Computational Logic

Developing Programs with a Logic Programming System

Our Development Environment: The Ciao System

e We use the (ISO-Prolog subset of the) Ciao multiparadigm programming system.

e In particular, the Ciao system offers both command line and graphical
environments for editing, compiling, debugging verifying, optimizing, and
documenting programs, including:

o A traditional, command line interactive top level.
o A stand-alone compiler (ciaoc).
o Compilation of standalone executables, which can be:
* eager dynamic load
* lazy dynamic load
* static (without the engine —architecture independent)
* fully static/standalone (architecture dependent)
o Prolog scripts (architecture independent).
¢ Source debugger, embeddable debugger, error location, ...
¢ Auto-documenter.

o Compile-time checking of assertions (types, modes, determinacy, non-failure,
etc. ...) and static debugging, etc.!

e Reading the first slides of the Ciao tutorial regarding the use of the
compiler, top-level, debuggers, environment, module system, etc. is
suggested at this point.

e Also, reading the corresponding parts of the Ciao manual.

Programmer Interface: The Classical Top-Level Shell

e Modern Prolog compilers offer several ways of writing, compiling, and running
programs.

e Classical model:

o User interacts directly with top level (includes compiler/interpreter).
o A prototypical session with a classical Prolog-style, text-

based, top-level shell (details are those of the Ciao system, user input in bold):

[37]> ciao Invoke the system

Ciao 1.11 #211: Thu Mar 18 15:28:12 CET 2004

7- use_module(file). Load your program file

yes

?7- query_containing_variable_X. Query the program

X = binding for X ; See one answer, ask for another using “
X = another_binding for X <enter> Discard rest of answers using <enter>
7- another query. Submit another query

?7- halt. End the session, also with ©~ D

Traditional (“Edinburgh”) Program Load

e Compile program (much faster, but typically no debugging capabilities):
7- compile(file).

e Consult program (interpreted, slower, used for debugging in traditional systems):
?- consult(file).
7- [file].

e Compiling/consulting several programs:
7- compile([filel,file2]).
7- [filel,file2].

e Enter clauses from the terminal (not recommended, except for quick hacks):
?7- [user].
| append([],Ys,Ys).
| append([X|Xs],Ys, [X|Zs]):- append(Xs,Ys,Zs).
| D
{user consulted, O msec 480 bytes}

yes
?_

Ciao Program Load

e Most traditional (“Edinburgh”) program load commands can be used.

e But more modern primitives available which take into account module system.
Same commands used as in the code inside a module:

© use_module/1 — for loading modules.
¢ ensure_loaded/1 — for loading user files.
¢ use_package/1 — for loading packages (see later).

e In summary, top-level behaves essentially like a module.

e In practice, done automatically within graphical environment:

< Open the source file in the graphical environment.
o Edit it (with syntax coloring, etc.).

¢ Load it by typing C-c 1 or using menus.

o Interact with it in top level.

Top Level Interaction Example

e File member.pl:

:— module (member, [member/2]) .

member (X, [X|_Rest]).
member (X, [_Y|Rest]):- member(X, Rest).

?- use_module (member) .
yes
?- member(c, [a,b,c]).

yes

?- member(d, [a,b,c]).
no

?- member (X, [a,b,c]).
X=a? ;

X =b 7?7 (intro)

Ciao Programming Environment: file being edited and top-level

b - 0%
File Edit Options Buffers Tools CiaoSys CiaoDby CiaoPP LPdoc CiaoOpts CiaoHelp Help

jggfﬂi -&*ﬁéﬁ %gg S o §3;féﬂg%lﬁéi;‘zgﬁcjlii.ezrmi% @Q?Ij]fgﬁlgﬁ i%%f‘%;!ﬁg:€} €¥.¢=§
Cew»

I modul;e(_,#_m, [f lihﬁ::fions, clpal).

% A function
fact(0) = 1.
fact (M) := N = “fact(——N) :— N > 0.

% A predicate

append(L1,%,X).

append (LX1Y1, 7, CXIWI) -
append(Y,Z,1D .

