In the
case of model M16.1, it gives the estimated variance and standard deviation of the
subject-specific random intercepts. The argument individual="2", used in the
getVarCov()-function call, requests the random effects variance-covariance matrix
for the second individual, i.e., subject==2, in the analyzed dataset. In fact, in our
case, the subject number is not of importance, as the variance-covariance structure
of random effects is assumed to be the same for all individuals.

In Panel R16.3a, we also illustrate how to extract estimates of the D matrix
elements using the function VarCorr() (see Sect. 14.6 and Table 14.5).

In Panel R16.3b, we specify the type="conditional" and individual="2"

arguments in a call to the getVarCov() function. As a result, we obtain the

334 16 ARMD Trial: Modeling Visual Acuity

estimated variance-covariance matrix Ri of the residual random errors for the
second subject. As noted previously, this subject has all four post-randomization
visual acuity measurements, so a 4× 4 matrix is reported. Because model M16.1
assumes independent residual errors with the same variance at all measurement
times, a diagonal matrix ̂Ri = ŝ 2I4 = 74.434× I4 is displayed, as specified
in (16.6).

Finally, in Panel R16.4, we obtain the estimated marginal variance-covariance
matrix, defined in (16.7), by applying the function getVarCov() with the
type="marginal" argument. The result, for individual="2", is stored in the
object fm16.1cov and displayed. The marginal variance is estimated by the sum
of the estimated residual variance ŝ 2

= 74.434 and the variance of the random
intercepts ̂d11 = 80.608. The latter variance component becomes the covariance, as
seen from (16.7).

The resulting marginal correlation matrix is obtained by applying the cov2cor()
function (see Panel R14.4) to the first component of the list-object fm16.1cov,
which contains the estimated marginal variance-covariance matrix. As noted earlier,
the estimated marginal correlation matrix implies a constant, positive correlation
coefficient equal to 0.52 for any two visual acuity measurements obtained for the
same patient at different timepoints.

16.3 A Model with Random Intercepts and the varPower(·)
Residual Variance-Function

As noted in the exploratory analysis (Sect. 3.2) and, e.g., in Chap. 12, the variability
of visual acuity measurements increases in time. Therefore, we consider a model
with variance of random errors expressed as a power function of the TIME covariate.

16.3.1 Model Specification

To specify the new model, labeled M16.2, we use the same fixed-effects part as in
model M16.1. However, we modify the variance-covariance structure of residual
random errors, specified in (16.6). More specifically, following the results obtained
in Chaps. 9 and 12, we consider the use of the varPower(·) variance function,
introduced in Sect. 7.3.1. Thus, we assume that

Ri = s 2

⎛

⎜

⎜

⎜

⎝

(TIMEi1)
2d 0 0 0

0 (TIMEi2)
2d 0 0

0 0 (TIMEi3)
2d 0

0 0 0 (TIMEi4)
2d

⎞

⎟

⎟

⎟

⎠

. (16.8)

16.3 A Model with Random Intercepts and varPower(·) Residual Variance 335

R16.4 ARMD Trial: The estimated marginal variance-covariance matrix and the
corresponding correlation matrix for model M16.1. The model-fit object fm16.1
was created in Panel R16.1

> (fm16.1cov <-

+ getVarCov(fm16.1,

+ type = "marginal", # ̂Vi:(16.7)
+ individual = "2"))

subject 2

Marginal variance covariance matrix

1 2 3 4

1 155.040 80.608 80.608 80.608

2 80.608 155.040 80.608 80.608

3 80.608 80.608 155.040 80.608

4 80.608 80.608 80.608 155.040

Standard Deviations: 12.452 12.452 12.452 12.452

> (cov2cor(fm16.1cov[[1]])) # Corr(̂Vi)

1 2 3 4

1 1.00000 0.51991 0.51991 0.51991

2 0.51991 1.00000 0.51991 0.51991

3 0.51991 0.51991 1.00000 0.51991

4 0.51991 0.51991 0.51991 1.00000

Note that Ri, defined in (16.8), can be decomposed as Ri = s 2LiCiLi using Li,
given in (12.3), and by setting Ci = I4. It should be stressed here that the parameter
s 2, used in (16.8), can only be interpreted as a (unknown) scale parameter. This is
in contrast to (16.6), where it could be interpreted as the variance of residual errors.

The matrix Ri, given in (16.8), is diagonal with unequal elements defined by
the varPower(·) function. Consequently, as compared to model M16.1, the marginal
variance-covariance and correlation matrices of model M16.2 have different struc-
tures. In particular, the marginal variance-covariance matrix becomes equal to

Vi =

⎛

⎜

⎜

⎜

⎝

s 2
1 + d11 d11 d11 d11

d11 s 2
2 + d11 d11 d11

d11 d11 s 2
3 + d11 d11

d11 d11 d11 s 2
4 + d11

⎞

⎟

⎟

⎟

⎠

, (16.9)

where
s 2

t = s 2(TIMEit)
2d.

It is worth observing that, because the variance changes with time, the marginal
correlation coefficients between observations made at different times are no longer
equal.

336 16 ARMD Trial: Modeling Visual Acuity

R16.5 ARMD Trial: Model M16.2 fitted using the function lme(). The model-fit
object fm16.1 was created in Panel R16.1

> (fm16.2 <- # M16.2 ← M16.1
+ update(fm16.1,

+ weights = varPower(form = ~ time), # (9.4)

+ data = armd))

Linear mixed-effects model fit by REML

Data: armd

Log-restricted-likelihood: -3260.6

Fixed: visual ~ visual0 + time + treat.f + time:treat.f

(Intercept) visual0 time

7.066881 0.866544 -0.212627

treat.fActive time:treat.fActive

-2.305034 -0.050888

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 7.7056 3.6067

Variance function:

Structure: Power of variance covariate

Formula: ~time

Parameter estimates:

power

0.31441

Number of Observations: 867

Number of Groups: 234

16.3.2 R Syntax and Results

In Panel R16.5, we fit model M16.2. More specifically, we update the ob-
ject fm16.1, representing the fitted model M16.1, using the weights = var-

Power(form = ~time) argument in a call to the update() function. Note the use
of the varPower() variance-function constructor (see Sect. 8.2) in the weights

argument (see Sect. 14.5). Results of fitting model M16.2 using REML are stored in
the object fm16.2. Panel R16.5 presents a summary of the estimates of the model
parameters. More detailed results are shown in Table 16.1.

The results, presented in Panel R16.5, indicate that the scale parameter s is
estimated to be equal to 3.607. The power coefficient d of the varPower() variance
function, as specified in (9.4), is estimated to be equal to 0.314. The estimate of the
standard deviation of the random intercepts equals 7.706.

Panel R16.6 presents the estimates of the variance-covariance matrices associ-
ated with model M16.2. To obtain the estimate of the D matrix, we apply the

16.3 A Model with Random Intercepts and varPower(·) Residual Variance 337

R16.6 ARMD Trial: The estimated D, Ri, and Vi matrices for model M16.2. The
model-fit object fm16.2 was created in Panel R16.5

> VarCorr(fm16.2) # ̂d11: (16.6), ̂s 2

subject = pdLogChol(1)

Variance StdDev

(Intercept) 59.376 7.7056

Residual 13.008 3.6067

> getVarCov(fm16.2, # ̂Ri: (16.8)

+ type = "conditional",

+ individual = "2")

subject 2

Conditional variance covariance matrix

1 2 3 4

1 31.103 0.000 0.000 0.00

2 0.000 62.062 0.000 0.00

3 0.000 0.000 95.966 0.00

4 0.000 0.000 0.000 156.05

Standard Deviations: 5.577 7.8779 9.7962 12.492

> (fm16.2cov <- # ̂Vi: (16.9)

+ getVarCov(fm16.2,

+ type = "marginal",

+ individual = "2"))

subject 2

Marginal variance covariance matrix

1 2 3 4

1 90.479 59.376 59.376 59.376

2 59.376 121.440 59.376 59.376

3 59.376 59.376 155.340 59.376

4 59.376 59.376 59.376 215.430

Standard Deviations: 9.512 11.02 12.464 14.677

> cov2cor(fm16.2cov[[1]]) # Corr(̂Vi)

1 2 3 4

1 1.00000 0.56645 0.50083 0.42529

2 0.56645 1.00000 0.43230 0.36710

3 0.50083 0.43230 1.00000 0.32457

4 0.42529 0.36710 0.32457 1.00000

VarCorr() function. The estimated variance of random intercepts is equal to
59.376. Note that it is smaller than the value of 80.608, obtained for model M16.1
(see Panel R16.3). This is expected, because, by allowing for heteroscedastic
residual random errors, a larger part of the total variability is explained by the
residual variances. The estimated variance-covariance matrix of the residual errors
Ri is obtained using the getVarCov() function with the type="conditional"

338 16 ARMD Trial: Modeling Visual Acuity

Table 16.2 ARMD Trial: REML-based estimatesa for linear mixed-effects modelsb with random
intercepts and time slopes

