Electronic Instrumentation

Resistive sensors

Romano Giannetti

Univ. Pontificia Comillas — ICAI
1. Introducción
2. Resistive sensors: big variations.
3. ΔR conditioning
4. Linearization methods

Logo image from https://openclipart.org/detail/172330/oscilloscope
Resistive sensors

Electric sensor

- Analog
 - Active
 - Voltage
 - Passive
 - Current
 - Reactive
 - Resistive
 - Big variations
 - Small variations

Digital

Done!
The sensor is called a *small variations* sensor if:

\[
\frac{\Delta R}{R_{\text{avg}}} \ll 1
\]

and a *big variation* otherwise.

<table>
<thead>
<tr>
<th>(\Delta R / R_{\text{avg}}) type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.12</td>
</tr>
</tbody>
</table>

In the last case, it’s a grey area...
The sensor is *linear* when the sensitivity is constant. So:
- S1 is *not* linear;
- S2 is *not* linear;
- S3 is *linear*;
- S4 is ...?

Typically, ΔR sensors are not linear; the exception are potentiometric (electro-mechanic) sensors.
In a descriptive way, the conditioning of a resistive sensor, big variations, is simple:

\[V_1(x) = I_0 R(x) \]

\[V_o(x) = I_0 R(x) + E_0 \]

Sensitivity adjustment

Zero adjustment
Often the current through the sensor is limited, so it is impossible to do the sensitivity adjustment in one step:

\[I_0 R(x) E_0 \]

Clearly, the adder and the amplifier can be swapped.
If the sensor is floating:

\[v_o = \frac{R_2}{R_1} \left(-\frac{E_0}{R_0} R(x) + E_Z \right) \]
Important details!

When designing the circuits, keep in mind the following details:

- If the sensor is **not** floating, you have to change the supply stage (there are several possible configurations, look around).
- **Always** check that the operational amplifiers do not saturate at each stage!
- Yes, you can compact this into a two op-amp’s circuit (even with just one, sometime) but be careful: early optimization is evil!

You can use the (several) degrees of freedom to optimize your design toward various target (low error, low consumption, and so on).
Unfortunately, ΔR sensors are often non-linear. Non-linear output in an instrument is better avoided, for several reasons, but basically:

- Reading the value on a non-linear scale is difficult and error-prone;
- when in a control loop, the local gain depend on the value, which can be a nightmare for stability.
linearization: the objective

Sensor’s calibration curve

Output’s calibration curve

\[R(x) \]

\[v_o(x) \]
Linearization methods

Basically, we will study three methods for linearizing a sensor (or an instrument):

Method #0: pass. The lazy engineer’s one.

Method #1: invent something special. The smart engineer’s one.

Method #2: do that *exactly*. The rich (and with a lot of time available) engineer’s one.
How-to linearize: method #0

Let’s look at it…

1. …well, it’s not so non-linear, no?

2. So we will *ignore* the non-linearity and design everything as if the sensor were linear.

3. Then, we will compute the difference between our (invented) sensor and the real one as a *linearity error*.
How-to linearize: method #2

(Yes, I know. Method #1 later...)

Sensor’s calibration curve

Let’s look at it...

1. We measure a value for \(R(x) = R_M \) through a linear conditioning system.

2. With a μC, we will compute \(x_M = f_{f^{-1}}(R_N) \).

3. Finally, you can recreate the output with a DAC or directly use it.

This is almost exact (with sufficient bits) but expensive.
How-to linearize: method #1

Method #1 for linearizing is based on the specific characteristics of the sensor; the basic concept is to design a conditioning circuit *ad-hoc* for it.

- we can find a *physical* circuit that cancels out the non linearity (for example: a logarithmic amplifier can linearize a sensor with an exponential calibration curve);
- we can modify the sensor by adding components that (totally or partially) compensate the non-linearity;
- and so on; the key is the inventiveness of the designer.
Linear conductance sensors

Some resistive sensor has a calibration curve where its *conductance* is linear with the measured quantity.

If the sensor has a calibration curve like:

\[R(x) = \frac{k}{x} \]

I can supply it with constant \(V \) and convert the resulting \(I \) in voltage:

\[v_x = -E_0 \frac{R_0}{R(x)} = -E_0 \frac{R_0}{k} x \]

...and then continue with the normal zero and sensitivity adjustment.
Almost linear conductance sensors

Sometimes is worth mixing two methods. For example, in this case the sensor is (green)

\[R(x) = \frac{k}{x^\alpha}, \quad \alpha = 0.7 \]

You can apply method \#1 as if it were of the \(1/x\) kind and obtain a much less non-linear curve (red).

Then you can apply method \#0 or \#2 with better results overall.
If you have a sensor that
- has high sensitivity, and
- is wildly nonlinear
you can trade part of your sensitivity with linearity by using a parallel fixed resistor.

This is commonly used with NTC thermistors.
NTC sensors

NTC (Negative Temperature Coefficient) are probably the most common used resistive temperature sensors.

\[R(T) = R_0 e^{\frac{\beta}{T} - \frac{\beta}{T_0}} \], \ T \text{ in K}

where \(\beta \) is the “sensitivity” (sic) of the NTC — in the range of 1000 K–5000 K.
Parallel resistor, intervals

How do we find a value for R_p?

![Graph showing the parallel connection of $R(x)$ and R_p. The graph illustrates the resistance $R(x)$ and R_p at different intervals x_1, x_2, and x_3, with the differences Δ_1 and Δ_3 highlighted.]
The idea is choosing R_p so that the two intervals Δ_1 and Δ_2 are equals, as if the calibration curve were lineal.

$$\Delta_1 = \Delta_2 \Rightarrow R(x_1) \parallel R_p - R(x_2) \parallel R_p = R(x_2) \parallel R_p - R(x_3) \parallel R_p$$

Solving for R_p leads to:

$$R_p = \frac{R(x_2)(R(x_1) + R(x_3)) - 2R(x_1)R(x_3)}{R(x_1) - R(x_3) - 2R(x_2)}$$

Obviously, you have to check that the value for R_p is reasonable: positive (!) and not too small — otherwise the sensitivity will drop too much.
Parallel resistor, tangent

If the range of interest is a small portion around x_2, we can find the value of R_p giving the maximum linearity with:

$$\left. \frac{\partial^2 R(x) \parallel R_p}{\partial x^2} \right|_{x=x_2} = 0$$

which is still an equation with just R_p as unknown.

For NTC (where x is T), we can find

$$R_p = \frac{\beta - 2T_2}{\beta + 2T_2} R(T_2).$$

\[1\] Not easily...