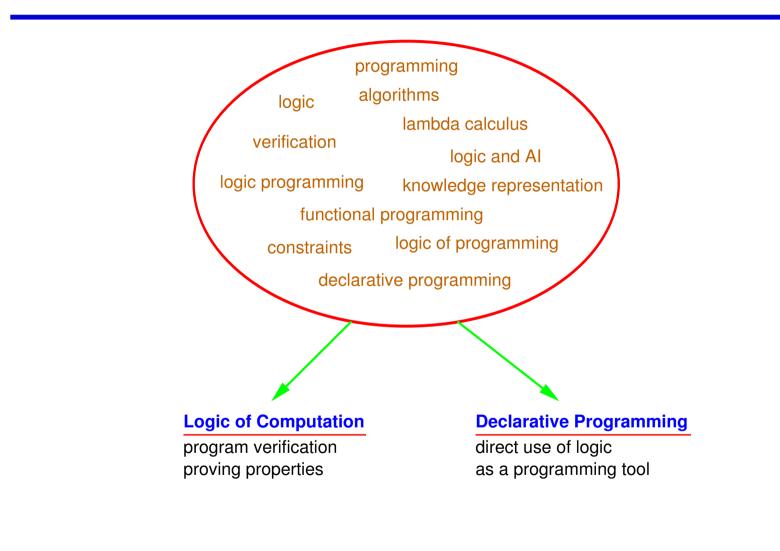
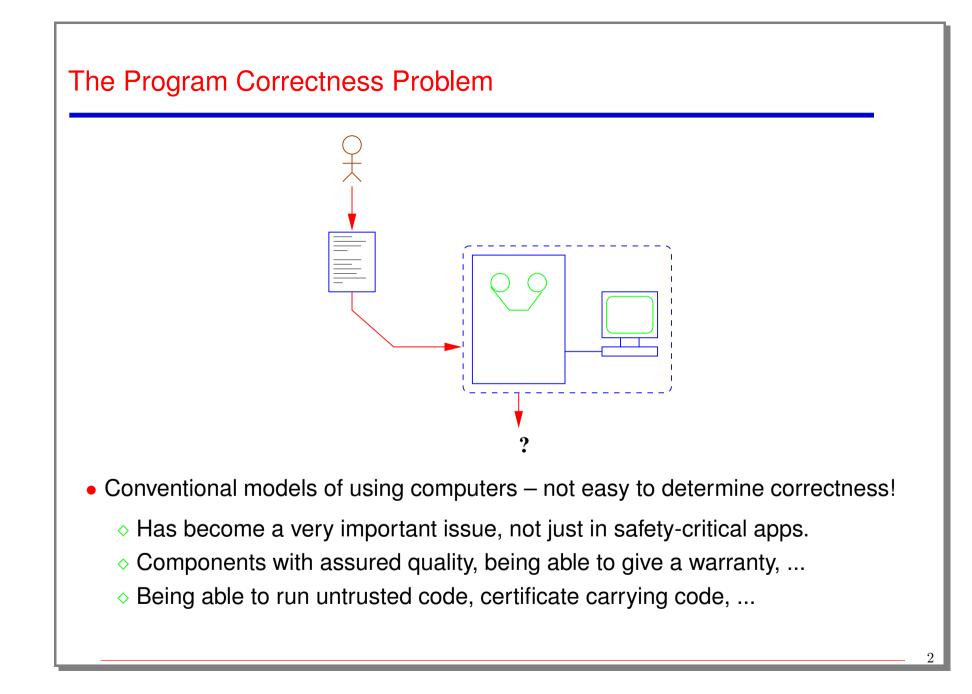
A Motivational Introduction to Computational Logic and (Constraint) Logic Programming

The following people have contributed to this course material:

Manuel Hermenegildo (editor), Technical University of Madrid, Spain and University of New Mexico, USA; Francisco Bueno, Manuel Carro, Pedro López, and Daniel Cabeza, Technical University of Madrid, Spain; María José García de la Banda, Monash University, Australia; David H. D. Warren, University of Bristol, U.K.; Ulrich Neumerkel, Technical University of Vienna, Austria; Michael Codish, Ben Gurion University, Israel

Computational Logic





A Simple Imperative Program

• Example:

```
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5)
        { Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1; } }</pre>
```

- Is it correct? With respect to what?
- A suitable formalism:
 - to provide specifications (describe problems), and

to reason about the *correctness of programs* (their *implementation*).
 is needed.

