
A Motivational Introduction to Computational Logic
and (Constraint) Logic Programming

The following people have contributed to this course material:

Manuel Hermenegildo (editor), Technical University of Madrid, Spain and University of New Mexico, USA; Francisco Bueno, Manuel

Carro, Pedro López, and Daniel Cabeza, Technical University of Madrid, Spain; Marı́a José Garcı́a de la Banda, Monash University,

Australia; David H. D. Warren, University of Bristol, U.K.; Ulrich Neumerkel, Technical University of Vienna, Austria; Michael Codish,

Ben Gurion University, Israel



Computational Logic

direct use of logic
as a programming tool

program verification
proving properties

declarative programming

logic of programming

logic

verification

constraints

Logic of Computation Declarative Programming

programming

algorithms 

functional programming

logic programming knowledge representation

logic and AI

lambda calculus

1



The Program Correctness Problem

?

• Conventional models of using computers – not easy to determine correctness!

� Has become a very important issue, not just in safety-critical apps.
� Components with assured quality, being able to give a warranty, ...
� Being able to run untrusted code, certificate carrying code, ...

2



A Simple Imperative Program

• Example:

#include <stdio.h>

main() {

int Number, Square;

Number = 0;

while(Number <= 5)

{ Square = Number * Number;

printf("%d\n",Square);

Number = Number + 1; } }

• Is it correct? With respect to what?

• A suitable formalism:

� to provide specifications (describe problems), and
� to reason about the correctness of programs (their implementation).

is needed.

3



Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

� verbose
� vague
� ambiguous
� needs context (assumed information)
� ...

Philosophers and Mathematicians already pointed this out a long time ago...

4



Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

• Symbolic logic:
A shorthand for classical logic – plus many useful results:
a1 : likes(aristotle, cookies)

a2 : ∀X likes(X, cookies)→ friend(plato, X)

t1 : friend(plato, aristotle)

T [a1, a2] ` t1

• But, can logic be used:

� To represent the problem (specifications)?
� Even perhaps to solve the problem?

5



Using Logic

?
YES / NOProof

(Logic)
Specs

Semantics

• For expressing specifications and reasoning about the correctness of programs
we need:

� Specification languages (assertions), modeling, ...
� Program semantics (models, axiomatic, fixpoint, ...).
� Proofs: program verification (and debugging, equivalence, ...).

6



Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0→ 0 1→ s(0) 2→ s(s(0)) 3→ s(s(s(0))) . . .

• Defining the natural numbers:
nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .

• A better solution:
nat(0) ∧ ∀X (nat(X)→ nat(s(X)))

• Order on the naturals:
∀X (le(0, X)) ∧

∀X∀Y (le(X, Y )→ le(s(X), s(Y ))

• Addition of naturals:
∀X (nat(X)→ add(0, X, X)) ∧

∀X∀Y ∀Z (add(X, Y, Z)→ add(s(X), Y, s(Z)))

7



Generating Squares: A Specification (II)

• Multiplication of naturals:
∀X (nat(X)→ mult(0, X, 0)) ∧

∀X∀Y ∀Z∀W (mult(X, Y, W ) ∧ add(W, Y, Z)→ mult(s(X), Y, Z))

• Squares of the naturals:
∀X∀Y (nat(X) ∧ nat(Y ) ∧mult(X, X, Y )→ nat square(X, Y ))

We can now write a specification of the (imperative) program, i.e., conditions that we
want the program to meet:

• Precondition:
empty.

• Postcondition:
∀X(output(X)← (∃Y nat(Y ) ∧ le(Y, s(s(s(s(s(0)))))) ∧ nat square(Y, X)))

8



Alternative Use of Logic?

• So, logic allows us to represent problems (program specifications).

to also improve:
But, it would be interesting

i.e., the process of implementing solutions to problems.

• The importance of Programming Languages (and tools).

• Interesting question: can logic help here too?

9



From Representation/Specification to Computation

• Assuming the existence of a mechanical proof method (deduction procedure)
a new view of problem solving and computing is possible [Greene]:

� program once and for all the deduction procedure in the computer,
� find a suitable representation for the problem (i.e., the specification),
� then, to obtain solutions, ask questions and let deduction procedure do rest:

Representation (specification)

Questions Deduction
system

Problem

(Correct) Answers / Results• No correctness proofs needed!

