Computational Logic

The (ISO-)Prolog Programming Language




(ISO-)Prolog

e A practical logic language based on the logic programming paradigm.
e Main differences with “pure” logic programming:

< more control on the execution flow,

o depth-first search rule, left-to-right control rule,

© some pre-defined predicates are not declarative (generally for efficiency),

o higher-order and meta-logical capabilities,

© no occur check in unification; but often regular (i.e., infinite) trees supported.

e Advantages:

o it can be compiled into fast and efficient code,

© more expressive power,

¢ industry standard (ISO-Prolog),

© mature implementations with modules, graphical environments, interfaces, ...

e Drawbacks: incompleteness (due to depth-first search rule),
possible unsoundness (if no occur check and regular trees not supported).




Programming interface (writing and running programs)

e Not specified in the language standard.
e Specific to the particular system implementing the language.
e Covers issues such as:

o User interaction (top-level, GUI, etc.).
o Interpreter(s).

o Compiler(s).

o Debugger(s).

¢ (Module system.)

e Different Prolog systems offer different facilities for these purposes.




The ISO Standard (Overview)

e Arithmetic

e Type checking and state checking

e Structure inspection

e Term comparison

e Input/Output

e Meta-calls and aggregation predicates
e Dynamic program modification

e Control structures (cut, true, falil, ...)

e Exception handling

Additionally (not in standard):

e Definite Clause Grammars (DCGSs): parsing




Built-in Arithmetic

e Practicality: interface to the underlying CPU arithmetic capabilities.

e These arithmetic operations are not as general as their logical counterparts.
e Interface: evaluator of arithmetic terms.

e The type of arithmetic terms:

¢ a number is an arithmetic term,
o if fis an n-ary arithmetic functor and Xy, ..., X,, are arithmetic terms then
f(Xq, ..., X,,) is an arithmetic term.

e Arithmetic functors: +, -, *, / (float quotient), // (integer quotient), mod, and more.
Examples:

o (3xX+Y) /Z, correct if when evaluated X, Y and Z are arithmetic terms,
otherwise it will raise an error.

© a+3*X raises an error (because a is not an arithmetic term).




Built-in Arithmetic (Contd.)

e Built-in arithmetic predicates:

o the usual <, >, =<, >=, =:= (arithmetic equal), =\= (arithmetic not equal), ...
Both arguments are evaluated and their results are compared

©Z is X
X (which must be an arithmetic term) is evaluated and result is unified with Z.

e Examples: let X and Y be bound to 3 and 4, respectively, and Z be a free variable:

oY < X+1, X is Y+1, X =:= Y. fail (the system will backtrack).
oY < a+l, X is Z+1, X =:= f(a). error (abort).




Arithmetic Programs

e plus(X,Y,Z2) :- Z is X + Y

o Only works in one direction (X and Y bound to arithmetic terms).
o Meta-logical tests (see later) allow using it in both directions.

o We have lost the recursive structure of the numbers.

< But we have won (a lot) in performance!

e Factorial:
Using Prolog arithmetic:
Using Peano arithmetic: factorial(0,1).
factorial(0,s(0)). factorial (N,F) :-
factorial(s(N),F):- N >0,
factorial(N,F1), N1 is N-1,
times(s(N) ,F1,F). factorial (N1,F1),
F is F1xN.

e Wrong goal order can raise an error (e.g., moving last call to is/2 before call to
factorial).




Type Checking Predicates

e Unary relations which check the type of a term:

¢ integer (X)

o float (X)

¢ number (X)

o atom(X) (nonvariable term of arity O other than a number)
¢ atomic (X) atom or number
O

e They behave as if defined by a (possibly infinite) table of facts (in part, see below).
e They either succeed or fail, but do not produce an error.

e Thus, they cannot be used to generate (e.g., if argument is a variable, they falil
instead of instantiating it to possible values).

e This behaviour is outside first order logic because it allows checking the
instantiation state of a variable.




Type Checking Predicates (Contd.)

e Example: implementing a better behavior for plus/3:

plus(X,Y,Z) : - number (X) ,number(Y), Z is X + Y.
plus(X,Y,Z) : - number (X) ,number(Z), Y is Z - X.
plus(X,Y,Z) :- number(Y) ,number(Z), X is Z - Y.

Then:

?- plus(3,Y,5).
Y=27

e Still, it cannot be used to partition a number into two others:

?- plus(X,Y,5).
no

(in fact, this should raise an error, rather than simply failing).




