Terminology

$\exists \quad$ means "there exists"
\exists ! means "there exists a unique"
$\forall \quad$ means "for all"
$:=$ means that the left-hand side is a new notation for the expression on the right-hand side iff means "if and only if"

Conjugate directions

Motivation and definition

The conjugate gradient method is developed for a quadratic function of n variables

$$
q(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{H} \boldsymbol{x}+\boldsymbol{c}^{\top} \boldsymbol{x}, \quad \text { with } \boldsymbol{H} \text { positive definite. }
$$

Let $\boldsymbol{g}_{k}:=\boldsymbol{\nabla} q\left(\boldsymbol{x}_{k}\right)=\boldsymbol{H} \boldsymbol{x}_{k}+\boldsymbol{c}$ and use exact line searches along directions \boldsymbol{d}_{k} (to be determined):

(EL)

$$
\boldsymbol{g}_{k+1}^{\top} \boldsymbol{d}_{k}=0
$$

Important property:

$$
\left\{\begin{array}{l}
\boldsymbol{g}_{1}=\boldsymbol{H} \boldsymbol{x}_{1}+\boldsymbol{c} \\
\boldsymbol{g}_{2}=\boldsymbol{H} \boldsymbol{x}_{2}+\boldsymbol{c}
\end{array} \quad \Rightarrow \quad \boldsymbol{g}_{2}-\boldsymbol{g}_{1}=\boldsymbol{H}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)\right.
$$

Idea of conjugate directions: (contours of a quadratic function)

The property $(E L) \boldsymbol{g}_{2}^{\top} \boldsymbol{d}_{1}=0$ should be kept along the new search direction $\hat{\boldsymbol{d}}$. At any point along the new search direction, e.g., $\hat{\boldsymbol{x}}=\boldsymbol{x}_{2}+\hat{\boldsymbol{d}}$, we want $\hat{\boldsymbol{g}}^{\top} \boldsymbol{d}_{1}=0$. Then $(\Delta \boldsymbol{g})$ implies

$$
0=\boldsymbol{d}_{1}^{\top} \hat{\boldsymbol{g}}-\boldsymbol{d}_{1}^{\top} \boldsymbol{g}_{2}=\boldsymbol{d}_{1}^{\top}\left(\hat{\boldsymbol{g}}-\boldsymbol{g}_{2}\right)=\boldsymbol{d}_{1}^{\top} \boldsymbol{H}\left(\hat{\boldsymbol{x}}-\boldsymbol{x}_{2}\right)=\boldsymbol{d}_{1}^{\top} \boldsymbol{H} \hat{\boldsymbol{d}} .
$$

Definition. The nonzero vectors $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$ are \boldsymbol{H}-conjugate iff

$$
\boldsymbol{d}_{i}^{\top} \boldsymbol{H} \boldsymbol{d}_{j}=0, \quad \forall i \neq j .
$$

Note: \boldsymbol{H} positive definite $\Rightarrow \boldsymbol{d}_{j}^{\top} \boldsymbol{H} \boldsymbol{d}_{j}>0$.

Lemma: The \boldsymbol{H}-conjugate vectors $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$ are linearly independent.

Proof: Given $\sum_{i=1}^{n} \lambda_{i} \boldsymbol{d}_{i}=0$, multiply by $\boldsymbol{d}_{j}^{\top} \boldsymbol{H}$ from the left with j arbitrary to get

$$
\sum_{i=1}^{n} \lambda_{i} \boldsymbol{d}_{j}^{\top} \boldsymbol{H} \boldsymbol{d}_{i}=0 \quad \Leftrightarrow \quad \lambda_{j} \boldsymbol{d}_{j}^{\top} \boldsymbol{H} \boldsymbol{d}_{j}=0 \quad \Leftrightarrow \quad \lambda_{j}=0
$$