% Using constraints (CLP(Q))
Bib¢.v) :— X .=, 0. ¥ .=. 0.
FibX YY) - K w2e 1 Y = L.
BEEENLF2 2= N 3% L

Nl .=. N-1,

N2 .=. N- 2,

fib(N1, F1),

fib(N2, F2),

F :=: FltfF2,

 TEETLEL
(€] Cam

{Including /homefherme/.ciaorc
{Including /homefhermeflocalflib/ciaopp/ciaopp-1.0/path_init.pl
}

¥
Ciao 1.11 #308: Mon Mar 14 15:23:07 CET 2005

?

s TR e ey I L e

Top Level Interaction Example

e File pets.pl contains:

:— module(_,_, [bf]).
+ the pet example code as in previous slides.

e Interaction with the system query evaluator (the “top level”):

Ciao 1.13 #0: Mon Nov 7 09:48:51 MST 2005
7- use_module(pets) .

yes

7- pet(spot).
yes

7- pet(X).

X = spot 7 ;
X = barry 7 ;

no
?—

The Ciao Module System

e Ciao implements a module system [?] which meets a number of objectives:
o High extensibility in syntax and functionality:
allows having pure logic programming and many extensions.

© Makes it possible to perform modular (separate) processing of program
components (without “makefiles™).

o Greatly enhanced error detection (e.g., undefined predicates).
o Facilitates (modular) global analysis.

o Support for meta-programming and higher-order.

¢ Predicate based-like, but with functor/type hiding.

while at the same time providing:

o High compatibility with traditional standards (Quintus, SICStus, ...).
¢ Backward compatible with files which are not modules.

Defining modules and exports

e | :- module(module_name, list of exports, list of packages).

Declares a module of name module_name, which exports list_of_exports and
loads list_of_packages (packages are syntactic and semantic extensions).

e Example: :- module(lists, [list/1, member/2], [functions]).

e Examples of some standard uses and packages:

o |:= module(module name, [exzports], [1).
= Module uses (pure) kernel language.

o |:= module(module name, [exports], [packages]).
= Module uses kernel language + some packages.

o |:- module(module_name, [exports], [functions]).
=- Functional programming.

¢ |:= module(module_name, [exports], [assertions,functions]).

= Assertions (types, modes, etc.) and functional programming.

Defining modules and exports (Contd.)

e (ISO-)Prolog:

o |:= module(module name, [exzports], [iso]).
= Iso Prolog module.

o |:= module(module_name, [exports], [classicl).
= “Classic” Prolog module
(ISO + all other predicates that traditional Prologs offer as “built-ins”).

o Special form:
:— module(module_name, [exzports]).

Equivalent to:
:— module(module_name, [exports], [classic]).

= Provides compatibility with traditional Prolog systems.

Defining modules and exports (Contd.)

e Useful shortcuts:

o |:- module(_, list of exports).

If given as “_” module name taken from file name (default).
Example: : - module(_, [list/1, member/2]). (fileis 1lists.pl)

o |:= module(_,).

If “_” all predicates exported (useful when prototyping / experimenting).

e “User” files:

o Traditional name for files including predicates but no module declaration.
o Provided for backwards compatibility with non-modular Prolog systems.
o Not recommended: they are problematic (and, essentially, deprecated).
© Much better alternative: use : - module(_, _) . at top of file.
* As easy to use for quick prototyping as “user” files.
* Lots of advantages: much better error detection, compilation, optimization,

Importing from another module

e Using other modules in a module:

o |:= usemodule(filename) .
Imports all predicates that filename exports.
o |:— usemodule(filename, list_of imports) .

Imports predicates in list_of_imports from filename.
¢ :- ensure_loaded(filename). —for loading user files (deprecated).

e When importing predicates with the same name from different modules, module
name is used to disambiguate:
:— module(main, [main/0]) .
:— use_module(lists, [member/2]).
:— use_module(trees, [member/2]) .

main :-

produce_list (L),
lists:member(X,L),

Tracing an Execution with The “Byrd Box Model”

e Procedures (predicates) seen as “black boxes” in the usual way.
e However, simple call/return not enough, due to backtracking.

e Instead, “4-port box view” of predicates:

Call Exit
— | member(X,[X|Ys]). -
Fail member(X,[Y|Ys]):- member(X,Ys).| Redo
- ~——

e Principal events in Prolog execution (goal is a unique, run-time call to a predicate):

o Call goal: Start to execute goal.

o Exit goal: Succeed in producing a solution to goal.