Parameter fm16.3 fm16.4 fm16.5

Model label M16.3 M16.4 M16.5
Log-REML value −3215.30 −3215.90 −3214.47

Fixed effects
Intercept b0 4.74(2.26) 5.26(2.27) 5.44(2.26)
Visual acuity at t=0 b1 0.91(0.04) 0.90(0.04) 0.90(0.04)
Time (in weeks) b2 −0.22(0.03) −0.22(0.03) −0.24(0.02)
Trt(Actv vs. Plcb) b3 −2.26(1.15) −2.28(1.17) −2.66(1.13)
Tm × Treat(Actv) b4 −0.06(0.05) −0.06(0.05)

reStruct(subject)
SD(bi0)

√
d11 6.98(5.99,8.13) 7.23(6.33,8.26) 7.24(6.33,8.27)

SD(bi1)
√

d22 0.27(0.23,0.32) 0.28(0.24,0.33) 0.28(0.24,0.33)
cor((Intercept),time) %12 0.14(−0.13,0.38)

Variance function
Power (TIMEd) d 0.11(0.02,0.20) 0.11(0.01,0.21) 0.11(0.02,0.21)

Scale s 1 5.12(4.00,6.56) 5.03(3.90,6.49) 5.04(3.92,6.48)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses
bThe variance function varPower() of the time covariate was used in all three models

argument. It corresponds to the matrix specified in (16.8). Thus, for instance, the first

diagonal element of the ̂Ri matrix is equal to ŝ 2 ·42d̂ = 3.60672 ·42·0.3144 = 31.103.
The estimated marginal variance-covariance matrix, shown in Panel R16.6,

corresponds to the matrix Vi, given in (16.9). It is obtained by applying the getVar-
Cov() function with the type="marginal" argument to the fm16.2 model-fit ob-
ject. The corresponding estimated marginal correlation matrix indicates a decreasing
correlation between visual acuity measurements made at more distant timepoints.
This agrees with the conclusion drawn for the final marginal model M12.3, defined
by (12.3), (12.6), and (12.9), for which results are displayed in Table 12.2 and
Panel R12.12. Note, however, that the direct comparison of the marginal variance-
covariance matrices for models M12.3 and M16.2 is not appropriate. This is because
the marginal variance-covariance matrix of model M16.2, displayed in Panel R16.6,
is much more structured than that of model M12.3, printed in Panel R12.12. On the
other hand, they both allow for marginal correlation coefficients, which depend on
the time “distances”, or “positions”, of visual-acuity measurements.

To summarize the results of analyses presented in the current and the previous
section, Table 16.1 displays REML-based parameter estimates for models M16.1
and M16.2.

16.3 A Model with Random Intercepts and varPower(·) Residual Variance 339

R16.7 ARMD Trial: Residual plots for model M16.2. The model-fit object fm16.2
was created in Panel R16.5
(a) Default residual plot of conditional Pearson residuals

> plot(fm16.2) # Fig. 16.1

(b) Plots (and boxplots) of Pearson residuals per time and treatment

> plot(fm16.2, # Figure not shown

+ resid(., type = "pearson") ~ time | treat.f,

+ id = 0.05)

> bwplot(resid(fm16.2, type = "p") ~ time.f | treat.f, # Fig. 16.2

+ panel = panel.bwxplot2, # User-defined panel (not shown)

+ data = armd)

(c) Normal Q-Q plots of Pearson residuals and predicted random effects

> qqnorm(fm16.2, ~resid(.) | time.f) # Fig. 16.3

> qqnorm(fm16.2, ~ranef(.)) # Fig. 16.4

16.3.3 Diagnostic Plots

At this point, we might want to take a look at the goodness of fit of model M16.2.
The fitted model is represented by the object fm16.2. The syntax for several residual
plots is given in Panel R16.7.

The default residual plot for the object is obtained using the plot() command in
Panel R16.7a and presented in Fig. 16.1. The plot displays the conditional Pearson
residuals (Sect. 13.6.2) versus fitted values. As such, the plot is not very informative,
because it pools all the residuals together, despite the fact that residuals obtained
from the same individual are potentially correlated. However, it can serve for
detecting, e.g., outliers. In Fig. 16.1, a group of such residuals can be seen in at
the bottom and the top of the central part of the scatterplot.

A modified plot of the residuals for each timepoint and treatment group might be
more helpful. Toward this end, we use the form of the plot()-function call shown
in Panel R16.7b. Note that, in the plot formula, we apply the type="pearson"

argument in the resid() function, which indicates the use of the Pearson residuals.
Moreover, in the formula, we use the term ~time|treat to obtain plots per treat-
ment group over time in separate panels. Additionally, by applying the argument
id=0.05 to the plot() statement, we label the residuals larger, in absolute value,
than the 97.5th percentile of the standard normal distribution by the number of the
corresponding observation from the armd data frame.

Note that we do not present the resulting plot. Instead, in Fig. 16.2, we present its
enhanced version, with box-and-whiskers plots superimposed over a stripplot of the

340 16 ARMD Trial: Modeling Visual Acuity

Fig. 16.1 ARMD Trial: Scatterplot of the conditional Pearson residuals for model M16.2

residuals for each timepoint and treatment group. Toward this end, in Panel R16.7b,
we use the function bwplot() from the package lattice (Sect. 3.2.2). In the first
argument of bwplot(), we use a formula requesting a plot of the Pearson residuals
versus the levels of the time.f factor, separately for the levels of the treat.f

factor. The residuals are extracted from the model-fit object fm16.2 by applying
the resid() function (Sect. 5.5). The key component of the bwplot()-function
call is an auxiliary panel-function panel.bwxplot2. Due to the complexity of
the R code used to create the panel function, we do not present it; however, the
code is available in the package nlmeU containing the supplementary materials for
the book.

Figure 16.2 allows for an evaluation of the distribution of the conditional
Pearson residuals for each timepoint and treatment group. Despite standardization,
the variability of the residuals seems to vary. The plot reveals also a number of
outliers, i.e., residuals larger, in absolute value, than the 97.5th percentile of the
standard normal distribution (they have been labeled in the plot by the corresponding
observation number). However, given the large number of observations, one might

16.3 A Model with Random Intercepts and varPower(·) Residual Variance 341

Fig. 16.2 ARMD Trial: Stripplots (and box-and-whiskers plots) of the conditional Pearson
residuals for each timepoint and treatment group for model M16.2

expect a group of outlying values. It is worth noting that the outliers are present in
all treatment groups and at all timepoints.

Panel R16.8 lists the subjects for whom outlying residuals were labeled in
Fig. 16.2. Toward this end, the conditional Pearson residuals are extracted from
the model-fit object fm16.2 and stored in the vector resid.p. Indices for the
residuals larger, in absolute value, than the 97.5th percentile of the standard normal
distribution are stored in the logical vector idx. The data frame outliers.idx

contains selected variables from the armd dataset together with the residuals and the
logical index vector. The data frame outliers is a subset of outliers.idx and
contains observations for which the value of the variable idx, given as the second
argument of the function subset(), is equal to 1. There are 38 such observations,
for which the value of the subject number is printed out. Note that, for several
subjects, there is more than one outlying residual, because there is more than one
visual acuity measurement possible per subject.

342 16 ARMD Trial: Modeling Visual Acuity

R16.8 ARMD Trial: The list of outlying conditional Pearson residuals for
model M16.2. The model-fit object fm16.2 was created in Panel R16.5

> id <- 0.05 # Argument for qnorm()

> outliers.idx <-

+ within(armd,

+ {

+ resid.p <- resid(fm16.2, type = "pearson") # Pearson resids.

+ idx <- abs(resid.p) > -qnorm(id/2) # Indicator vector

+ })

> outliers <- subset(outliers.idx, idx) # Data with outliers

> nrow(outliers) # Number of outliers

[1] 38

> outliers$subject # IDs of outliers

[1] 40 46 51 56 56 68 68 70 73 73 73 75 77 87 90

[16] 91 93 104 104 107 112 112 120 121 121 135 137 137 143 151

[31] 162 165 178 191 200 209 227 227

234 Levels: 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19... 240

Figure 16.3 shows the normal Q-Q plot of the conditional Pearson residuals per
timepoint. The plot was obtained using the first qqnorm()-function call shown in
Panel R16.7c. The patterns do show some deviations from a linear trend.

We can also look at the normal Q-Q plot of the predicted random effects
(random intercepts). The effects are estimated by EBLUPs (Sect. 13.6.1). They
can be extracted from the fm16.2 model-fit object using the function ranef()

(see Sect. 14.6 and Table 14.5), as shown in the second qqnorm()-function call
shown in Panel R16.7c. The resulting Q-Q plot is shown in Fig. 16.4 and is slightly
curvilinear. This could be taken as an indication of nonnormality of the random
effects. However, as mentioned in Sect. 13.6.1, such a plot may not necessarily
reflect the true distribution of the random effects. Hence, it should be interpreted
with caution.

An important diagnostic plot is presented in Fig. 16.5. It shows the observed
and predicted values of the visual acuity measurements for selected patients.
Panel R16.9 demonstrates how to generate the object containing the data necessary
for constructing the figure using the augPred() function.

The function augPred() allows obtaining predicted values for the object
specified as the first argument. The object can be of class lmList (14.5), gls (11.6),
and lme (14.6). If the object has a grouping structure, the predicted values are
obtained for each group. Conveniently, the function adds the original observations to
the returned object, which is a data frame with four columns containing the values of
the primary covariate, the groups, the predicted or observed values, and the indicator
of the type of the value from the third column.