Natural Language

"Compute the squares of the natural numbers which are less or equal than 5."

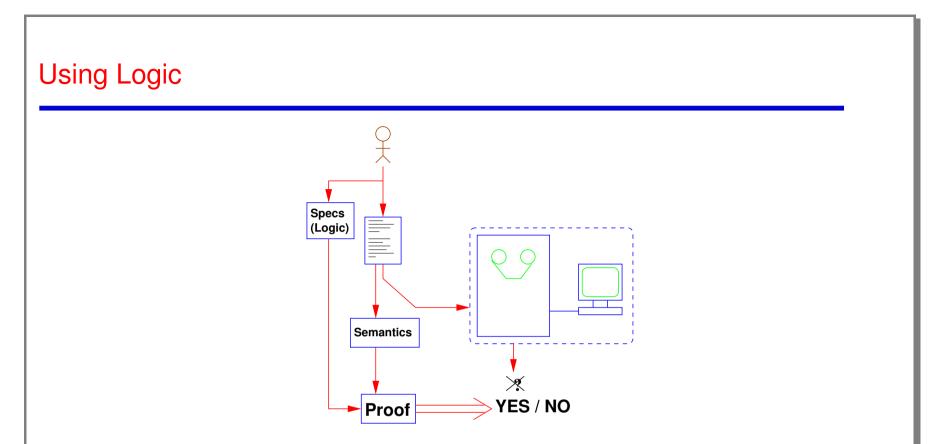
Ideal at first sight, but:

- ◊ verbose
- ◊ vague
- o ambiguous
- needs context (assumed information)
- <u>ه</u> ...

Philosophers and Mathematicians already pointed this out a long time ago...

Logic

- A means of clarifying / formalizing the human thought process
- Logic for example tells us that (classical logic) Aristotle likes cookies, and Plato is a friend of anyone who likes cookies imply that Plato is a friend of Aristotle
- Symbolic logic: A shorthand for classical logic – plus many useful results: $a_1 : likes(aristotle, cookies)$ $a_2 : \forall X \ likes(X, cookies) \rightarrow friend(plato, X)$ $t_1 : friend(plato, aristotle)$ $T[a_1, a_2] \vdash t_1$
- But, can logic be used:
 - o To represent the problem (specifications)?
 - Even perhaps to solve the problem?



- For expressing specifications and reasoning about the correctness of programs we need:
 - Specification languages (assertions), modeling, ...
 - Program semantics (models, axiomatic, fixpoint, ...).
 - ◇ Proofs: program *verification* (and debugging, equivalence, ...).

Generating Squares: A Specification (I)

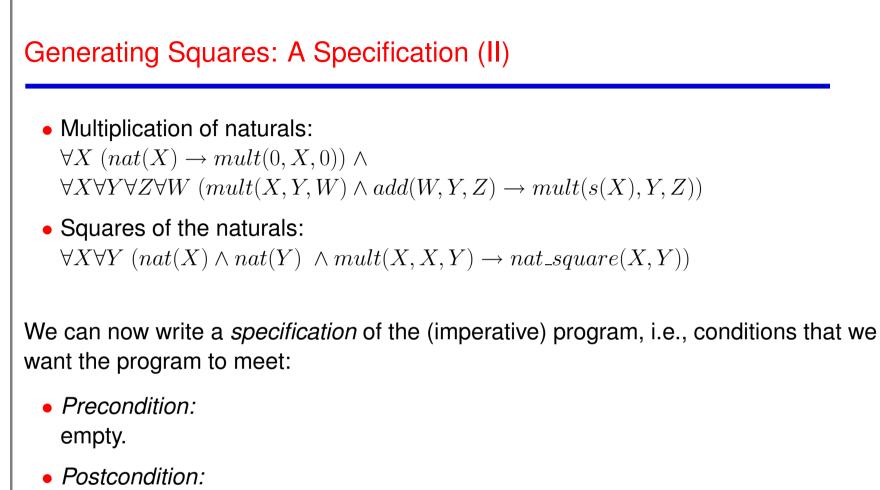
- Defining the natural numbers: $nat(0) \wedge nat(s(0)) \wedge nat(s(s(0))) \wedge \dots$
- A better solution:

 $nat(0) \land \forall X \ (nat(X) \to nat(s(X)))$

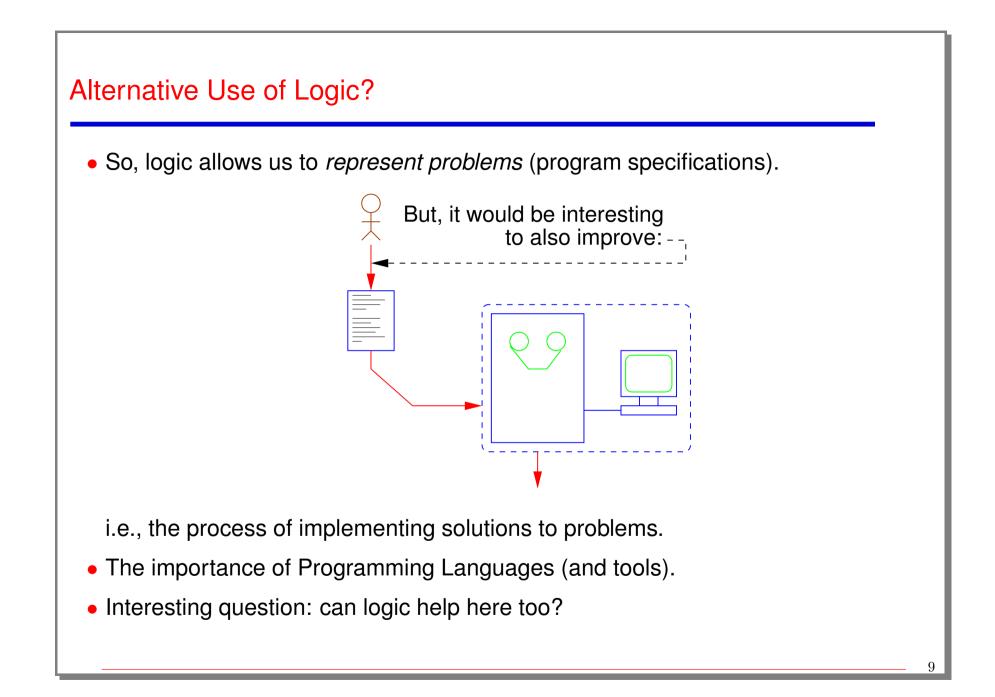
• Order on the naturals:

 $\begin{array}{l} \forall X \; (le(0,X)) \land \\ \forall X \forall Y \; (le(X,Y) \rightarrow le(s(X),s(Y)) \end{array} \end{array}$

• Addition of naturals: $\forall X \ (nat(X) \rightarrow add(0, X, X)) \land$ $\forall X \forall Y \forall Z \ (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z)))$

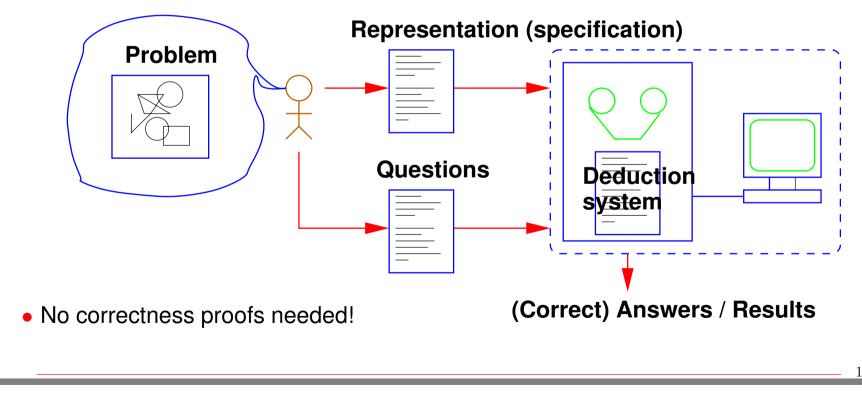


 $\forall X(output(X) \leftarrow (\exists Y \; nat(Y) \land le(Y, s(s(s(s(o)))))) \land nat_square(Y, X))) \land as (Y, Y) \land$