<~ Redo goal: Attempt to find an alternative solution to goal
(sol,; if sol; was the one computed in the previous exit).

o Falil goal: exit with fail, if no further solutions to goal found (i.e., sol; was the
last one, and the goal which called this box is entered via the “redo” port).

Debugging Example

Ciao 1.13 #0: Fri Jul 8 11:46:55 CEST 2005

7- use_module(’/home/logalg/public_html/slides/lmember.pl’).
yes

?7- debug_module (1lmember) .

{Consider reloading module lmember}

{Modules selected for debugging: [lmember]}

{No module is selected for source debugging}

yes

?- trace.

{The debugger will first creep -- showing everything (trace)}
yes

{trace}
?_

e Much easier: open file and type (or use |CiaoDbg| menu).

Debugging Example (Contd.)

?- 1lmember (X, [a,b]).

=N W W N -

1
1
?
1
2
2
1
-
1

2
3
3
2
1

)

H

Call:
Exit:

Redo:
Call:
Exit:
Exit:

Redo:
Redo:
Call:
Fail:
Fail:
Fail:

1lmember:
1lmember:

lmember:
:1lmember (_282, [b]) ?

lmember

lmember:

lmember

lmember:
lmember:
lmember:

lmember

1lmember:

lmember

lmember(_282, [a,b]) 7
lmember(a, [a,b]) 7

lmember(a, [a,b]) 7

lmember (b, [b]) 7

:1lmember (b, [a,b]) 7

lmember (b, [a,b]) 7
lmember (b, [b]) 7
lmember(_282,[]) 7
:1member(_282,[]1) 7
lmember(_282, [b]) ?
:1lmember (_282, [a,b]) ?

Options During Tracing

h Get help — gives this list (possibly with more options)
C Creep forward to the next event
Advances execution until next call/exit/redo/fail
intro | (same as above)
S Skip over the details of executing the current goal
Resume tracing when execution returns from current goal
1 Leap forward to next “spypoint” (see below)
f Make the current goal fail
This forces the last pending branch to be taken
a Abort the current execution
r Redo the current goal execution
very useful after a failure or exit with weird result
b Break — invoke a recursive top level

e Many other options in modern Prolog systems.

e Also, graphical and source debuggers available in these systems.

Spypoints (and breakpoints)

e 7- spy foo/3.
Place a spypoint on predicate foo of arity 3 — always trace events involving this
predicate.

e ?- nospy foo/3.
Remove the spypoint in foo/3.

e 7- nospyall.

Remove all spypoints.

e In many systems (e.g., Ciao) also breakpoints can be set at particular program
points within the graphical environment.

Debugger Modes

e 7- debug.
Turns debugger on. It will first leap, stopping at spypoints and breakpoints.

e 7- nodebug.
Turns debugger off.

e 7- trace.
The debugger will first creep, as if at a spypoint.

e 7- notrace.
The debugger will leap, stopping at spypoints and breakpoints.

Running Pure Logic Programs: the Ciao System’s bf/af Packages

e We will be using Ciao, a multiparadigm programming system which includes (as
one of its “paradigms”) a pure logic programming subsystem:

o A number of fair search rules are available (breadth-first, iterative deepening,
...). we will use “breadth-first” (bf or af).

¢ Also, a module can be set to pure mode so that impure built-ins are not
accessible to the code in that module.

¢ This provides a reasonable first approximation of “Greene’s dream”
(of course, at a cost in memory and execution time).

e Writing programs to execute in bf mode:

o All files should start with the following line:
:— module(_,_, [bf]). (or :- module(_,_,[’bf/af’]).)
or, for “user” files, i.e., files that are not modules: :- use package (bf) .

o The neck (arrow) of rules must be :
o Facts must end with .