The optional arguments of the function augPred() include: primary, level,
length.out, minimum, and maximum. The argument primary is a one-sided
formula indicating the covariate at which values the predicted values should be

16.3 A Model with Random Intercepts and varPower(·) Residual Variance 343

Fig. 16.3 ARMD Trial: Normal Q-Q plots of the conditional Pearson residuals for each timepoint
for model M16.2

computed. In the call presented in Panel R16.9, we indicate that the predicted values
should be computed at the values of the variable time.

The arguments minimum and maximum allow for providing the lower and upper
limit, respectively, for the values of the primary covariate at which the predicted
values are to be computed. By default, the arguments become equal to, respectively,
the minimum and maximum of the values of the covariate. In the call presented
in Panel R16.9, we use the default values of the arguments, i.e., the minimum and
maximum values of the time variable, which are equal to, respectively, 4 and 52
weeks.

The argument level of the function augPred() is an integer vector specifying
the grouping levels for which the predicted values are to be computed. Its interpreta-
tion is the same as for the function predict() (Sect. 14.6). In the augPred-function
call shown in Panel R16.9, we use level=0:1, which amounts to specifying that
the predicted values should be computed at the level 0, i.e., the population level, and
at the level 1, i.e., the subject level.

Finally, the length.out argument is an integer indicating the number of values
of the primary covariate at which the predictions should be evaluated. By default,

344 16 ARMD Trial: Modeling Visual Acuity

Fig. 16.4 ARMD Trial: The normal Q-Q plot of the predicted random intercepts for model M16.2

R16.9 ARMD Trial: Predicted visual acuity values for model M16.2. The model-fit
object fm16.2 was created in Panel R16.5

> aug.Pred <- # augPred for M16.2
+ augPred(fm16.2,

+ primary = ~time, # Primary covariate

+ level = 0:1, # Marginal(0) and subj.-spec.(1)

+ length.out = 2)

> plot(aug.Pred, layout = c(4, 4, 1), # Fig. 16.5

+ key = list(lines = list(lty = c(1,2)),

+ text = list(c("Marginal", "Subject-specific")),

+ columns = 2))

16.3 A Model with Random Intercepts and varPower(·) Residual Variance 345

Fig. 16.5 ARMD Trial: Observed and predicted values of visual acuity for selected patients for
model M16.2

it assumes the value 51. In Panel R16.9, we set length.out=2, i.e., the predicted
values are obtained at two values time, i.e., at the minimum (4 weeks) and the
maximum (52 weeks). The two predicted values are sufficient to describe the
(population- and subject-specific) linear trend in (continuous) time, implied by the
fitted form of model M16.2.

By applying, in Panel R16.9, the plot() function to the object aug.Pred

with the level=0:1 argument, a plot of the population-level and within-subject
predicted values is obtained. The argument layout=c(4,4,1) requests one page
of plots, arranged in four rows with four plots each. Each plot corresponds to a
single subject; thus, the predictions for the first 16 subjects are plotted. Finally, the
key argument allows specifying the legend, which is placed at the top of the graph.
We refer the reader to the R help system for the xyplot() function from the lattice
package for a detailed description of other available arguments.

The resulting plot is shown in Fig. 16.5. The predicted population means, shown
in the plot, decrease linearly in time. This is consistent with the trend observed
in Fig. 3.2. According to the assumed structure of the model, the population
means are shifted for individual patients by subject-specific random intercepts.

346 16 ARMD Trial: Modeling Visual Acuity

Note that, as a result, the slopes of the individual profiles are the same for all
subjects. Consequently, all subject-specific lines are parallel to lines representing the
population means. For some patients, the so-obtained predicted individual profiles
strongly deviate from the observed ones. For instance, for the subjects 4 and 15, the
predicted individual patterns suggest a decrease of visual acuity over time, while the
observed values actually increase over time.

A possible way to improve the individual predictions is to allow not only for
patient-specific random intercepts, but also for patient-specific random slopes. We
focus on this issue in the next section.

16.4 Models with Random Intercepts and Slopes
and the varPower(·) Residual Variance-Function

In this section, we consider a model with two subject-specific random effects: a
random intercept and a random slope for time. We use two variance-covariance
structures D for the random effects, namely, a general one and a diagonal one. By
using the varPower(·) variance function, the residual variances are allowed to differ
between different timepoints.

16.4.1 Model with a General Matrix D

To specify model M16.3 with a general variance-covariance matrix D, we modify
the model equation (16.1) as follows:

VISUALit = b0 +b1×VISUAL0i +b2×TIMEit +b3×TREATi

+b4×TREATi×TIMEit

+ b0i + b2i×TIMEit + eit. (16.10)

The equation (16.10) can be written in the form of (13.1)–(13.3), upon defining yi,
Xi, ei, and b as in (16.3)–(16.5), but with

Zi =

⎛

⎜

⎜

⎝

1 4
1 12
1 24
1 52

⎞

⎟

⎟

⎠

, bi =

(

b0i

b2i

)

, (16.11)

and with the variance-covariance structure of the random effects given by

bi ∼N (0,D) and ei ∼N (0,Ri), (16.12)

16.4 Models with Random Intercepts and Slopes and the varPower(·) . . . 347

where

D =

(

d11 d12

d21 d22

)

(16.13)

and Ri is given by (16.8).
Note that the assumed form of D implies that the random intercepts and slopes

are correlated. For instance, a positive correlation between b0i and b2i means that,
for individuals with a higher initial value of visual acuity, the post-randomization
measurements will increase more rapidly or decrease more slowly than for patients
with a lower initial value.

It is worth reflecting on the marginal variance-covariance structure implied by
model M16.3. According to this model, the marginal covariance between visual
acuity measurements for the subject i at times t1 and t2 (t1, t2 = 1,2,3,4) can be
written as follows:

Cov(yit1
,yit2

) =
(

1 TIMEit1

)

D
(

1
TIMEit2

)

+ I(t1 = t2)s
2(TIMEit1

)2d

= d11 + d12(TIMEit1
+TIMEit2

)+ d22TIMEit1
TIMEit2

+ I(t1 = t2)s
2(TIMEit)

2d, (16.14)

where I(A) is the indicator function for condition A. Hence, the marginal variance
of visual acuity measurements for the subject i at the time t can be expressed as

Var(yit) = d11 + 2d12TIMEit + d22TIME2
it +s 2(TIMEit)

2d. (16.15)

Thus, the variance becomes a power function, including a quadratic component, of
the measurement time.

In Panel R16.10, we fit model M16.3, defined by (16.10)–(16.13), by updating
the object fm16.2. Specifically, we use the syntax random = ~ 1 + time |

subject to specify the random-effects structure (Sect. 14.3.1). By applying this
particular formula in the random argument, we imply that, for each level of the
subject grouping variable, a random intercept and a random slope for time are to
be considered, with a (default) general variance-covariance matrix D represented
by an object of class pdLogChol.

The basic results of fitting model M16.3 are displayed in Panel R16.10. More
details are shown in Table 16.2. In Panel R16.10, we also present the 95% CIs
for the variance-function and correlation-structure parameters. They are computed
using the methods described in Sect. 13.7.3. The results show a low estimated value
of the correlation coefficient for the random effects b0i and b2i, equal to 0.138.
The confidence interval for the correlation coefficient suggests that, in fact, the two
random effects can be uncorrelated. Therefore, in the next section, we consider a
simplified form of the D matrix.

348 16 ARMD Trial: Modeling Visual Acuity

R16.10 ARMD Trial: The estimated ̂D matrix and confidence intervals for the
qD parameters for model M16.3. The model-fit object fm16.2 was created in
Panel R16.5

> fm16.3 <- # M16.3 ← M16.2
+ update(fm16.2,

+ random = ~1 + time | subject,

+ data = armd)

> getVarCov(fm16.3, individual = "2") # ̂D: (16.16)

Random effects variance covariance matrix

(Intercept) time

(Intercept) 48.70500 0.26266

time 0.26266 0.07412

Standard Deviations: 6.9789 0.27225

> intervals(fm16.3, which = "var-cov") # 95% CI for qD, d: (16.8), s
Approximate 95% confidence intervals

Random Effects:

Level: subject

lower est. upper

sd((Intercept)) 5.99019 6.97891 8.13082

sd(time) 0.23009 0.27225 0.32213

cor((Intercept),time) -0.12564 0.13824 0.38386

Variance function:

lower est. upper

power 0.015191 0.10744 0.1997

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

3.9993 5.1222 6.5604

16.4.2 Model with a Diagonal Matrix D

In this section, we consider model M16.4, which, similarly to model M16.3, is
defined by (16.10), but for which we specify that

D =

(

d11 0
0 d22

)

. (16.16)

Thus, we assume that random intercepts b0i and random slopes b1i have different
variances and are uncorrelated.