Minimization along conjugate directions

With the minimizer at $\overline{\boldsymbol{x}}$, we can write (Exercise 1.5)

$$
q(\boldsymbol{x})=\frac{1}{2}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\top} \boldsymbol{H}(\boldsymbol{x}-\overline{\boldsymbol{x}})+a \quad \text { with } \quad a=q(\overline{\boldsymbol{x}}) .
$$

Assume that we have \boldsymbol{H}-conjugate directions $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$ (how to find these comes later). Since these form a basis, we can make a variable change. With the invertible matrix

$$
\boldsymbol{S}:=\left(\begin{array}{llll}
\boldsymbol{d}_{1} & \boldsymbol{d}_{2} & \cdots & \boldsymbol{d}_{n}
\end{array}\right)
$$

we can diagonalize \boldsymbol{H} :

$$
\boldsymbol{S}^{\top} \boldsymbol{H} \boldsymbol{S}=\left(\begin{array}{c}
\boldsymbol{d}_{1}^{\top} \\
\vdots \\
\boldsymbol{d}_{n}^{\top}
\end{array}\right) \boldsymbol{H}\left(\begin{array}{llll}
\boldsymbol{d}_{1} & \boldsymbol{d}_{2} & \cdots & \boldsymbol{d}_{n}
\end{array}\right)=\left(\begin{array}{cccc}
\boldsymbol{d}_{1}^{\top} \boldsymbol{H} \boldsymbol{d}_{1} & \cdots & \boldsymbol{d}_{1}^{\top} \boldsymbol{H} \boldsymbol{d}_{n} \\
\vdots & & \vdots \\
\boldsymbol{d}_{n}^{\top} \boldsymbol{H} \boldsymbol{d}_{1} & \cdots & \boldsymbol{d}_{n}^{\top} \boldsymbol{H} \boldsymbol{d}_{n}
\end{array}\right)=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{n}\right),
$$

with $\xi_{i}:=\boldsymbol{d}_{i}^{\top} \boldsymbol{H} \boldsymbol{d}_{i}>0$. Therefore, we make the coordinate change

$$
\boldsymbol{x}=\tilde{\boldsymbol{x}}(\boldsymbol{\alpha}) \quad \text { with } \quad \tilde{\boldsymbol{x}}(\boldsymbol{\alpha})=\boldsymbol{x}_{1}+\boldsymbol{S} \boldsymbol{\alpha}=\boldsymbol{x}_{1}+\left(\begin{array}{lll}
\boldsymbol{d}_{1} & \cdots & \boldsymbol{d}_{n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\boldsymbol{x}_{1}+\sum_{j=1}^{n} \alpha_{j} \boldsymbol{d}_{j}
$$

The minimizer satisfies $\overline{\boldsymbol{x}}=\boldsymbol{x}_{1}+\boldsymbol{S} \overline{\boldsymbol{\alpha}}$; hence, $\boldsymbol{x}-\overline{\boldsymbol{x}}=\boldsymbol{S}(\boldsymbol{\alpha}-\overline{\boldsymbol{\alpha}})$ and

$$
\begin{equation*}
q(\tilde{\boldsymbol{x}}(\boldsymbol{\alpha}))=\frac{1}{2}(\boldsymbol{\alpha}-\overline{\boldsymbol{\alpha}})^{\top} \boldsymbol{S}^{\top} \boldsymbol{H} \boldsymbol{S}(\boldsymbol{\alpha}-\overline{\boldsymbol{\alpha}})+a=\frac{1}{2} \sum_{i=1}^{n} \xi_{i}\left(\alpha_{i}-\bar{\alpha}_{i}\right)^{2}+a . \tag{*}
\end{equation*}
$$