Structure Inspection

e functor (X, F, A):

o Xisacompoundtermf(X1,...,Xn)— F=f A = n

o Fisthe atom f and A is the integern — X = £(X1,..,Xn)

o Error if X, and either F or A are variables

o Falls if the unification fails, A is not an integer, or F is not an atom

Examples:

¢ functor(t(b,a),F,A) — F=t, A=2.
¢ functor(Term,f,3) — Term = f£(_,_,_).
o functor(Vector,v,100) — Vector = v(_, . , ).

(Note: in some systems functor arity is limited to 256)




Structure Inspection (Contd.)

e arg(N, X, Arg):

o N integer, X compound term — Arg unified with n-th argument of X.

o Allows accessing a structure argument in constant time and in a compact way.
o Errorif N is not an integer, or if X is a free variable.

o Fails if the unification fails.

Examples:

?7- _T=date(9,February,1947), arg(3,_T,X).

X = 1947

?7- _T=date(9,February,1947), _T=date(_,_,X).
X = 1947

?7- functor(Array,array,5),
arg(1l,Array,black),
arg(5,Array,white) .

Array = array(black,_,_,_,white).
e What does ?7- arg(2, [a,b,c,d],X). return?




Example of Structure Inspection

e Define subterm(Sub, Term) (Term will always be a compound term):

subterm(Term, Term) .

subterm(Sub, Term) : -
functor(Term,F,N),
subterm(N, Sub, Term) .

subterm(N, Sub, Term) : -
arg(N,Term,Arg), ' also checks N > 0 (arg/1l fails otherwise!)
subterm(Sub,Arg) .
subterm(N, Sub, Term) : -
N>1,
N1 is N-1,
subterm(N1,Sub,Term) .




Example of Structure Access

e Define add_arrays(A1,A2,A3):
add_arrays(Al1,A2,A3):- %» Same N imposes equal length:
functor(Al,array,N), functor(A2,array,N), functor(A3,array,N),
add_elements(N,A1,A2,A3).

add_elements(0,_Al,_ A2, A3).
add_elements(I,A1,A2,A3):-
I>0, arg(I,A1,X1), arg(I,A2,X2), arg(I,A3,X3),
X3 is X1 + X2, I1 is I - 1,
add_elements(I1,A1,A2,A3).

e Alternative, using lists instead of structures:
add_arrays_lists([],[],[]).
add_arrays_lists([X|Xs], [Y|Ys], [Z|Zs]) :-

Z is X + Y,
add_arrays_lists(Xs,Ys,Zs).

e In the latter case, where do we check that the three lists are of equal length?




Higher-Order Structure Inspection

eT =.. L (known as “univ”)

o L is the decomposition of a term T into a list comprising its principal functor
followed by its arguments.

7- date(9,february,1947) =.. L.
L = [date,9,february,1947].

7- F="'+,X=.. [_F,a,b].

X =a+ b.

o Allows implementing higher-order primitives (see later).
Example: Extending derivative

derivative(sin(X) ,X,cos(X)).
derivative(cos(X) ,X,-sin(X)).
derivative(FG_X, X, DF_G * DG_X) :-
FG_X =.. [_, G.X],
derivative(FG_X, G_X, DF_G), derivative(G_X, X, DG_X).

< But do not use unless strictly necessary: expensive in time and memory.




Conversion Between Strings and Atoms (New Atom Creation)

e Classical primitive: name (A,S)
o A 1S the atom/number whose name is the list of ASCII characters S
?- name(hello,S).

S = [104,101,108,108,111]
7- name(A, [104,101,108,108,111]).

A = hello
?- name(A,"hello").
A = hello

< Ambiguity when converting strings which represent numbers.
Example: ?- name(’1’,X), name(Y,X).

o In the ISO standard fixed by dividing into two:

* atom codes (Atom,String)

* number_codes (Number,String)




Meta-Logical Predicates

e var (X): succeed iff X is a free variable.
?7- var(X), X = f(a). Y% Succeeds
?7- X = f(a), var(X). % Fails

e nonvar (X): succeed iff X is not a free variable.
?7- X = £(Y), nonvar(X). % Succeeds

e ground (X): succeed iff X is fully instantiated.
7- X = £(Y), ground(X). % Fails

e Outside the scope of first order logic.

e Uses:

o control goal order,
o restore some flexibility to programs using certain builtins.