16.4 Models with Random Intercepts and Slopes and the varPower(·) . . . 349

R16.11 ARMD Trial: Confidence intervals for the parameters of model M16.4. The
model-fit object fm16.3 was created in Panel R16.10

> fm16.4 <- # M16.4 ← M16.3
+ update(fm16.3,

+ random = list(subject = pdDiag(~time)), # Diagonal D
+ data = armd)

> intervals(fm16.4) # 95% CI for b, qD, d, s
Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 0.81277 5.262213 9.711655

visual0 0.82464 0.899900 0.975157

time -0.27954 -0.215031 -0.150524

treat.fActive -4.58882 -2.278756 0.031308

time:treat.fActive -0.15055 -0.056451 0.037646

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: subject

lower est. upper

sd((Intercept)) 6.33067 7.23195 8.26153

sd(time) 0.24108 0.28096 0.32744

Variance function:

lower est. upper

power 0.014823 0.11108 0.20733

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

3.8979 5.0312 6.4939

To fit model M16.4, we use the constructor-function pdDiag(). The function
creates an object of class pdDiag, representing a diagonal positive-definite matrix
(Sect. 14.2.1). Thus, in Panel R16.11, we update the object fm16.3, which repre-
sents model M16.3, using the argument random=pdDiag(~time). By specifying
the argument, we imply a diagonal form of the variance-covariance matrix D of the
random intercepts and slopes (Sect. 14.3.1).

Panel R16.11 presents the 95% CIs for all the parameters of model M16.4. They
suggest that the mean structure could be simplified by removing the time:treat.f
interaction. More detailed results for the model are provided in Table 16.2.

350 16 ARMD Trial: Modeling Visual Acuity

R16.12 ARMD Trial: Testing a null hypothesis about the qD parameters for
model M16.4. The model-fit object fm16.3 was created in Panel R16.10

> anova(fm16.4, fm16.3) # H0: d12=0 (M16.4 ⊂ M16.3)

Model df AIC BIC logLik Test L.Ratio p-value

fm16.4 1 9 6449.8 6492.6 -3215.9

fm16.3 2 10 6450.6 6498.2 -3215.3 1 vs 2 1.194 0.2745

In Panel R16.12, we use the REML-based LR test (Sect. 13.7.2) to verify the null
hypothesis that in the matrix D, defined in (16.13), the element d12 = 0. Toward
this end, we apply the anova() function to the objects fm16.4 and fm16.3, which
represent the fitted models M16.4 (null) and M16.3 (alternative), respectively. We
note that both models have the same mean structure so that the use of the REML-
based LR test is justified. In addition to information criteria and REML values
for both models, the results of the LR test, which is based on models M16.3
and M16.4, are displayed. Given that the null hypothesis specifies a value inside
the parameter space, the asymptotic c2 distribution with one degree of freedom can
be used to assess the outcome of the test (Sect. 13.7.2). The result is not statistically
significant at the 5% significance level. It indicates that, by assuming a simpler,
diagonal structure of the matrix D, we do not worsen the fit of the model. This
conclusion is in agreement with the computed values of AIC: the value of 6,450.6
for model M16.3 is slightly larger than the value of 6,449.8 for model M16.4, which
indicates a slightly better fit of the latter model.

Note that, according to model M16.4 and (16.15), the marginal variance of visual
acuity for the subject i at time t can be written as

Var(yit) = d11 + d22TIME2
it +s 2(TIMEit)

2d.

Consequently, given that d̂ = 0.11, the implied marginal variance function is
predominantly a quadratic function over time. As d11, d22, and s 2 are necessarily
positive, the function increases with time, which is in agreement with the observa-
tion made in the exploratory analysis (see, e.g., Panel R3.6 in Sect. 3.2).

Figure 16.6 presents the conditional Pearson residuals for model M16.4. As
compared to the similar plot for model M16.2 (see Fig. 16.1), it shows fewer
residuals with an absolute value larger than the 97.5th percentile of the standard
normal distribution.

Figure 16.7 presents the normal Q-Q plot of the conditional Pearson residuals
per timepoint for model M16.4. The plot looks comparable to the corresponding
plot for model M16.2 shown in Fig. 16.3.

Note that Figs. 16.6 and 16.7 were constructed using the syntax similar to the one
presented in Panels R16.7b and R16.7c, respectively. Thus, we do not present the
details of the syntax for the two figures.

16.4 Models with Random Intercepts and Slopes and the varPower(·) . . . 351

Fig. 16.6 ARMD Trial: Stripplots (and box-and-whiskers plots) of the conditional Pearson
residuals for each timepoint and treatment group for model M16.4

Fig. 16.7 ARMD Trial: Normal Q-Q plots of the conditional Pearson residuals for each timepoint
for model M16.4

352 16 ARMD Trial: Modeling Visual Acuity

Fig. 16.8 ARMD Trial: Normal Q-Q plots of the predicted random effects for model M16.4

Figure 16.8 presents the normal Q-Q plots of the predicted random effects
for model M16.4. The plots were obtained by using the following form of the
qqnorm()-function call:

> qqnorm(fm16.4, ~ranef(.)) # Fig. 16.8

As a result, two plots are produced: one for the random intercepts and one for
the random slopes. The latter is slightly closer to a straight line than the former. It is
worth noting that the plot for the random intercepts resembles the one obtained for
model M16.2 (see Fig. 16.4). Recall that, as mentioned in Sect. 13.6.1, we should
interpret the graphs with caution, because they may not necessarily reflect the
correct distribution of the random effects.

Finally, Fig. 16.9 presents the predicted marginal and subject-specific values
for model M16.4. Recall that, for model M16.2, a similar plot (see Fig. 16.5)
showed a decreasing slope of the individual profiles, the same for all subjects.
As a consequence, for some patients, e.g., no. 4 and 15, the so-obtained predicted
individual profiles strongly deviated from the observed ones. This is not the case
of the profiles shown in Fig. 16.9, for which the slopes vary. As a result, the
predicted individual profiles follow more closely the observed values and capture,
e.g., increasing trends in time. This illustrates that model M16.4 offers a better fit to
the data than model M16.2.

Given the satisfactory fit of model M16.4, in the next section, we focus on the
inference about the mean structure of the model.

16.4 Models with Random Intercepts and Slopes and the varPower(·) . . . 353

Fig. 16.9 ARMD Trial: Observed and predicted values of visual acuity for selected patients for
model M16.4

16.4.3 Model with a Diagonal Matrix D and a Constant
Treatment Effect

As mentioned in Sect. 16.4.2, the mean structure of model M16.4 could be simpli-
fied by removing the TREATi×TIMEit interaction (see Panel R16.11). Toward this
end, we specify model M16.5 by modifying (16.10) as follows:

VISUALit = b0 +b1×VISUAL0i +b2×TIMEit +b3×TREATi

+ b0i + b2i×TIMEit + eit. (16.17)

As compared to (16.10), (16.17) does not contain the b4 × TREATi × TIMEit
interaction term in the fixed-effects part. Note that we keep all other elements of
the model specification as for model M16.4. In particular, the variance-covariance
matrix D is given by (16.16).

To fit model M16.5, we modify the LM formula and update the object fm16.4
using the new formula object. The syntax is presented in Panel R16.13. The panel

354 16 ARMD Trial: Modeling Visual Acuity

R16.13 ARMD Trial: Fixed-effects estimates, their approximate standard errors, and
95% confidence intervals for the variance-covariance parameters of model M16.5.
The model-fit object fm16.4 was created in Panel R16.11

> lm3.form <- formula(visual ~ visual0 + time + treat.f) # (12.9)

> fm16.5 <- # M16.5 ← M16.4
+ update(fm16.4,

+ lm3.form, data = armd)

> summary(fm16.5)$tTable # ̂b, se(̂b), t-test

Value Std.Error DF t-value p-value

(Intercept) 5.44156 2.261866 632 2.4058 1.6424e-02

visual0 0.89983 0.038215 231 23.5464 2.5503e-63

time -0.24156 0.023917 632 -10.0997 2.4641e-22

treat.fActive -2.65528 1.128683 231 -2.3525 1.9485e-02

> intervals(fm16.5, which = "var-cov") # 95% CI for qD, d, s
Approximate 95% confidence intervals

Random Effects:

Level: subject

lower est. upper

sd((Intercept)) 6.33448 7.23570 8.2651

sd(time) 0.24121 0.28102 0.3274

Variance function:

lower est. upper

power 0.015687 0.11052 0.20535

attr(,"label")

[1] "Variance function:"

Within-group standard error:

lower est. upper

3.9177 5.0391 6.4815

also shows the results of the t-tests for the fixed effects (Sect. 13.7.1). Note that
these are the marginal-approach tests (Sect. 5.6). Thus, the effect of each covariate
is tested under the assumption that all other covariates are included in the model as
well. The result of the test for the treat.f factor is statistically significant at the
5% significance level. It suggests a time-independent, negative average effect of the
active treatment. This finding is in agreement with the results of the exploratory
analysis (Sect. 3.2) and of the previous analysis using an LM with fixed effects
for correlated data (Chap. 12). Note that the point estimates of the fixed effects,
shown in Panel R16.13, are close to the corresponding estimates obtained for the
final model M12.3 for correlated data (see Table 12.2).

