PROBLEMAS DE ANÁLISIS DE FUNCIONES DE VARIABLE COMPLEJA. HOJA 2.

1. Comprobar que la ecuación de Laplace en coordenadas polares es

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$$

- 2. Usando el ejercicio anterior, comprobar que $\log |z|$ es armónica en $\mathbb{C} \setminus \{0\}$, pero no tiene ninguna conjugada armónica en $\mathbb{C} \setminus \{0\}$.
- 3. Demostrar que si $z, w \in \mathbb{C}$ y la función $(-\pi, \pi] \ni \theta \mapsto \operatorname{Arg}(z + we^{i\theta})$ es constante, entonces w = 0.
- **4.** Hallar una aplicación conforme de la banda horizontal $\{z \in \mathbb{C} : -\alpha < \text{Im} z < \alpha\}$ en el semiplano de la derecha $\{w \in \mathbb{C} : \text{Re}z > 0\}.$
- 5. Sean $\{a_n\}_{n=1}^N$ y $\{b_n\}_{n=1}^N$ dos sucesiones finitas de números complejos. Pongamos $B_0=0$ y $B_k=0$ $\sum_{n=1}^{k} b_n$ para k = 1, 2, ..., N. Demostrar la fórmula de suma por partes:

$$\sum_{n=M}^{N} a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n.$$

6. Demostrar el teorema de Abel: si $\sum_{n=1}^{\infty} a_n$ converge entonces

$$\lim_{r \to 1^-} \sum_{n=1}^{\infty} a_n r^n = \sum_{n=1}^{\infty} a_n.$$

Indicación: usar el ejercicio anterior.

- 7. Determinar el radio de convergencia de las siguientes series de potencias:

 - a) $\sum_{n=1}^{\infty} (\log n)^2 z^n$; b) $\sum_{n=1}^{\infty} n! z^n$; c) $\sum_{n=1}^{\infty} \frac{n^2}{4^n + 3n} (z 6)^n$; d) $\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} z^n$ (usar la fórmula de Stirling); e) $\sum_{n=1}^{\infty} 2^n (z 3i)^n$; f) $\sum_{n=1}^{\infty} \frac{n^n}{1 + 2^n n^n} z^n$; g) $\sum_{n=1}^{\infty} \frac{n}{6} z^n$; h) $\sum_{n=1}^{\infty} (2 + (-1)^n)^n z^n$.
- 8. Sea $f(z) = \sum_{a_n z^n}$ una serie de potencias centrada en el origen. Demostrar que para cada z_0 en su disco de convergencia f tiene una expansión en serie de potencias centrada en z_0 . Indicación: poner $z = z_0 + (z - z_0)$ y usar la fórmula del binomio.
- 9. ¿Qué funciones representan las siguientes series de potencias: $\sum_{n=1}^{\infty} nz^n$, $\sum_{n=1}^{\infty} n^2z^n$?
- **10.** Demostrar lo siguiente:
 - a) La serie de potencias $\sum_{n=1}^{\infty} nz^n$ no converge en ningún punto de la circunferencia unidad |z|=1. b) La serie de potencias $\sum_{n=1}^{\infty} z^n/n^2$ converge en todo punto de la circunferencia unidad.

 - c) La serie de potencias $\sum_{n=1}^{\infty} z^n/n$ converge en todo punto de la circunferencia unidad, excepto en z=1. Indicación: usar suma por partes.

2 HOJA 2

- 11. Consideremos la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = e^{-1/x^2}$ si x > 0, y f(x) = 0 si $x \le 0$. Demostrar que $f \in C^{\infty}(\mathbb{R})$, pero f no admite desarrollo en serie de potencias centrado en el origen.
- 12. Supongamos que f y g son funciones holomorfas en un entorno de 0, y denotemos sus representaciones en series de potencias en un disco D centrado en 0 por

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \ g(z) = \sum_{n=0}^{\infty} b_n z^n.$$

Demostrar que:

- a) La representación de f+g en serie de potencias en D es $(f+g)(z)=\sum_{n=0}^{\infty}(a_n+b_n)z^n$.
- b) La representación de fg en serie de potencias en D es $(fg)(z) = \sum_{n=0}^{\infty} c_n$, donde

$$c_n = a_n b_0 + a_{n-1} b_1 + \dots + a_1 b_{n-1} + a_0 b_n.$$

- 13. Si g es holomorfa en un entorno de 0 y $g(0) \neq 0$, hallar la representación en serie de potencias centrada en 0 de 1/g en términos de la de g.
- 14. Calcular las integrales $\int_{\gamma} f$ en los siguientes casos:
 - a) f(z) = 1/z, y γ la circunferencia unidad, orientada en el sentido contrario a las agujas del reloj (orientación positiva).
 - b) $f(z) = z/(z^2 + 6)$, y γ el triángulo de vértices 1, i, -i, orientado en el sentido de las agujas del reloj (orientación negativa).
 - c) $f(z) = \overline{z}/(z+6)$, y γ el rectángulo de vértices $\pm 9 \pm i$, orientado positivamente.
- **15.** Sea γ una curva C^1 a trozos en \mathbb{C} , sea $\Gamma \subset \mathbb{C}$ la traza de γ , y sea (f_n) una sucesión de funciones continuas $f_n : \Gamma \to \mathbb{C}$ tales que (f_n) converge uniformemente en Γ a una función f. Demostrar que

$$\lim_{n \to \infty} \int_{\gamma} f_n = \int_{\gamma} f.$$

- **16.** Sean Ω abierto de \mathbb{C} , $f:\Omega\to\mathbb{C}$ continua, $\gamma:[a,b]\to\Omega$ de clase C^1 , y (γ_n) una sucesión de curvas $\gamma_n:[a,b]\to\Omega$ de clase C^1 tales que $\lim_{n\to\infty}\gamma_n(t)=\gamma(t)$ y $\lim_{n\to\infty}\gamma_n'=\gamma(t)$ uniformemente en $t\in[a,b]$. Demostrar que $\lim_{n\to\infty}\int_{\gamma_n}f=\int_{\gamma}f$.
- 17. Sea $F:[0,1]\times\Omega\to\mathbb{C}$ una función continua, donde Ω es un abierto de \mathbb{C} , y sea $\gamma:[a,b]\to\Omega$ una curva de clase C^1 a trozos. Probar que la función $\varphi:[0,1]\to\mathbb{C}$ definida por $\varphi(t)=\int_{\gamma}F(t,z)dz$ es continua.
- 18. Calcular las siguientes integrales para una curva de clase C^1 a trozos Γ que vaya de $-\pi i$ a πi en el semiplano derecho: $\int_{\Gamma} z^4 dz$; $\int_{\Gamma} e^z dz$; $\int_{\Gamma} \cos z dz$; $\int_{\Gamma} \sinh z dz$.
- 19. Calcular $\int_C z^n dz$, donde C es cualquier circunferencia centrada en 0 y con orientación positiva.
- **20.** Si $\Omega = \mathbb{C} \setminus \{0\}$ y f(z) = 1/z, demostrar que f no tiene ninguna primitiva en Ω .
- **21.** Sean $\Gamma_1, ..., \Gamma_n$ curvas C^1 a trozos tales que el punto final de Γ_j es igual al punto inicial de Γ_{j+1} , y definamos $\Gamma = \Gamma_1 \cup ... \cup \Gamma_n$ (recorrida en el orden natural, es decir, Γ_j antes que Γ_{j+1}). Comprobar que $\int_{\Gamma} f = \sum_{j=1}^n \int_{\Gamma_j} f$.
- **22.** Demostrar que si |a| < r < |b| entonces

$$\int_{C_r} \frac{1}{(z-a)(z-b)} dz = \frac{2\pi i}{a-b},$$

donde C_r es la circunferencia de radio r centrada en 0, con orientación positiva.

23. Demostrar que dos primitivas de una misma función en un abierto conexo difieren en una constante.