The starting point \boldsymbol{x}_{1} corresponds to $\boldsymbol{\alpha}=\mathbf{0}$. Then we minimize along the direction \boldsymbol{d}_{1} and find that the minimum of

$$
q\left(\boldsymbol{x}_{1}+\lambda \boldsymbol{d}_{1}\right)=q\left(\boldsymbol{x}_{1}+\boldsymbol{S} \boldsymbol{\alpha}_{1}\right)=\frac{1}{2} \xi_{1}\left(\lambda-\bar{\alpha}_{1}\right)^{2}+\frac{1}{2} \sum_{i=2}^{n} \xi_{i}\left(0-\bar{\alpha}_{i}\right)^{2}+a \quad \text { with } \quad \boldsymbol{\alpha}_{1}:=\left(\begin{array}{c}
\lambda \\
0 \\
\vdots \\
0
\end{array}\right)
$$

occurs at $\lambda=\bar{\alpha}_{1}$, which defines $\boldsymbol{x}_{2}:=\boldsymbol{x}_{1}+\bar{\alpha}_{1} \boldsymbol{d}_{1}$. From this point, we search along \boldsymbol{d}_{2}, which corresponds to setting $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{2}:=\left(\bar{\alpha}_{1}, \lambda, 0, \ldots, 0\right)^{\top}$, and the minimizer of

$$
\begin{aligned}
q\left(\boldsymbol{x}_{2}+\lambda \boldsymbol{d}_{2}\right) & =q\left(\boldsymbol{x}_{1}+\bar{\alpha}_{1} \boldsymbol{d}_{1}+\lambda \boldsymbol{d}_{2}\right)=q\left(\boldsymbol{x}_{1}+\boldsymbol{S} \boldsymbol{\alpha}_{2}\right) \\
& =\frac{1}{2} \xi_{2}\left(\lambda-\bar{\alpha}_{2}\right)^{2}+\frac{1}{2} \sum_{i=3}^{n} \xi_{i}\left(0-\bar{\alpha}_{i}\right)^{2}+a
\end{aligned}
$$

is clearly $\lambda=\bar{\alpha}_{2}$. Thus, we obtain

$$
\begin{aligned}
& \boldsymbol{x}_{2}:=\boldsymbol{x}_{1}+\bar{\alpha}_{1} \boldsymbol{d}_{1}=\boldsymbol{x}_{1}+\boldsymbol{S} \overline{\boldsymbol{\alpha}}_{1}=\tilde{\boldsymbol{x}}\left(\overline{\boldsymbol{\alpha}}_{1}\right) \quad \text { with } \quad \overline{\boldsymbol{\alpha}}_{1}:=\left(\begin{array}{llll}
\bar{\alpha}_{1} & 0 & \ldots & 0
\end{array}\right)^{\top}, \\
& x_{3}:=x_{2}+\bar{\alpha}_{2} \boldsymbol{d}_{2}=\boldsymbol{x}_{1}+\boldsymbol{S} \overline{\boldsymbol{\alpha}}_{2}=\tilde{\boldsymbol{x}}\left(\overline{\boldsymbol{\alpha}}_{2}\right) \quad \text { with } \quad \overline{\boldsymbol{\alpha}}_{2}:=\left(\begin{array}{lllll}
\bar{\alpha}_{1} & \bar{\alpha}_{2} & 0 & \ldots & 0
\end{array}\right)^{\top}, \\
& \boldsymbol{x}_{k+1}:=\boldsymbol{x}_{k}+\bar{\alpha}_{k} \boldsymbol{d}_{k}=\boldsymbol{x}_{1}+\boldsymbol{S} \overline{\boldsymbol{\alpha}}_{k}=\tilde{\boldsymbol{x}}\left(\overline{\boldsymbol{\alpha}}_{k}\right) \quad \text { with } \quad \overline{\boldsymbol{\alpha}}_{k}:=\left(\begin{array}{llllll}
\bar{\alpha}_{1} & \ldots & \bar{\alpha}_{k} & 0 & \ldots & 0
\end{array}\right)^{\top} .
\end{aligned}
$$

(There is an explicit formula for $\bar{\alpha}_{k}$ for a quadratic function.) The minimizer is found after n line searches, since $q\left(\boldsymbol{x}_{n+1}\right)=q\left(\tilde{\boldsymbol{x}}\left(\overline{\boldsymbol{\alpha}}_{n}\right)\right)=a=q(\overline{\boldsymbol{x}})$. We have proved the following theorem.