Meta-Logical Predicates (Contd.)

e Example:

length(Xs,N) : -

var (Xs), integer(N), length_num(N,Xs).
length(Xs,N) : -

nonvar (Xs), length_list(Xs,N).

length_num(0, [1).
length_num(N, [_|Xs]):-
N >0, NI is N - 1, length_num(N1,Xs).

length_list([],0).
length_list([X|Xs],N):-
length_list(Xs,N1), N is N1 + 1.

e But note that it is not really needed: the normal definition of length is actually
reversible! (although less efficient than length_num(N,L) when L is a variable).




Comparing Non-ground Terms

e Many applications need comparisons between non—ground/non—-numeric terms.
e Identity tests:

o X == Y (identical)
o X \== Y (not identical)

7- £(X) == £f(X). %Succeeds
?7- £(X) == £(Y). YFails

e Term ordering:

oX 6> Y, X @>= Y,X @< Y,X @=< Y (alphabetic/lexicographic order)

?- f(a) @ f(b). YFails
?7- f(b) © f(a). %Succeeds
7- £(X) @ f£(Y). YImplementation dependent!




Comparing Non-ground Terms (Contd.)

e Reconsider subterm/2 with non-ground terms

subterm(Sub,Term) :— Sub == Term.

subterm(Sub,Term) : - nonvar (Term),
functor(Term,F,N),
subterm(N, Sub, Term) .

where subterm/3 is identical to the previous definition

e Insert an item into an ordered list:

insert([], Item, [Item]).

insert([H|T], Item, [H|T]):- H == Item.

insert([H|T], Item, [Item, H|T]):- H @ Item.

insert([H|T], Item, [H|NewT]) :- H @< Item, insert(T, Item, NewT).

e Compare with the same program with the second clause defined as

insert([H|T], Item, [Item|T]):- H = Item.




Input/Output

e A minimal set of input-output predicates (“DEC-10 Prolog 1/0"):

Class Predicate Explanation

I/O stream control | see(File) File becomes the current input stream.
seeing(File) | The currentinput stream is File.
seen Close the current input stream.
tell(File) File becomes the current output stream.
telling(File) | The current output stream is File.
told Close the current output stream.

Term 1/O write (X) Write the term X on the current output stream.
nl Start a new line on the current output stream.
read (X) Read a term (finished by a full stop) from the

current input stream and unify it with X.

Character 1/0

put_code (N)

get_code(N)

Write the ASCII character code N. N can be a
string of length one.
Read the next character code and unify its
ASCII code with N.




Input/Output (Contd.)

e Other stream-based input-output predicates:

Class

Predicate

Explanation

I/O stream control

open(File,M,S)

Open ‘File’ with mode M and return in
S the stream associated with the file. M
may be read, write Or append.

close(Stream) |Close the stream ‘Stream’.

Term I/O write(S,X) Write the term X on stream S.
nl(S) Start a new line on stream S.
read(S,X) Read a term (finished by a full stop)

from the stream S and unify it with X.

Character 1/O

put_code(S,N)

get_code(S,N)

Write the ASCII character code N on
stream S.

Read from stream S the next character
code and unify its ASCII code with N.




Input/Output (Contd.)

e Example:

write_list_to_file(L,F) :-

telling(01d0utput), % Grab current output stream.
tell(F), write_list(L), told, % Write into F, close.
tell (01d0utput) . %» Reset previous output stream.

write_list([]).
write_list([X|Xs]):- write(X), nl, write_list(Xs).

e More powerful and format-based input-output predicates are available (see, e.g.,
format/2 and format/3 —Prolog system manuals).

e All these input-output predicates are “side-effects”!




Meta—calls and Implementing Higher Order

e The meta-call call (X) converts a term X into a goal and calls it.
e When called, X must be instantiated to a term, otherwise an error is reported.

e Used for meta-programming, specially interpreters and shells.
Also for defining negation (as we will see) and implementing higher order.

e Example:

qa). p(X) :- call(X).
7- p(q(Y)).
Y = a

e Example:

q(a,b). apply(F,Args) :- G =.. [FlArgs], call(G).
7- apply(q, [Y,Z]).

Y = a

Z =D




Meta—calls — Aggregation Predicates

e Other meta-calls are, e.g., findall/3, bagof/3, and setof/3.

e findall(Term, Goal, ListResults): ListResults is the set of all instances of
Term such that Goal is satisfied

o If there are no instances of Term ListResults IS []

o For termination, the number of solutions should be finite (and enumerable in
finite time).

?7- findall(X, likes(X,Y), S).

likes(bill, cider).
S = [bill,dick,tom,tom,harry,jan] 7

likes(dick, beer).

likes(tom, beer). yes _ _
likes (tom. cider) ?7- findall(X, likes(X,water), S).
’ ' = ?
likes(harry, beer). s =1
yes

likes(jan, cider).