Panel R16.13 also presents the 95% CIs for all the variance-covariance
parameters of model M16.5. The point estimates and intervals are very close to

16.4 Models with Random Intercepts and Slopes and the varPower(·) . . . 355

R16.14 ARMD Trial: The estimates of matrices D, Ri, and Vi for model M16.5.
The model-fit object fm16.5 was created in Panel R16.13

> VarCorr(fm16.5) # ̂D: (16.16), ̂s
subject = pdDiag(time)

Variance StdDev

(Intercept) 52.355293 7.23570

time 0.078974 0.28102

Residual 25.392868 5.03913

> getVarCov(fm16.5, # ̂Ri: (16.8)

+ type = "conditional", individual = "2")

subject 2

Conditional variance covariance matrix

1 2 3 4

1 34.498 0.00 0.000 0.000

2 0.000 43.98 0.000 0.000

3 0.000 0.00 51.262 0.000

4 0.000 0.00 0.000 60.816

Standard Deviations: 5.8735 6.6317 7.1597 7.7984

> (fm16.5cov <- # ̂Vi: (16.9)

+ getVarCov(fm16.5,

+ type = "marginal",

+ individual = "2"))

subject 2

Marginal variance covariance matrix

1 2 3 4

1 88.117 56.146 59.937 68.782

2 56.146 107.710 75.100 101.640

3 59.937 75.100 149.110 150.920

4 68.782 101.640 150.920 326.720

Standard Deviations: 9.387 10.378 12.211 18.075

> cov2cor(fm16.5cov[[1]]) # Corr(̂Vi)

1 2 3 4

1 1.00000 0.57633 0.52290 0.40538

2 0.57633 1.00000 0.59261 0.54180

3 0.52290 0.59261 1.00000 0.68375

4 0.40538 0.54180 0.68375 1.00000

those displayed in Panel R16.11 for model M16.4. This is not surprising, given that
the two models differ only slightly with respect to their mean structure.

Another summary of estimates of the parameters of model M16.5 is given in
Table 16.2, which also contains estimated parameters of models M16.3 and M16.4.

Panel R16.14 displays the estimated forms of matrices D, Ri, and Vi for
model M16.5. The estimated marginal variance-covariance matrix ̂Vi indicates an
increasing trend of variances of visual acuity measurements over time, while the

356 16 ARMD Trial: Modeling Visual Acuity

corresponding correlation matrix suggests a decreasing correlation between the
measurements obtained at more distant timepoints. These findings are in agreement
with the results of the exploratory analysis (Sect. 3.2) and with the results obtained
for model M12.3 for correlated data (Table 12.2). Note, however, that a direct
comparison of the estimated marginal matrices to their counterparts obtained for
model M12.3 is not appropriate, because the matrices for model M16.5 are much
more structured than those of model M12.3 (see a similar comment in Sect. 16.3.2).

16.5 An Alternative Residual Variance Function: varIdent(·)

The LMMs, presented in Sects. 16.3 and 16.4, were specified with the use of the
varPower(·) variance function (see the definition of the matrix Li in (16.8)). This
may be an overly constrained function, because it assumes that the variances of
the visual acuity measurements change as a power function of the measurement
time. The choice was motivated by the results obtained in Chaps. 9 and 12, where
models, defined with the use of the varPower(·) variance function, fitted the ARMD
data better than models with unconstrained variances, specified with the use of
the varIdent(·) function (see, e.g., Sect. 12.5.2). However, it is possible that, in the
framework of LMMs, a more general variance function might allow obtaining a
better fit than the power function.

To verify this hypothesis, we will use the LR test constructed based on mod-
els M16.3 and M16.6. Both of the models have the same fixed- and random effects
structure, given by (16.10). They differ with respect to Ri matrix specification.
Specifically, in the former model, the matrix Ri is defined using power function.
In contrast, in the latter model the matrix Ri is defined as follows:

Ri = s 2
1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 s 2
2

s 2
1

0 0

0 0 s 2
3

s 2
1

0

0 0 0 s 2
4

s 2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

≡ s 2

⎛

⎜

⎜

⎜

⎝

d2
1 0 0 0

0 d2
2 0 0

0 0 d2
3 0

0 0 0 d2
4

⎞

⎟

⎟

⎟

⎠

, (16.18)

where dt ≡ s t/s 1 (t = 1, . . . ,4) is the ratio of SD of the visual acuity measurements
at occasion t relative to SD of the measurements at the first occasion, and where
s 2 ≡ s 2

1. This parameterization corresponds to a varIdent-class variance function
(Sect. 7.3.1) and is specified in such a way that it allows identifying the variance-
function parameters dt (Sect. 7.3.2).

To fit model M16.6, we update the object fm16.3 using an appropriate form
of the varIdent() constructor function in the weights argument of the lme()

function. The suitable syntax and results of fitting of the model are displayed in
Panel R16.15a. Additional results are provided in Table 16.3. Panel R16.15b also
includes the result of the LR test obtained with the use of the anova() function,

16.5 An Alternative Residual Variance Function: varIdent(·) 357

Table 16.3 ARMD Trial: REML-based estimatesa for linear mixed-effects models with random
intercepts and slopes

Parameter fm16.6 fm16.7

Model label M16.6 M16.7
Log-REML value −3204.05b −3218.57

Fixed effects
Intercept b0 5.10(2.18) 5.35(2.33)
Visual acuity at t=0 b1 0.90(0.04) 0.90(0.04)
Time (in weeks) b2 −0.21(0.03) −0.22(0.03)
Trt(Actv vs. Plcb) b3 −2.18(1.12) −2.31(1.21)
Tm × Treat(Actv) b4 −0.06(0.05) −0.06(0.05)

reStruct(subject)
SD(bi0)

√
d11 7.35(6.41,8.43)

SD(bi1)
√

d22 0.28(0.24,0.33)
Scale s 1 6.68(6.25,7.14)
aApproximate SE for fixed effects and 95% CI for covariance parameters are included in
parentheses
bLikelihood optimization did not converge

which is based on the likelihoods of models M16.6 and M16.3. Note that the
latter (null) model is nested in the former. The outcome of the test is statistically
significant at the 5% significance level and suggests that the use of the more general
varIdent(·) variance function to define matrix Ri, as in (16.18), gives a better fit
than the use of the varPower(·) function.

We need to be careful before accepting this conclusion, though. A closer
inspection of the results displayed in Panel R16.15 reveals that the estimated value
of parameter d4 is extremely small and substantially differs from the estimated
values of d2 and d3. This is surprising, because all previous analyses indicated that
the variance of the last visual acuity measurement (at week 52) was the largest.

A signal of the problems with the estimation of model M16.6 can be also
obtained by, e.g., attempting to compute confidence intervals for the variance-
covariance parameters. In particular, issuing the command

> intervals(fm16.6, which = "var-cov")

results in an error message indicating problems with estimating the variance-
covariance matrix for the estimates of the parameters.

Finally, the problem with convergence of the estimation algorithm for model
M16.6 is also clearly reflected in the normal Q-Q plot of the conditional Pearson
residuals, shown in Fig. 16.10 and obtained by issuing the command

> qqnorm(fm16.6, ~resid(.)|time.f) # Fig. 16.10

Note that the residuals for week 52 are all equal to 0.
To investigate the source of the problem, we present, in Fig. 16.11, plots of the

cross-sections of the restricted-likelihood surface for d2, d3, d4, and s . For brevity,
we do not show the R code used to create the figure. Each plot is obtained by

358 16 ARMD Trial: Modeling Visual Acuity

R16.15 ARMD Trial: Fitting model M16.6 and testing its variance function using
a REML-based likelihood-ratio test. The model-fit object fm16.3 was created in
Panel R16.10
(a) Fitting of model M16.6

> (fm16.6 <- # M16.6 ← M16.3
+ update(fm16.3, weights = varIdent(form = ~1 | time.f)))

Linear mixed-effects model fit by REML

Data: armd

Log-restricted-likelihood: -3204

Fixed: visual ~ visual0 + time + treat.f + time:treat.f

(Intercept) visual0 time

5.10354 0.90120 -0.21041

treat.fActive time:treat.fActive

-2.18434 -0.05931

Random effects:

Formula: ~1 + time | subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 7.34621 (Intr)

time 0.31104 -0.132

Residual 4.62311

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | time.f

Parameter estimates:

4wks 12wks 24wks 52wks

1.00000000 1.62525293 1.74357631 0.00051508

Number of Observations: 867

Number of Groups: 234

(b) REML-based LR test for the variance function

> anova(fm16.3, fm16.6) # varPower (M16.3) ⊂ varIdent (M16.6)

Model df AIC BIC logLik Test L.Ratio p-value

fm16.3 1 10 6450.6 6498.2 -3215.3

fm16.6 2 12 6432.1 6489.2 -3204.0 1 vs 2 22.499 <.0001

fixing the other parameters at the reported REML estimates. The panel for d4, the
ratio of the residual SD of the visual acuity measurements at 52 weeks relative to
week 4, shows an approximately flat horizontal line close to zero. More precisely,
the line shows that the difference between the log-restricted-likelihood for the values
of d4 within the interval presented in the plot and the reported log-REML value

16.5 An Alternative Residual Variance Function: varIdent(·) 359

Fig. 16.10 ARMD Trial: The normal Q-Q plot of the conditional Pearson residuals for
model M16.6. Panel for 52 weeks indicates the problem with model fit

of−3204.05 ranges between 2.4×10−7 and−4.0×10−7. This indicates that, if we
assume model M16.6, the data contain very little information about this particular
parameter, because the log-restricted-likelihood function surface is virtually flat in
the corresponding direction of the parameter space. Moreover, the plot for d4, unlike
the other plots shown in Fig. 16.11, does not suggest any maximum of the likelihood
function within the presented interval of d4 values. This means that the REML
estimate, reported by the lme() function in Panel R16.14a, is not an optimum
value.