From Representation/Specification to Computation

- Assuming the existence of a *mechanical proof method* (deduction procedure) *a new view of problem solving and computing is possible* [Greene]:
 - o program once and for all the deduction procedure in the computer,
 - o find a suitable representation for the problem (i.e., the specification),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:



Computing With Our Previous Description / Specification

Query	Answer
nat(s(0)) ?	(yes)
$\exists X \ add(s(0), s(s(0)), X)$?	X = s(s(s(0)))
$\exists X \ add(s(0), X, s(s(s(0)))) \ \textbf{?}$	X = s(s(0))
$\exists X \ nat(X) $?	$X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \dots$
$\exists X \exists Y \ add(X, Y, s(0))$?	$(X=0 \wedge Y=s(0)) \vee (X=s(0) \wedge Y=0)$
$\exists X \ nat_square(s(s(0)), X)$?	X = s(s(s(s(0))))
$\exists X \ nat_square(X, s(s(s(s(0)))))$?	X = s(s(0))
$\exists X \exists Y \ nat_square(X,Y) \ \textbf{?}$	$ \begin{array}{l} (X=0 \wedge Y=0) \lor (X=s(0) \wedge Y=s(0)) \lor (X=s(s(0)) \wedge Y=s(s(s(s(0))))) \lor \ldots \end{array} $
$\exists Xoutput(X)$?	$\begin{array}{lll} X=0 \ \lor \ X=s(0) \ \lor \ X=s(s(s(s(0)))) \ \lor \ X=s^9(0) \ \lor \ X=s^{16}(0) \ \lor \ X=s^{25}(0) \end{array}$

Which Logic?

- We have already argued the convenience of representing the problem in logic, but
 - ◊ which logic?
 - * propositional
 - * predicate calculus (first order)
 - * higher-order logics
 - * modal logics
 - * λ -calculus, ...
 - which reasoning procedure?
 - * natural deduction, classical methods
 - * resolution
 - * Prawitz/Bibel, tableaux
 - * bottom-up fixpoint
 - * rewriting
 - * narrowing, ...

Issues

- We try to maximize expressive power.
- But one of the main issues is whether we have an effective reasoning procedure.
- It is important to understand the underlying properties and the theoretical limits!
- Example: propositions vs. first-order formulas.
 - o Propositional logic:

"spot is a dog" p "dogs have tail" q

but how can we conclude that Spot has a tail?

Predicate logic extends the expressive power of propositional logic:

 $\begin{array}{l} dog(spot) \\ \forall X dog(X) \rightarrow has_tail(X) \end{array}$

now, using deduction we can conclude:

 $has_tail(spot)$

Comparison of Logics (I)

• Propositional logic:

"spot is a dog"

+ decidability/completeness

- limited expressive power

+ practical deduction mechanism

 \rightarrow circuit design, "answer set" programming, ...

• Predicate logic: (first order)

"spot is a dog"

dog(spot)

р

+/- decidability/completeness

+/- good expressive power

+ practical deduction mechanism (e.g., **SLD-resolution**)

 \rightarrow classical logic programming!

Comparison of Logics (II)

• Higher-order predicate logic:

"There is a relationship for spot"

X(spot)

- decidability/completeness

+ good expressive power

- practical deduction mechanism

But interesting subsets \rightarrow HO logic programming, functional-logic prog., ...

Other logics: decidability? Expressive power? Practical deduction mechanism?
 Often (very useful) variants of previous ones:

Predicate logic + constraints (in place of unification)

 \rightarrow constraint programming!