Theorem. Minimization with exact line searches of a quadratic function along a sequence of \boldsymbol{H}-conjugate directions terminates after (at most) n steps.

Lemma CD. Minimization with exact line searches of a quadratic function from the starting point \boldsymbol{x}_{1} along a sequence of \boldsymbol{H}-conjugate directions $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$ results in a sequence of points x_{2}, \ldots, x_{n+1} such that, for $k=1, \ldots, n$,

$$
\boldsymbol{g}_{k+1}^{\top} \boldsymbol{d}_{i}=\boldsymbol{\nabla} q\left(\boldsymbol{x}_{k+1}\right)^{\top} \boldsymbol{d}_{i}=0 \quad \text { for } \quad i=1, \ldots, k
$$

(The new gradient is perpendicular to all previous search directions.)
Remark: Since \boldsymbol{g}_{n+1} is perpendicular to all the basis vectors $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$, it has to be the zero vector.

Proof: We differentiate $(*)$, which is

$$
q(\tilde{\boldsymbol{x}}(\boldsymbol{\alpha}))=\frac{1}{2} \sum_{i=1}^{n} \xi_{i}\left(\alpha_{i}-\bar{\alpha}_{i}\right)^{2}+a, \quad \text { where } \quad \tilde{\boldsymbol{x}}(\boldsymbol{\alpha})=\boldsymbol{x}_{1}+\sum_{j=1}^{n} \alpha_{j} \boldsymbol{d}_{j} .
$$

with respect to α_{i} and use the the chain rule for the left-hand side to get ($\boldsymbol{\nabla}$ refers to derivatives with respect to \boldsymbol{x})

$$
\boldsymbol{\nabla} q(\tilde{\boldsymbol{x}}(\boldsymbol{\alpha}))^{\top} \boldsymbol{d}_{i}=\xi_{i}\left(\alpha_{i}-\bar{\alpha}_{i}\right)
$$

In this formula, we let $\boldsymbol{\alpha}=\overline{\boldsymbol{\alpha}}_{k}=\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{k}, 0, \ldots, 0\right)^{\top}$ to get the result.

Derivation of the Conjugate Gradient method

Definition. A real inner product (scalar product) of two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ is a real-valued function denoted by $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with the properties

$$
\begin{aligned}
\langle\boldsymbol{u}, \boldsymbol{v}\rangle & =\langle\boldsymbol{v}, \boldsymbol{u}\rangle, \\
\langle a \boldsymbol{u}+b \boldsymbol{v}, \boldsymbol{w}\rangle & =a\langle\boldsymbol{u}, \boldsymbol{w}\rangle+b\langle\boldsymbol{v}, \boldsymbol{w}\rangle, \quad a, b \in \mathbb{R}, \\
\langle\boldsymbol{u}, \boldsymbol{u}\rangle & \geq 0 \quad \text { with equality iff } \boldsymbol{u}=\mathbf{0} .
\end{aligned}
$$

One example is $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{\top} \boldsymbol{v}=\boldsymbol{u}^{\top} \boldsymbol{I} \boldsymbol{v}$.

Another is $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{\boldsymbol{H}}=\boldsymbol{u}^{\top} \boldsymbol{H} \boldsymbol{v}$ with \boldsymbol{H} positive definite.
We use the terminology
\boldsymbol{u} and \boldsymbol{v} are \boldsymbol{H}-orthogonal $\Leftrightarrow\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{\boldsymbol{H}}=0 \quad \Leftrightarrow \quad \boldsymbol{u}$ and \boldsymbol{v} are \boldsymbol{H}-conjugate

We now use the Gram-Schmidt orthogonalization process with $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{\boldsymbol{H}}$ to derive the Conjugate Gradient method:

Step 0: Given the starting point \boldsymbol{x}_{1}, compute $\boldsymbol{g}_{1}=\boldsymbol{\nabla} q\left(\boldsymbol{x}_{1}\right)$.
Step 1: Set $\boldsymbol{d}_{1}:=-\boldsymbol{g}_{1}$ (steepest descent)
Do exact line search, set $\boldsymbol{x}_{2}:=\boldsymbol{x}_{1}+\bar{\alpha}_{1} \boldsymbol{d}_{1}$ and compute $\boldsymbol{g}_{2}=\boldsymbol{\nabla} q\left(\boldsymbol{x}_{2}\right)$.
Step 2: Define \boldsymbol{d}_{2} so that $\left\langle\boldsymbol{d}_{2}, \boldsymbol{d}_{1}\right\rangle_{\boldsymbol{H}}=0$ using projection with respect to the \boldsymbol{H}-inner product:

Define (use the projection formula in linear algebra):

$$
\boldsymbol{d}_{2}:=-\boldsymbol{g}_{2}-\frac{\left\langle-\boldsymbol{g}_{2}, \boldsymbol{d}_{1}\right\rangle_{\boldsymbol{H}}}{\left\langle\boldsymbol{d}_{1}, \boldsymbol{d}_{1}\right\rangle_{\boldsymbol{H}}} \boldsymbol{d}_{1}
$$

Do exact line search, set $\boldsymbol{x}_{3}:=\boldsymbol{x}_{2}+\bar{\alpha}_{2} \boldsymbol{d}_{2}$ and compute $\boldsymbol{g}_{3}=\boldsymbol{\nabla} q\left(\boldsymbol{x}_{3}\right)$.

Step k : Project $-\boldsymbol{g}_{k}$ onto the subspace spanned by $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{k-1}$:

Define (sum of projections on each basis vector):
(D)

$$
\begin{aligned}
\boldsymbol{d}_{k} & :=-\boldsymbol{g}_{k}-\sum_{i=1}^{k-1} \frac{\left\langle-\boldsymbol{g}_{k}, \boldsymbol{d}_{i}\right\rangle_{\boldsymbol{H}}}{\left\langle\boldsymbol{d}_{i}, \boldsymbol{d}_{i}\right\rangle_{\boldsymbol{H}}} \boldsymbol{d}_{i} \\
& =-\boldsymbol{g}_{k}+\sum_{i=1}^{k-1} \beta_{i} \boldsymbol{d}_{i}, \quad \text { with } \quad \beta_{i}:=\frac{\left\langle\boldsymbol{g}_{k}, \boldsymbol{d}_{i}\right\rangle_{\boldsymbol{H}}}{\left\langle\boldsymbol{d}_{i}, \boldsymbol{d}_{i}\right\rangle_{\boldsymbol{H}}} .
\end{aligned}
$$

The task is now to simplify this formula. Recall:

$$
\begin{align*}
\boldsymbol{g}_{2}-\boldsymbol{g}_{1} & =\boldsymbol{H}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right) \\
\boldsymbol{g}_{k+1}^{\top} \boldsymbol{d}_{i} & =0, \quad i=1, \ldots, k
\end{align*}
$$

(Lemma CD)
We also need that (D) and Lemma CD imply

$$
\boldsymbol{g}_{k+1}^{\top} \boldsymbol{g}_{j}=\boldsymbol{g}_{k+1}^{\top}\left(-\boldsymbol{d}_{j}+\sum_{i=1}^{j-1} \beta_{i} \boldsymbol{d}_{i}\right)=0, \quad j=1, \ldots, k
$$