Given the close similarity of the structure of models M16.6 and M16.3, a
question is: Why were there no apparent problems with fitting of the latter model?
Although the models are similar, they differ with respect to the form of the
marginal variance-covariance structure of visual acuity measurements. The form
of the covariance of the measurements obtained for the subject i at different times,
implied by model M16.6, is the same as the one resulting from model M16.3 and is
given by (16.14). However, the variance for a measurement obtained at the time t,
implied by model M16.6, is

360 16 ARMD Trial: Modeling Visual Acuity

Fig. 16.11 ARMD Trial: Differences (DREML) between the values of the log-restricted-likelihood
for model M16.6 at the reported REML estimate and at different values of parameters d2, d3, d4,
and s . The value of 0 at the vertical axis corresponds to the reported log-REML value of−3204.05.
Flat line in panel for d4 indicates problem with model fit

Var(yit) = d11 + 2d12TIMEit + d22TIME2
it +s 2d2

t . (16.19)

Equations (16.14) and (16.19) define the ten unique elements of the marginal
variance-covariance matrix Vi for model M16.6 as linear functions of seven
parameters: d11, d12, d22, s 2, d2, d3, and d4. Given that the number of parameters is
close to the number of equations, collinearity among the parameters may result, with
consequences in the form of convergence problems of the estimation algorithm.

On the other hand, the right-hand side of (16.15) for model M16.3 has fewer
parameters and involves a power function of time, which is nonlinear in terms of the
parameter d. Hence, in this case, the collinearity is less likely to appear.

16.6 Testing Hypotheses About Random Effects 361

Thus, as compared to model M16.6, model M16.3 imposes an additional
restriction on the form of the marginal variance-covariance structure. The restriction
limits the parameter space, in which it is possible to find an optimum solution,
because the data become more informative.

It follows that, to use the Ident(·) function, some additional restrictions on the
form of model M16.6 would need to be introduced. However, we will not pursue
this direction further but rather leave it as an exercise to the reader.

16.6 Testing Hypotheses About Random Effects

As mentioned in Sect. 13.7.2, formal tests of hypotheses about the variance-
covariance structure can be performed using the LR test based on the restricted
likelihood function. An important issue is the null distribution of the test statistics. In
particular, when the values of the variance-covariance parameters, compatible with
the null hypothesis, lie in the interior of the parameter space, the null distribution is
a c2 distribution with the number of degrees of freedom equal to the difference in
the number of (independent) variance-covariance parameters between the null and
alternative models (Sect. 13.7.2). Examples of such tests were shown in Sects. 16.4.2
(Panel R16.11) and 16.5 (Panel R16.15).

However, when the values of the variance-covariance parameters, compatible
with the null hypothesis, lie on the boundary of the parameter space, the exact form
of the null distribution is difficult to obtain. As it was mentioned in Sect. 13.7.2, in
certain cases (see, e.g., Verbeke and Molenberghs 2000, Sect. 6.3.4), the distribution
is given by a mixture of several c2 distributions. Note that this result has been
obtained by assuming that the residual errors are independent and homoscedastic.
In other cases, the only practical alternative is to simulate the null distribution. In R
this can be done using the simulate() function from the nlme package or using
the function exactRLRT() from the package RLRsim.

The use of the functions was briefly reviewed in Sect. 14.7. It was noted there that
both functions only allow for independent, homoscedastic residual errors. Moreover,
the function exactRLRT() accommodates only independent random effects, while
the function simulate() is not defined for model-fit objects of class gls.

These limitations preclude us from testing, e.g., whether inclusion of random
intercepts is improving the fit of model M16.2, as compared to a model without
random effects, but with residual variances expressed with the help of the Power(·)
variance function. For the same reason, we cannot test the statistical significance
of extending model M16.2 by the inclusion of random slopes, which leads to
model M16.3.

In these cases, the plausibility of the modifications of the random effects structure
needs to be assessed using, e.g., residual diagnostics and/or by applying the
information criteria (Sect. 13.7.2). Panel R16.16 presents the values of the AIC
for models M16.1–M16.5. It can be seen that, e.g., the AIC for model M16.2,

362 16 ARMD Trial: Modeling Visual Acuity

R16.16 ARMD Trial: The values of Akaike’s Information Criterion for mod-
els M16.1–M16.5

> AIC(fm16.1, fm16.2, # M16.1, M16.2
+ fm16.3, fm16.4) # M16.3, M16.4

df AIC

fm16.1 7 6592.0

fm16.2 8 6537.1

fm16.3 10 6450.6

fm16.4 9 6449.8

> fm16.4ml <- update(fm16.4, method = "ML")

> fm16.5ml <- update(fm16.5, method = "ML")

> anova(fm16.4ml, fm16.5ml) # M16.4 ⊂ M16.5

Model df AIC BIC logLik Test L.Ratio p-value

fm16.4ml 1 9 6438.0 6480.9 -3210.0

fm16.5ml 2 8 6437.4 6475.5 -3210.7 1 vs 2 1.3972 0.2372

i.e., 6,537.1, is much larger than the value of 6,450.6 for model M16.3. This
points to a better fit of the latter model. Also, as suggested by, e.g., Fig. 16.9, the
predicted values obtained for model M16.3 follow more closely the observed ones,
as compared to model M16.2 (see Fig. 16.5).

Note that the lowest value of the AIC is obtained for model M16.5, suggesting
that the model provides the best overall fit to the data. This reflects the choices we
made with respect to the random-effects structure in the process of arriving at the
model.

In the remainder of this section, we illustrate the use of the analytic results and of
the R simulation functions for testing hypotheses about the random effects structure
with parameter values at the boundary of the parameter space. Toward this end, we
consider several models for the ARMD data which assume homoscedasticity of the
residual errors.

16.6.1 Test for Random Intercepts

Let us first consider model M16.1 containing random intercept. To test whether
subject-specific random intercepts are needed, we might use a REML-based LR test
based on the alternative model M16.1 and a null model that assumes homoscedastic
residual errors and no random effects.

In Panel R16.17, we conduct the REML-based LRT by referring the LR-test
statistic to a null distribution obtained using a mixture of c2 distributions or a
simulation technique.

In particular, for the first approach, presented in Panel R16.17a, we create the
object vis.gls1a, which represents the fit of the null model. The model does not

16.6 Testing Hypotheses About Random Effects 363

R16.17 ARMD Trial: The REML-based likelihood-ratio test for no random in-
tercepts in model M16.1. The formula-object lm2.form and the model-fit object
fm16.1 were created in Panel R16.1
(a) Using 0.5c2

0 +0.5c2
1 as the null distribution

> vis.gls1a <- # Null model

+ gls(lm2.form, data = armd)

> (anova.res <- anova(vis.gls1a, fm16.1)) # Null vs. M16.1

Model df AIC BIC logLik Test L.Ratio p-value

vis.gls1a 1 6 6839.9 6868.5 -3414

fm16.1 2 7 6592.0 6625.3 -3289 1 vs 2 249.97 <.0001

> (anova.res[["p-value"]][2])/2 # 0.5c2
0 + 0.5c2

1

[1] 0

(b) Using the function exactRLRT() to simulate the null distribution

> library(RLRsim)

> exactRLRT(fm16.1) # M16.1 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 249.97, p-value < 2.2e-16

include any random intercepts and is defined by the formula lm2.form. Thus, it has
the same mean structure as the alternative model M16.1, which is represented by the
object fm16.1. Then, we apply the anova() to calculate value of the REML-based
LR test statistics.

Note that we are testing the null hypothesis that the variance of the random
intercept is zero, which is on the boundary of the parameter space. Thus, the
p-value reported by anova() is computed by referring the value of the LR-test
statistic to the incorrect c2

1 null distribution. In this case, the appropriate asymptotic
distribution is a 50%–50% mixture of the c2

0 and c2
1 distributions (Sect. 13.7.2).

To obtain the correct p-value, we divided the c2
1-based p-value, extracted from

the object anova.res containing the results of the anova()-function call, by 2.
Clearly, in the current case, the adjusted p-value indicates that the result of the test
is statistically significant. It allows us to reject the null hypothesis that the variance
of the distribution of random intercepts is equal to 0.

An alternative, shown in Panel R16.17b, is to use the empirical null distribution
of the LR test, obtained with the help of the function exactRLRT() from the
package RLRsim (Sect. 14.7). In the panel, we show the result of application of the
function to the object fm16.1. Because we test a random effect in model M16.1,
which contains only a single random effect, we use the abbreviated form of the

364 16 ARMD Trial: Modeling Visual Acuity

function call, with m as the only argument. The p-value of the REML-based LR test,
estimated from 10,000 simulations (the default), clearly indicates that the result of
the test is statistically significant. In this case, given the importance of including
the random intercepts into the model, which are needed to adjust for the correlation
between visual acuity measurements, there is not much difference with the p-value
obtained using the asymptotic 50%–50% mixture of the c2

0 and c2
1 distributions.

To simulate the null distribution of the LRT, we could consider applying
the simulate() function to objects vis.gls1 (see Panel R6.3) and fm16.1.
Unfortunately, the necessary simulate.gls()method is not developed for model-
fit objects of class gls. In the next section, we will illustrate how to use the
simulate() function to test for the need of random slope.