10



Computing With Our Previous Description / Specification

Query Answer

nat(s(0)) ? (yes)

∃X add(s(0), s(s(0)), X) ? X = s(s(s(0)))

∃X add(s(0), X, s(s(s(0)))) ? X = s(s(0))

∃X nat(X) ? X = 0 ∨X = s(0) ∨X = s(s(0)) ∨ . . .

∃X∃Y add(X, Y, s(0)) ? (X = 0 ∧ Y = s(0)) ∨ (X = s(0) ∧ Y = 0)

∃X nat square(s(s(0)), X) ? X = s(s(s(s(0))))

∃X nat square(X, s(s(s(s(0))))) ? X = s(s(0))

∃X∃Y nat square(X, Y ) ? (X = 0 ∧ Y = 0) ∨ (X = s(0) ∧ Y = s(0)) ∨ (X =

s(s(0)) ∧ Y = s(s(s(s(0))))) ∨ . . .

∃Xoutput(X) ? X = 0 ∨ X = s(0) ∨ X = s(s(s(s(0)))) ∨ X =

s9(0) ∨ X = s16(0) ∨ X = s25(0)

11



Which Logic?

• We have already argued the convenience of representing the problem in logic, but

� which logic?
* propositional
* predicate calculus (first order)
* higher-order logics
* modal logics
* λ-calculus, ...

� which reasoning procedure?
* natural deduction, classical methods
* resolution
* Prawitz/Bibel, tableaux
* bottom-up fixpoint
* rewriting
* narrowing, ...

12



Issues

• We try to maximize expressive power.

• But one of the main issues is whether we have an effective reasoning procedure.

• It is important to understand the underlying properties and the theoretical limits!

• Example: propositions vs. first-order formulas.

� Propositional logic:

“spot is a dog” p
“dogs have tail” q

but how can we conclude that Spot has a tail?

� Predicate logic extends the expressive power of propositional logic:

dog(spot)

∀Xdog(X)→ has tail(X)

now, using deduction we can conclude:

has tail(spot)

13



Comparison of Logics (I)

• Propositional logic:

“spot is a dog” p
+ decidability/completeness
- limited expressive power
+ practical deduction mechanism

→ circuit design, “answer set” programming, ...

• Predicate logic: (first order)

“spot is a dog” dog(spot)
+/- decidability/completeness
+/- good expressive power
+ practical deduction mechanism (e.g., SLD-resolution)

→ classical logic programming!

14



Comparison of Logics (II)

• Higher-order predicate logic:

“There is a relationship for spot” X(spot)
- decidability/completeness
+ good expressive power
– practical deduction mechanism

But interesting subsets→ HO logic programming, functional-logic prog., ...

• Other logics: decidability? Expressive power? Practical deduction mechanism?
Often (very useful) variants of previous ones:

� Predicate logic + constraints (in place of unification)
→ constraint programming!
� Propositional temporal logic, etc.

• Interesting case: λ-calculus

+ similar to predicate logic in results, allows higher order
- does not support predicates (relations), only functions

→ functional programming!
15



Generating squares by SLD-Resolution – Logic Programming (I)

• We code the problem as definite (Horn) clauses:
nat(0)

¬nat(X) ∨ nat(s(X))

¬nat(X) ∨ add(0, X, X))

¬add(X, Y, Z) ∨ add(s(X), Y, s(Z))

¬nat(X) ∨mult(0, X, 0)

¬mult(X, Y, W ) ∨ ¬add(W, Y, Z) ∨mult(s(X), Y, Z)

¬nat(X) ∨ ¬nat(Y ) ∨ ¬mult(X, X, Y ) ∨ nat square(X, Y )

• Query: nat(s(0)) ?

• In order to refute: ¬nat(s(0))

• Resolution:
¬nat(s(0)) with ¬nat(X) ∨ nat(s(X)) gives ¬nat(0)

¬nat(0) with nat(0) gives 2

• Answer: (yes)

16



Generating squares by SLD-Resolution – Logic Programming (II)

nat(0)

¬nat(X) ∨ nat(s(X))

¬nat(X) ∨ add(0, X, X))

¬add(X, Y, Z) ∨ add(s(X), Y, s(Z))

¬nat(X) ∨mult(0, X, 0)

¬mult(X, Y, W ) ∨ ¬add(W, Y, Z) ∨mult(s(X), Y, Z)

¬nat(X) ∨ ¬nat(Y ) ∨ ¬mult(X, X, Y ) ∨ nat square(X, Y )

• Query: ∃X∃Y add(X, Y, s(0)) ?