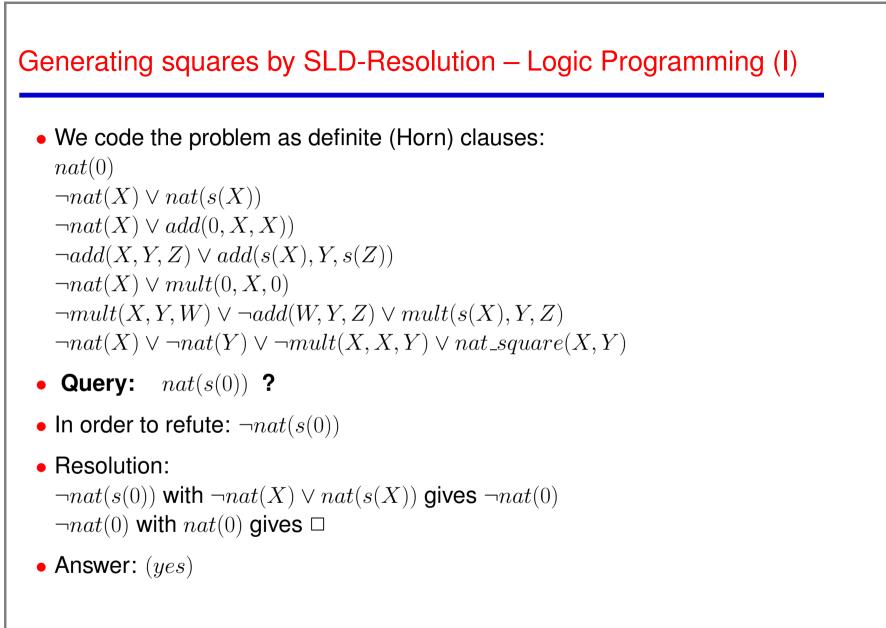
Propositional temporal logic, etc.

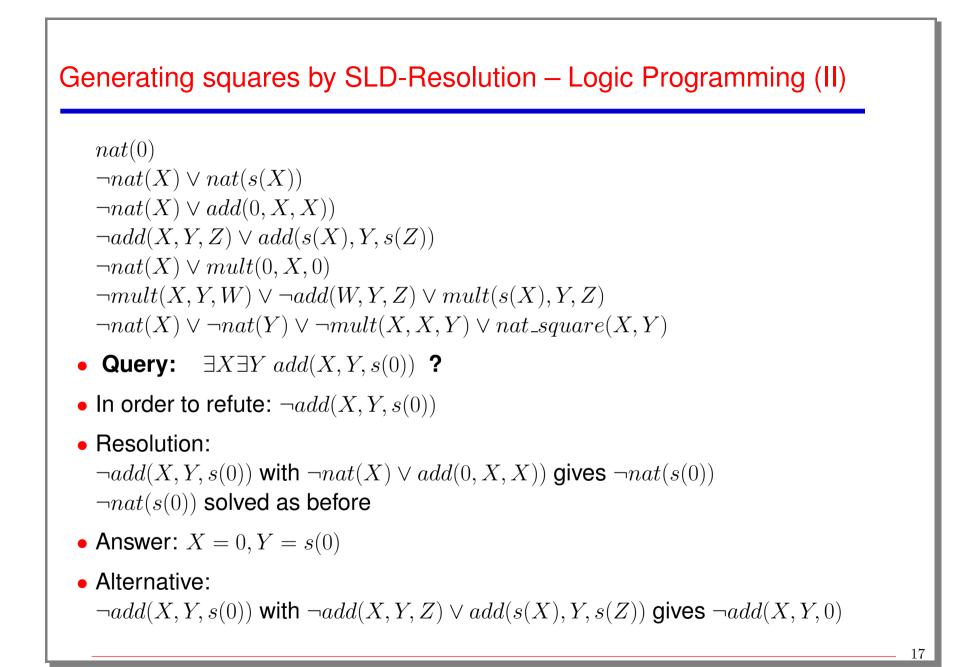
• Interesting case: λ -calculus

+ similar to predicate logic in results, allows higher order

- does not support predicates (relations), only functions

 \rightarrow functional programming!





