
Computational Logic

Efficiency Issues in Prolog

1

Efficiency

• In general, efficiency ≡ savings:

⋄ Not only time
(number of unifications, reduction steps, LIPS, etc.)

⋄ Also memory

• General advice:

⋄ Use the best algorithms

⋄ Use the appropriate data structures

• Each programming paradigm has its specific techniques, try not to adopt them
blindly.

• The timings which will appear in the following examples have been taken on a
SPARC2, under SICStus Prolog 2.1

2

Data structures

• D.H.D. Warren: “Prolog means easy pointers”

• Do not make excessive use of lists:

⋄ In general, only when the number of elements is unknown

⋄ It is convenient to keep them ordered sometimes (e.g., set equality)

⋄ Otherwise, use structures (functors):

* Less memory
* Direct access to each argument (arg/3) (like arrays!)

LST LST LST

a b c

[a, b, c]

[]

STR f/3

a

b

c

f(a, b, c)

3

Data structures (Contd.)

• Use advanced data structures:

⋄ Sorted trees

⋄ Incomplete structures

⋄ Nested structures

⋄ . . .

4

Let Unification Do the Work

• Unification is very powerful. Use it!

• Example: Swapping two elements of a structure:
f(X, Y) =⇒ f(Y, X)

⋄ Slow, difficult to understand, long version:

swap(S1, S2):-

functor(S1, f, 2), functor(S2, f, 2),

arg(1, S1, X1), arg(2, S1, Y1),

arg(1, S2, X2), arg(2, S2, Y2),

X1 = Y2, X2 = Y1.

⋄ Fast, intuitive, shorter version:

swap(f(X, Y), f(Y, X)).

5

Let Unification Do the Work (Contd.)

• Example: check that a list has exactly three elements.

⋄ Weak answer:

three_elements(L):-

length(L, N), N = 3.

(always traverses the list and computes its length)

⋄ Better:

three_elements([_,_,_]).

6

Database

• Avoid using it for simulating global variables

Example (real executions):

bad_count(N):-

assert(counting(N)),

even_worse.

even_worse:- retract(counting(0)).

even_worse:-

retract(counting(N)),

N > 0, N1 is N - 1,

assert(counting(N1)),

even_worse.

good_count(0).

good_count(N):-

N > 0, N1 is N - 1,

good_count(N1).

bad count(10000): 165000 bytes, 7.2 sec.
good count(10000): 1500 bytes, 0.01 sec.

7

Database (Contd.)

• Asserting results which have been found true (lemmas).
Example (real executions):
fib(0, 0).

fib(1, 1).

fib(N, F):-

N > 1,

N1 is N - 1,

N2 is N1 - 1,

fib(N1, F1),

fib(N2, F2),

F is F1 + F2.

lfib(N, F):- lemma_fib(N, F), !.

lfib(N, F):-

N > 1,

N1 is N - 1,

N2 is N1 - 1,

lfib(N1, F1),

lfib(N2, F2),

F is F1 + F2,

assert(lemma_fib(N, F)).

:- dynamic lemma_fib/2.

lemma_fib(0, 0). lemma_fib(1, 1).

fib(24, F): 4800000 bytes, 0.72 sec.
lfib(24, F): 3900 bytes, 0.02 sec. (and zero from now on)

Warning: only useful when intermediate results are reused

8

Determinism (I)

• Many problems are deterministic

• Non-determinism is

⋄ Useful (automatic search)
⋄ But expensive

• Suggestions:

⋄ Do not keep alternatives if they are not needed

member_check([X|_],X) :- !.

member_check([_|Xs],X) :- member_check(Xs,X).

⋄ Program deterministic problems in a deterministic way:

Simplistic: Better:
decomp(N, S1, S2):-

between(0, N, S1),

between(0, N, S2),

N =:= S1 + S2.

decomp(N, S1, S2):-

between(0, N, S1),

S2 is N - S1.

9

Determinism (II)

• Checking that two (ground) lists contain the same elements

• Naive:

same_elements(L1, L2):-

\+ (member(X, L1), \+ member(X, L2)),

\+ (member(X, L2), \+ member(X, L1)).

• 1000 elements: 7.1 secs.

• Sort and unify:

same_elements(L1, L2):-

sort(L1, Sorted),

sort(L2, Sorted).

(sorting can be done in O(N log N))

• 1000 elements: 0 secs.