16.6.2 Test for Random Slopes

For illustrative purposes, we consider a model with uncorrelated subject-specific
random intercepts and slopes and independent, homoscedastic residual errors. That
is, we consider a model specified by (16.10)–(16.12), with D given by (16.16), and
Ri = s 2× I4. We will refer to this newly defined model as M16.7. In this section,
we will use the REML-based LR test to test whether random slopes are needed in
model M16.7. The test involves comparison of two models, namely, M16.1 (null)
and M16.7 (alternative).

In Panel R16.18, we introduce three approaches to perform the LR test for
random slopes.

To begin, in Panel R16.18a, we fit model M16.7, which contains random slopes,
by modifying model M16.4. More specifically, we assume a constant residual
variance. The resulting model is stored in the model-fit object fm16.7. The results
of fitting of the model are provided in Table 16.3.

In the first approach, shown in Panel R16.18b, we perform the REML-based LR
test and explore the use of a 50%–50% mixture of the c2

1 and c2
2 distributions as

the null distribution (see Verbeke and Molenberghs 2000, Sect. 6.3.4). To compute
the corresponding p-value, we extract the LR-test statistic value from the object
an.res, which contains the results of the anova()-function call, and we use it as
an argument of the pchisq() function, which computes the upper tail probabilities
of the c2 distributions with 1 and 2 degrees of freedom. Clearly, the adjusted p-value
indicates that the result of the test is statistically significant. Thus, the test allows us
to reject the null hypothesis that the variance of random slopes is equal to 0.

In Panels R16.18c and R16.18d, we consider simulating the null distribution of
the REML-based LR-test statistic.

Toward this end, in Panel R16.18c, we use the exactRLRT() function. Note that,
as it was mentioned earlier, the function allows only for independent random effects.
This is the reason why we illustrate the use of the function for model M16.7 with
a diagonal matrix D. Because we consider a model with two variance components,
i.e., random intercepts and random slopes, we need to specify all three arguments

16.6 Testing Hypotheses About Random Effects 365

R16.18 ARMD Trial: The REML-based likelihood-ratio test for random slopes
for model M16.7. The model-fit objects fm16.1 and fm16.4 were created in
Panels R16.1 and R16.10, respectively
(a) Fitting model M16.7

> fm16.7 <- # M16.7 ← M16.4
+ update(fm16.4, weights = NULL, # Constant resid. variance

+ data = armd)

(b) Using 0.5c2
1 +0.5c2

2 as the null distribution

> (an.res <- # M16.1 (null)

+ anova(fm16.1, fm16.7)) # M16.7 (alternative)

Model df AIC BIC logLik Test L.Ratio p-value

fm16.1 1 7 6592.0 6625.3 -3289.0

fm16.7 2 8 6453.1 6491.2 -3218.6 1 vs 2 140.83 <.0001

> (RLRT <- an.res[["L.Ratio"]][2]) # LR-test statistic

[1] 140.83

> .5 * pchisq(RLRT, 1, lower.tail = FALSE) + # 0.5c2
1+ 0.5c2

2
+ .5 * pchisq(RLRT, 2, lower.tail = FALSE)

[1] 1.3971e-31

(c) Using the function exactRLRT() to simulate the null distribution

> mAux <- # Auxiliary model with ...

+ update(fm16.1, random = ~0 + time|subject, # ... random slopes only.

+ data = armd)

> exactRLRT(m = mAux, # Auxiliary model

+ m0 = fm16.1, # M16.1 (null)

+ mA = fm16.7) # M16.7 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 140.83, p-value < 2.2e-16

(d) Using the function simulate() to simulate the null distribution

> vis.lme2.sim <- # M16.1 (null)

+ simulate(fm16.1, m2 = fm16.7, nsim = 10000) # M16.7 (alternative)

> plot(vis.lme2.sim, df = c(1, 2), # Fig. 16.12

+ abline = c(0,1, lty=2))

366 16 ARMD Trial: Modeling Visual Acuity

Fig. 16.12 ARMD Trial: Empirical and nominal p-values for testing the need of random slopes in
model M16.7

m, m0, and mA of the function exactRLRT() (Sect. 14.7). The required form of the
function call is shown in Panel R16.18b. The simulated p-value is essentially equal
to 0, indicating that null hypothesis can be rejected.

Finally, in Panel R16.18d, the function simulate() is applied to obtain a
plot of empirical and nominal p-values (Sect. 14.7). The former are generated by
simulating the values of the REML-based LR-test statistic. The plot, in turn, can be
used to choose the appropriate null distribution for the calculation of the p-value
corresponding to the observed value of the test statistic.

More specifically, the function simulate() is applied to the objects fm16.1 and
fm16.7, with the former specified as the null model and the latter indicated, with
the help of the argument m2, as the alternative model. The number of the simulated
test-statistic values is set, with the help of the nsim argument, at 10,000.

The plot() statement creates a plot of the empirical and nominal p-values of
the LR-test statistic. The nominal p-values are computed using three distributions:
c2

1, c2
2, and a 50%–50% mixture of c2

1 and c2
2. The required degrees of freedom

are passed to the plot() function using the argument df in the form of a numeric
vector (Sect. 14.7). To include in the plot, e.g., a 65–35% mixture, the argument
weights=c(0.65,0.35) should explicitly be used.

16.7 Analysis Using the Function lmer() 367

The resulting plot is shown in Fig. 16.12. Note that two rows of three panels are
displayed: one row for the REML and one for the ML estimation. As was mentioned
in Sect. 14.7, by default, the function simulate.lme() uses both forms of the LR
test.

The plot shows that the nominal p-values, obtained using c2
1, c2

2, or a 50%–50%
mixture of c2

1 and c2
2 distributions, are larger than the corresponding simulated

values. This implies that the use of any of those distributions would result in a
conservative test.

16.7 Analysis Using the Function lmer()

In this section, we refit models M16.1 and M16.7, presented in Sects. 16.2.1
and 16.6.2, respectively, using the function lmer() from the package lme4.0. The
choice of the models is dictated by the fact that, at the time of writing of this book,
the function allows only for independent, homoscedastic residual errors. Note that
the two models do not adequately describe the ARMD data, as can be concluded
from the results of the analyses obtained with the help of the lme() function.
Thus, the results presented in the current section should be treated mainly as the
illustration of the use of the lmer() function.

16.7.1 Basic Results

In Panel R16.19, we demonstrate how to fit model M16.1 with the help of the
function lmer(). The model included random intercepts and assumed that residual
variance was constant. It was fitted using the lme() function in Panel R16.1, with
the fit stored in the object fm16.1.

In Panel R16.19a, we present the lmer()-function syntax for fitting model
M16.1. Note the direct specification of the random-effects structure in the formula
argument (Sect. 15.3.1). Also, it is worth noting that the argument data is provided
with a data frame, and not with a grouped data object. In fact, in contrast to the
lme() function, the use of grouped data objects is neither needed nor recommended
(Sect. 15.3). The model is fitted using REML, which is the default estimation
method.

The results of the fitted model are printed using the generic print() function. It
is worth noting that the values of the t-test statistics for the fixed effects are provided
without any p-values (Sect. 15.5). Methods to calculate p-values will be presented
later in this section.

The corr=FALSE argument, used in the print()-function call, excludes the
estimated correlation matrix of the fixed effects from the printout. This is because
the names of the fixed effects are long and the printout of the matrix would not
be legible. Instead, in Panel R16.19b, the variance-covariance matrix of the fixed

380 16 ARMD Trial: Modeling Visual Acuity

R16.26 ARMD Trial: Model M16.7 fitted using the function lmer()

(a) Fitting the model and extracting basic information

> fm16.2mer <- # M16.7
+ lmer(visual ~ visual0 + time + treat.f + treat.f:time +

+ (1|subject) + (0 + time|subject),

+ data = armd)

> summ <- summary(fm16.2mer)

> coef(summ) # t-Table

Estimate Std. Error t value

(Intercept) 5.349030 2.332568 2.2932

visual0 0.898460 0.039317 22.8519

time -0.215370 0.032266 -6.6749

treat.fActive -2.313752 1.209754 -1.9126

time:treat.fActive -0.055059 0.047090 -1.1692

> unlist(VarCorr(fm16.2mer)) # ̂D. Short printout

subject subject

54.071157 0.079359

> sigma(fm16.2mer) # ŝ
[1] 6.6834

(b) Likelihood-ratio test for the treat.f:time interaction

> fm16.2aux <- # Model M16.7 with ...

+ update(fm16.2mer, . ~ . - treat.f:time) #... interaction omitted

> anova(fm16.2aux, fm16.2mer)

Data: armd

Models:

fm16.2aux: visual ~ visual0 + time + treat.f +

fm16.2aux: (1 | subject) + (0 + time | subject)

fm16.2mer: visual ~ visual0 + time + treat.f + treat.f:time +

fm16.2mer: (1 | subject) + (0 + time | subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm16.2aux 7 6441 6474 -3213

fm16.2mer 8 6441 6480 -3213 1.38 1 0.24

16.8 Chapter Summary

In this chapter, we analyzed the ARMD data by applying LMMs. By using the
models, the hierarchical structure of the data was directly addressed, which allowed
taking into account the correlation between the visual acuity measurements obtained
for the same individual.