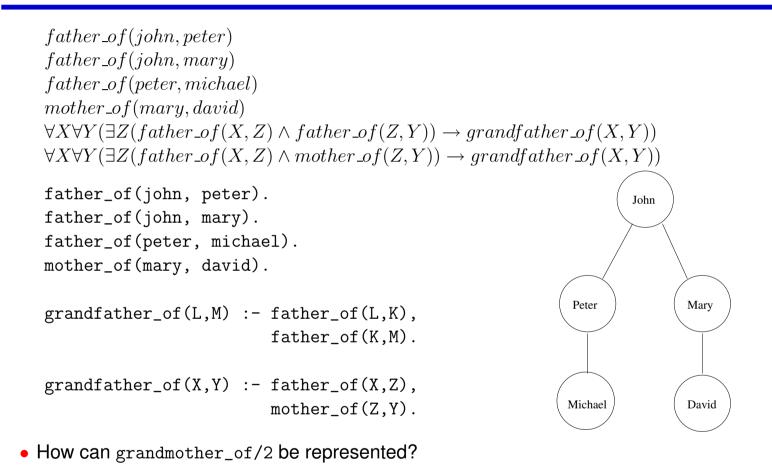
Generating Squares in a Practical Logic Programming System (I)

```
:- module(_,_,['bf/af']).
nat(0) <- .
nat(s(X)) <- nat(X).
le(0, X) < -.
le(s(X),s(Y)) \leq le(X,Y).
add(0,Y,Y) <- nat(Y).
add(s(X),Y,s(Z)) < - add(X,Y,Z).
mult(0, Y, 0) <- nat(Y).
mult(s(X),Y,Z) <- add(W,Y,Z), mult(X,Y,W).
nat_square(X,Y) <- nat(X), nat(Y), mult(X,X,Y).</pre>
output(X) \leftarrow nat(Y), le(Y,s(s(s(s(0))))), nat_square(Y,X))
```

Generating Squares in a Practical Logic Programming System (II)

Query	Answer
?- nat(s(0)).	yes
?- add(s(0),s(s(0)),X).	X = s(s(s(0)))
?- add(s(0),X,s(s(s(0)))).	X = s(s(0))
?- nat(X).	X = 0; $X = s(0)$; $X = s(s(0))$;
?- add(X,Y,s(0)).	(X = 0, Y=s(0)); (X = s(0), Y = 0)
?- nat_square(s(s(0)), X).	X = s(s(s(s(0))))
<pre>?- nat_square(X,s(s(s(0))))).</pre>	X = s(s(0))
?- nat_square(X,Y).	(X = 0, Y=0); (X = s(0), Y=s(0)); (X = s(s(0)), Y=s(s(s(s(0))));
?- output(X).	X = 0; $X = s(0)$; $X = s(s(s(s(0))))$;

Introductory example (I) – Family relations



• What does grandfather_of(X,david) mean? And grandfather_of(john,X)?

A (very brief) History of Logic Programming (I)

• 60's

- Greene: problem solving.
- Robinson: linear resolution.

• 70's

- ◇ (early) Kowalski: procedural interpretation of Horn clause logic. Read:
 A if B₁ and B₂ and ··· and B_n as:
 to solve (execute) A, solve (execute) B₁ and B₂ and,..., B_n
- (early) Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: Prolog (Programmation et Logique).
- In the U.S.: "next-generation AI languages" of the time (i.e. planner) seen as inefficient and difficult to control.
- (late) D.H.D. Warren develops DEC-10 Prolog compiler, almost completely written in Prolog.
 Very efficient (same as LISP). Very useful control builtins.

A (very brief) History of Logic Programming (II)

• Late 80's, 90's

- Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects).
- Numerous commercial Prolog implementations, programming books, and a *de facto* standard, the Edinburgh Prolog family.
- ◊ First parallel and concurrent logic programming systems.
- ◊ CLP Constraint Logic Programming: Major extension many new applications areas.
- ◊ 1995: ISO Prolog standard.

Currently

- Many commercial CLP systems with fielded applications.
- Extensions to full higher order, inclusion of functional programming, ...
- Highly optimizing compilers, automatic parallelism, automatic debugging.
- Concurrent constraint programming systems.
- Distributed systems.
- Object oriented dialects.
- Applications
 - Natural language processing
 - Scheduling/Optimization problems
 - Al related problems
 - (Multi) agent systems programming.
 - Program analyzers

<u>ہ</u>