• In order to refute: ¬add(X, Y, s(0))

• Resolution:
¬add(X, Y, s(0)) with ¬nat(X) ∨ add(0, X, X)) gives ¬nat(s(0))

¬nat(s(0)) solved as before

• Answer: X = 0, Y = s(0)

• Alternative:
¬add(X, Y, s(0)) with ¬add(X, Y, Z) ∨ add(s(X), Y, s(Z)) gives ¬add(X, Y, 0)

17



Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,[’bf/af’]).

nat(0) <- .

nat(s(X)) <- nat(X).

le(0,_X) <- .

le(s(X),s(Y)) <- le(X,Y).

add(0,Y,Y) <- nat(Y).

add(s(X),Y,s(Z)) <- add(X,Y,Z).

mult(0,Y,0) <- nat(Y).

mult(s(X),Y,Z) <- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) <- nat(X), nat(Y), mult(X,X,Y).

output(X) <- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

18



Generating Squares in a Practical Logic Programming System (II)

Query Answer

?- nat(s(0)). yes

?- add(s(0),s(s(0)),X). X = s(s(s(0)))

?- add(s(0),X,s(s(s(0)))). X = s(s(0))

?- nat(X). X = 0 ; X = s(0) ; X = s(s(0)) ; ...

?- add(X,Y,s(0)). (X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)

?- nat square(s(s(0)), X). X = s(s(s(s(0))))

?- nat square(X,s(s(s(s(0))))). X = s(s(0))

?- nat square(X,Y). (X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ; (X

= s(s(0)) , Y=s(s(s(s(0))))) ; ...

?- output(X). X = 0 ; X = s(0) ; X =

s(s(s(s(0)))) ; ...

19



Introductory example (I) – Family relations

father of(john, peter)
father of(john, mary)
father of(peter, michael)
mother of(mary, david)
∀X∀Y (∃Z(father of(X, Z) ∧ father of(Z, Y ))→ grandfather of(X, Y ))
∀X∀Y (∃Z(father of(X, Z) ∧mother of(Z, Y ))→ grandfather of(X, Y ))

father_of(john, peter).

father_of(john, mary).

father_of(peter, michael).

mother_of(mary, david).

grandfather_of(L,M) :- father_of(L,K),

father_of(K,M).

grandfather_of(X,Y) :- father_of(X,Z),

mother_of(Z,Y).

John

Peter Mary

DavidMichael

• How can grandmother_of/2 be represented?

• What does grandfather_of(X,david) mean? And grandfather_of(john,X)?

20



A (very brief) History of Logic Programming (I)

• 60’s

� Greene: problem solving.
� Robinson: linear resolution.

• 70’s

� (early) Kowalski: procedural interpretation of Horn clause logic. Read:
A if B1 and B2 and · · · and Bn as:
to solve (execute) A, solve (execute) B1 and B2 and,..., Bn

� (early) Colmerauer: specialized theorem prover (Fortran) embedding the procedural
interpretation: Prolog (Programmation et Logique).
� In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and

difficult to control.
� (late) D.H.D. Warren develops DEC-10 Prolog compiler, almost completely written in Prolog.

Very efficient (same as LISP). Very useful control builtins.

22



A (very brief) History of Logic Programming (II)

• Late 80’s, 90’s

� Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth
Generation Project), US (MCC), Europe (ECRC, ESPRIT projects).
� Numerous commercial Prolog implementations, programming books, and a de facto standard,

the Edinburgh Prolog family.
� First parallel and concurrent logic programming systems.
� CLP – Constraint Logic Programming: Major extension – many new applications areas.
� 1995: ISO Prolog standard.

23



Currently

• Many commercial CLP systems with fielded applications.

• Extensions to full higher order, inclusion of functional programming, ...

• Highly optimizing compilers, automatic parallelism, automatic debugging.

• Concurrent constraint programming systems.

• Distributed systems.

• Object oriented dialects.

• Applications

� Natural language processing
� Scheduling/Optimization problems
� AI related problems
� (Multi) agent systems programming.
� Program analyzers
� ...

24