10

Search order

• Golden rule: fail as early as possible (prunes branches)

• How: reorder goals in the body (perhaps even dynamically)

• Example: generate and test
generate_z(Z):-

generate_x(X),

generate_y(X, Y),

test_x(X),

test_y(Y),

combine(X, Y, Z).

⋄ Perform tests as soon as possible:

generate_z(Z):-

generate_x(X),

test_x(X),

generate_y(X, Y),

test_y(Y),

combine(X, Y, Z).

⋄ Even better: test as deeply as
possible within the generator

generate_z(Z):-

generate_x_test(X),

generate_y_test(X, Y),

combine(X, Y, Z).

11

Indexing

• Indexing on the first argument:

⋄ At compile time an indexing table is built for each predicate based on the
principal functor of the first argument of the clause heads

⋄ At run-time only the clauses with a compatible functor in the first argument are
considered

• Result: appropriate clauses are reached faster and choice-points are not created
if there are no “eligible” clauses left

• Improves the ability to detect determinacy, important for preserving working
storage

12

Indexing (Contd.)

• Example: value greater than all elements in list

bad_greater(_X,[]).

bad_greater(X,[Y|Ys]):- X > Y,bad_greater(X,Ys).

600000 elements: 2.3 sec.

good_greater([],_X).

good_greater([Y|Ys],X):- X > Y, good_greater(Ys,X).

600000 elements: 0.67 sec

• Can be used with structures other than lists

• Available in most Prolog systems

13

Iteration vs. Recursion

• When the recursive call is the last subgoal in the clause and there are no
alternatives left in the execution of the predicate, we have an iteration

• Much more efficient

• Example:

sum([], 0).

sum([N|Ns], Sum):-

sum(Ns, Inter),

Sum is Inter + N.

sum_iter(L, Res):-

sum(L, 0, Res).

sum([], Res, Res).

sum([N|Ns], In, Out):-

Inter is In + N,

sum(Ns, Inter, Out).

sum/2 100000 elements: 0.45 sec.

sum iter/2 100000 elements: 0.12 sec.

14

Iteration vs. Recursion (Contd.)

• The basic skeleton is:

<head>:-

<deterministic computation>

<recursive_call>.

• Known as tail recursion

• Particular case of last call optimization

• It also consumes less memory

15

Cuts

• Cuts eliminate choice–points, so they “create” determinism

• Example:
a:-

test_1, !,

...

a:-

test_2, !,

...

...

a:-

test_n, !,

...

• If test1 . . . testn mutually exclusive, declarative meaning of program not affected.

• Otherwise, be careful: Declarativeness, Readability.

16

Delaying Work

• Do not perform useless operations

• In general:

⋄ Do not do anything until necessary

⋄ Put the tests as soon as possible

• Example:

x2x3([], []).

x2x3([X|Xs], [NX|NXs]):-

NX is -X * 2,

X < 0,

x2x3(Xs, NXs).

x2x3([X|Xs], [NX|NXs]):-

NX is X * 3,

X >= 0,

x2x3(Xs, NXs).

100000 elements: 1.05 sec.

• Delaying the arithmetic operations

x2x3_1([], []).

x2x3_1([X|Xs], [NX|NXs]):-

X < 0,

NX is -X * 2,

x2x3_1(Xs, NXs).

x2x3_1([X|Xs], [NX|NXs]):-

X >= 0,

NX is X * 3,

x2x3_1(Xs, NXs).

100000 elements: 0.9 sec.

17

Delaying Work

• Delaying head unification + determinism:
x2x3_2([], []).

x2x3_2([X|Xs], Out):-

X < 0, !,

NX is -X * 2,

Out = [NX|NXs],

x2x3_2(Xs, NXs).

x2x3_2([X|Xs], Out):-

X >= 0, !,

NX is X * 3,

Out = [NX|NXs],

x2x3_2(Xs, NXs).

100000 elements: 0.68 sec. (and half the memory consumption)

• Some (personal) advice: use these techniques only when performance is
essential. They might make programs:
⋄ Harder to understand

⋄ Harder to debug

⋄ Harder to maintain

18

Conclusions

• Avoid inheriting programming styles from other languages

• Program in a declarative way:

⋄ Improves readability

⋄ Allows compiler optimizations

• Avoid using the dynamic database when possible

• Look for deterministic computations when programming deterministic problems

• Put tests as soon as possible in the program (early pruning of the tree)

• Delay computations until needed

19

20