(The new gradient is also perpendicular to all previous gradients.) Numerator of β_{i} :

$$
\begin{aligned}
\left\langle\boldsymbol{g}_{k}, \boldsymbol{d}_{i}\right\rangle_{\boldsymbol{H}} & =\boldsymbol{g}_{k}^{\top} \boldsymbol{H} \boldsymbol{d}_{i}=\frac{1}{\bar{\alpha}_{i}} \boldsymbol{g}_{k}^{\top} \boldsymbol{H}\left(\bar{\alpha}_{i} \boldsymbol{d}_{i}\right)=\frac{1}{\bar{\alpha}_{i}} \boldsymbol{g}_{k}^{\top} \boldsymbol{H}\left(\boldsymbol{x}_{i+1}-\boldsymbol{x}_{i}\right) \\
& \stackrel{(\Delta \boldsymbol{g})}{=} \frac{1}{\bar{\alpha}_{i}} \boldsymbol{g}_{k}^{\top}\left(\boldsymbol{g}_{i+1}-\boldsymbol{g}_{i}\right)= \begin{cases}0 & \text { if } i<k-1, \\
\frac{1}{\bar{\alpha}_{k-1}} \boldsymbol{g}_{k}^{\top} \boldsymbol{g}_{k} & \text { if } i=k-1 .\end{cases}
\end{aligned}
$$

Hence, (D) is simplified to $\boldsymbol{d}_{k}=-\boldsymbol{g}_{k}+\beta_{k-1} \boldsymbol{d}_{k-1}$. Denominator of $\beta_{i}\left(=\beta_{k-1}\right)$:

$$
\begin{aligned}
\left\langle\boldsymbol{d}_{i}, \boldsymbol{d}_{i}\right\rangle_{\boldsymbol{H}} & =\boldsymbol{d}_{i}^{\top} \boldsymbol{H} \boldsymbol{d}_{i}=\frac{1}{\bar{\alpha}_{i}} \boldsymbol{d}_{i}^{\top} \boldsymbol{H}\left(\bar{\alpha}_{i} \boldsymbol{d}_{i}\right)=\frac{1}{\bar{\alpha}_{i}} \boldsymbol{d}_{i}^{\top} \boldsymbol{H}\left(\boldsymbol{x}_{i+1}-\boldsymbol{x}_{i}\right) \\
& =\frac{1}{\bar{\alpha}_{i}} \boldsymbol{d}_{i}^{\top}\left(\boldsymbol{g}_{i+1}-\boldsymbol{g}_{i}\right)=-\frac{1}{\bar{\alpha}_{i}} \boldsymbol{d}_{i}^{\top} \boldsymbol{g}_{i} \\
& \stackrel{(\mathrm{D})}{=}-\frac{1}{\bar{\alpha}_{i}}\left(-\boldsymbol{g}_{i}+\beta_{i-1} \boldsymbol{d}_{i-1}\right)^{\top} \boldsymbol{g}_{i}=\frac{1}{\bar{\alpha}_{i}} \boldsymbol{g}_{i}^{\top} \boldsymbol{g}_{i}=\frac{1}{\bar{\alpha}_{k-1}} \boldsymbol{g}_{k-1}^{\top} \boldsymbol{g}_{k-1} .
\end{aligned}
$$

Thus, (D) becomes

$$
\boldsymbol{d}_{k}=-\boldsymbol{g}_{k}+\frac{\boldsymbol{g}_{k}^{\top} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k-1}^{\top} \boldsymbol{g}_{k-1}} \boldsymbol{d}_{k-1}=-\boldsymbol{g}_{k}+\frac{\left\|\boldsymbol{g}_{k}\right\|^{2}}{\left\|\boldsymbol{g}_{k-1}\right\|^{2}} \boldsymbol{d}_{k-1}
$$

Conjugate gradient method for a general function $f(x)$:
Cyclic-coordinate search along the basis vectors $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{n}$ defined by

$$
\boldsymbol{d}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)+\frac{\left\|\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}}{\left\|\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k-1}\right)\right\|^{2}} \boldsymbol{d}_{k-1}
$$

\oplus Only vectors involved - suitable for large problems
\ominus Requires accurate line searches