Table 16.4 provides information about the models defined in this chapter.
The main tool that was used to fit the models in Sects. 16.2–16.6 was the

function lme() from the package nlme. In Sect. 16.7, we refitted some of the
models using the function lmer() from the package lme4.0. The latter function

16.8 Chapter Summary 381

T
ab

le
16

.4
A

R
M

D
Tr

ia
l:

Su
m

m
ar

y
of

th
e

m
od

el
s

de
fin

ed
an

d
fit

te
d

us
in

g
th

e
R

E
M

L
es

ti
m

at
io

n,
in

C
ha

p.
16

(a
)

M
od

el
s

fit
te

d
us

in
g

th
e

fu
nc

ti
on

l
m
e
(
)

fr
om

th
e

pa
ck

ag
e

nl
m

ea

M
od

el
la

be
l

Se
ct

io
n

Sy
nt

ax
R

ob
je

ct
M

ea
n

R
an

do
m

ef
fe

ct
s

(m
at

ri
x
D

)
R

es
id

ua
lv

ar
ia

nc
e

M
16

.1
16

.2
R

16
.1

f
m
1
6
.
1

(1
2.

8)
In

te
rc

ep
t(

16
.6

)
C

on
st

an
t

M
16

.2
16

.3
R

16
.5

f
m
1
6
.
2

(1
2.

8)
In

te
rc

ep
t(

16
.6

)
va

rP
ow

er
M

16
.3

16
.4

.1
R

16
.1

0
f
m
1
6
.
3

(1
2.

8)
In

te
rc

ep
t,

sl
op

e
co

rr
el

at
ed

(1
6.

13
)

va
rP

ow
er

M
16

.4
16

.4
.2

R
16

.1
1

f
m
1
6
.
4

(1
2.

8)
In

te
rc

ep
t,

sl
op

e
un

co
rr

el
at

ed
(1

6.
16

)
va

rP
ow

er
M

16
.5

16
.4

.3
R

16
.1

3
f
m
1
6
.
5

(1
2.

9)
In

te
rc

ep
t,

sl
op

e
un

co
rr

el
at

ed
(1

6.
16

)
va

rP
ow

er
M

16
.6

16
.5

R
16

.1
5

f
m
1
6
.
6

b
(1

2.
8

)
In

te
rc

ep
t,

sl
op

e
co

rr
el

at
ed

(1
6.

13
)

va
rI

de
nt

M
16

.7
16

.6
.2

R
16

.1
8

f
m
1
6
.
7

(1
2.

8)
In

te
rc

ep
t,

sl
op

e
un

co
rr

el
at

ed
(1

6.
16

)
C

on
st

an
t

(b
)

M
od

el
s

fit
te

d
us

in
g

th
e

fu
nc

ti
on

l
m
e
r
(
)

fr
om

th
e

pa
ck

ag
e

lm
e4

.0
M

od
el

la
be

l
Se

ct
io

n
Sy

nt
ax

R
ob

je
ct

M
ea

n
R

an
do

m
ef

fe
ct

s
(m

at
ri

x
D

)
R

es
id

ua
lv

ar
ia

nc
e

M
16

.1
16

.2
R

16
.1

9
f
m
1
6
.
1
m
e
r

(1
2.

8)
In

te
rc

ep
t(

16
.6

)
C

on
st

an
t

M
16

.7
16

.6
.2

R
16

.2
6

f
m
1
6
.
7
m
e
r

(1
2.

8)
In

te
rc

ep
t,

sl
op

e
un

co
rr

el
at

ed
(1

6.
16

)
C

on
st

an
t

a
T

he
m

ea
n

st
ru

ct
ur

e,
de

fin
ed

in
(1

2.
8)

,i
s

re
pr

es
en

te
d

by
th

e
fo

rm
ul

a
v
i
s
u
a
l

~
v
i
s
u
a
l
0

+
t
i
m
e

+
t
r
e
a
t
.
f

+
t
i
m
e
:
t
r
e
a
t
.
f

b
O

pt
im

iz
at

io
n

of
th

e
li

ke
li

ho
od

fo
r

M
16

.6
di

d
no

tc
on

ve
rg

e

382 16 ARMD Trial: Modeling Visual Acuity

R16.27 ARMD Trial: The REML-based likelihood-ratio test for no random slopes
in model M16.7. Model-fit objects fm16.1mer and fm16.2mer were created in
Panels R16.19 and R16.26, respectively

(a) Using 0.5c2
1 +0.5c2

2 as the null distribution

> RML0 <- logLik(fm16.1mer) # log-REML, M16.1 (null)

> RMLa <- logLik(fm16.2mer) # log-REML, M16.7 (alternative)

> (RLRTstat <- -2 * as.numeric(RML0 - RMLa))

[1] 140.83

> .5 * pchisq(RLRTstat, 1, lower.tail = FALSE) + # p-value
+ .5 * pchisq(RLRTstat, 2, lower.tail = FALSE)

[1] 1.3971e-31

(b) Using the function exactRLRT() to simulate the null distribution

> require(RLRsim)

> mAux <- lmer(visual ~ # Auxiliary model with ...

+ visual0 + time + treat.f + treat.f:time +

+ (0 + time| subject), # ... random slopes only.

+ data = armd)

> exactRLRT(m = mAux, # Auxiliary model

+ m0= fm16.1mer, # M16.1 (null)

+ mA= fm16.2mer) # M16.7 (alternative)

simulated finite sample distribution of RLRT. (p-value

based on 10000 simulated values)

data:

RLRT = 140.83, p-value < 2.2e-16

is especially suited for, e.g., LMMs with crossed random effects, but it can only
deal with conditional-independence models with homoscedastic residual errors. In
this respect, it offers a more limited choice of models than lme(). For this reason,
in our presentation, we primarily focused on the use of lme().

In the process of arriving at the form of the final model M16.5, we fixed the
mean structure as in (16.1) and built a series of models (see Table 16.4) with
various random structures: model M16.1 with random intercepts and homoscedastic
residual variances (Sect. 16.2); model M16.2 with random intercepts and residual
variances described by a variance function defined as a power of the measurement
time (Sect. 16.3); model M16.3 with correlated random intercepts and random
slopes and the power-of-time residual variances (Sect. 16.4.1); and model M16.4
with independent random intercepts and random slopes and the power-of-time

16.8 Chapter Summary 383

residual variances (Sect. 16.4.2). The last model gave a satisfactory fit to the data
and allowed us to simplify the mean structure by adopting a constant treatment
effect, as reflected in model M16.5 in Sect. 16.4.3.

The presented approach was adopted mainly for illustrative purposes. In practice,
we should start building the model using the most general fixed- and random-effects
structures. Then, we might consider simplifying the random-effects structure while
checking the fit of the simplified models using the LR test or information criteria
(Sect. 13.7.2). When a more parsimonious structure with a satisfactory fit to the
data has been found, we could consider in turn simplifying the mean structure.
After arriving at a final model, we should check its fit by residual diagnostics
(Sect. 13.6.2).

Thus, in the case of the visual acuity data, we might begin, for instance, from
model M16.3, but with time included in the mean structure as a factor, and try to
simplify the model by removing the random effects of time. We would most likely
find that the simplification was worsening the fit of the model. Thus, we might settle
for a model with random intercepts and time effects, and consider simplifying the
mean structure by assuming, e.g., a continuous time effect and a constant treatment
effect. This step would most likely lead us to model M16.5 as the final model.

In Sect. 16.5, we additionally considered model M16.6 with correlated random
intercepts and random slopes and time-specific residual variances. As the model
assumes a slightly more general residual-variance structure than model M16.3, it
could offer a better fit. We discovered, however, that model M16.6 could not be
fitted to the data by the function lme(). From a practical point of view of using the
function to fit LMMs, this example illustrates that the results of a model fit need
always to be carefully checked for symptoms of nonconvergence. This is because
the function may fail to report any apparent error messages that would indicate
problems with convergence of the estimation algorithm.

In Sect. 16.6, we discussed the issue of testing hypotheses about the random-
effects structure. This is a difficult issue, due to the problems with obtaining the null
distribution of the LR-test statistic in situations when the null hypothesis involves
values of parameters at the boundary of the parameter space. Exact analytical
results are available only for a limited set of special cases. In practice, a simulation
approach is often used. However, the R functions available for this purpose are
also limited in their scope. For instance, they apply to models with homoscedastic
residual errors. For this reason, their application to the models considered for the
ARMD data, which specified the residual variances using the varPower(·) variance
function, was not possible. In such a case, the choice of the random effects structure
may need to be based on an informal comparison of the fit of the models based
on residual diagnostics and/or the information criteria. To nevertheless illustrate
the tools for testing hypotheses about the random-effects structure, we considered
model M16.7 with uncorrelated random intercepts and slopes and homoscedastic,
independent residual errors.

As mentioned earlier, in Sect. 16.7, we refitted models M16.1 and M16.7 using
the function lmer() from the package lme4.0. This allowed us to illustrate the
differences in the use of the function, as compared to lme(). Important differences

384 16 ARMD Trial: Modeling Visual Acuity

include, e.g., the form of the model-defining formula and the methods to extract
components from a model-fit object. Also, lmer() does not report p-values, which
means that the user needs to know additional tools that allow to evaluate results of
significance tests. We have presented such tools in Sects. 16.7.2–16.7.4.

In the next chapter, we further illustrate the use of the function lme() for fitting
LMMs by applying the models in the analysis of the PRT study data.