?_




Meta—calls — Aggregation Predicates (Contd.)

e setof (Term, Goal, ListResults): ListResults iS the ordered set (no
duplicates) of all instances of Term such that Goal is satisfied

o If there are no instances of Term the predicate fails
¢ The set should be finite (and enumerable in finite time)

o If there are un-instantiated variables in Goal which do not also appear in Term
then a call to this built-in predicate may backtrack, generating alternative
values for ListResults corresponding to different instantiations of the free
variables of Goal

o Variables in Goal will not be treated as free if they are explicitly bound within
Goal by an existential quantifierasiny~. ..
(then, they behave as in findall/3)

e bagof/3 same, but returns list unsorted and with duplicates (in backtracking
order)




likes(dick, beer).

likes(jan, cider).
likes(tom, beer).
likes(tom, cider).

likes(bill, cider).

likes(harry, beer).

Meta-calls — Aggregation Predicates: Examples

?7- setof (X, likes(X,Y), S).

S
Y
S
Y
no

S5

no

?_

[dick,harry,tom],
beer 7 ;

[bill, jan,tom],
cider 7 ;

setof ((Y,S), setof (X, likes(X,Y), S), SS).
= [(beer, [dick,harry,tom]),
(cider, [bill, jan,tom])] 7 ;

setof (X, Y~ (1likes(X,Y)), S).
S = [bill,dick,harry,jan,tom] 7 ;
no




Meta-calls — Negation as Failure

e Uses the meta-call facilities, the cut and a system predicate fail that fails when
executed (similar to calling a=b).

not (Goal) :- call(Goal), !, fail.
not(Goal) .

e Available as the (prefix) predicate \+/1: \+ member(c, [a,k,1])
e It will never instantiate variables.

e Termination of not (Goal) depends on termination of Goal. not (Goal) will
terminate if a success node for Goal is found before an infinite branch.

e It is very useful but dangerous:

unmarried_student (X) :- not(married (X)), student(X).
student (joe) .
married(john) .

e Works properly for ground goals (programmer’s responsibility to ensure this).




Cut-Fall

e Cut-fail combinations allow forcing the failure of a predicate — somehow
specifying a negative answer (useful but very dangerous!).

e Example — testing groundness: fail as soon as a free variable is found.

ground(Term) : - var(Term), !, fail.
ground (Term) : -
nonvar (Term) ,

functor(Term,F,N),
ground (N, Term) .

ground (0,T) . %% All subterms traversed
ground (N, T) : -

N>0,

arg(N,T,Arg),

ground (Arg) ,

N1 is N-1,

ground (N1,T) .




Repeat Loops

e repeat always succeeds: it has infinite answers.

e Used to implement loops: make use of backtracking to iterate by failing
repeatedly.

e Example — reading loop:

read_loop :-
repeat,
read(X),
process(X),

X == end_of_file,
.

process(end_of_file):- !.

process(X):- ... <deterministic computation> ...




Dynamic Program Modification (1)

e assert/1, retract/1, abolish/1, ...

e Very powerful: allows run—time modification of programs. Can also be used to
simulate global variables.

e Sometimes this is very useful, but very often a mistake:

¢ Code hard to read, hard to understand, hard to debug.
o Typically, slow.

e Program modification has to be used scarcely, carefully, locally.
e Still, assertion and retraction can be logically justified in some cases:

o Assertion of clauses which logically follow from the program. (lemmas)
o Retraction of clauses which are logically redundant.

e Other typically non-harmful use: simple global switches.

e Behavior/requirements may differ between Prolog implementations.
Typically, the predicate must be declared : - dynamic.




Dynamic Program Modification (1l)

e Example program:

relate_numbers(X, Y):- assert(related(X, Y)).
unrelate_numbers(X, Y):- retract(related(X, Y)).

e Example query:

?- related(1, 2).
{EXISTENCE ERROR: ...}

?- relate_numbers(1l, 2).
yes

?- related(1l, 2).

yes

?- unrelate_numbers(1l, 2).
yes

?7- related(1, 2).

no

e Rules can be asserted dynamically as well.




Dynamic Program Modification (lI1)

e Example program:

fib(0, 0). 1fib(N, F):- lemma_fib(N, F), !.
fib(1, 1). 1fib(N, F):-
fib(N, F):- N>1,

N> 1, N1 is N - 1,

N1 is N - 1, N2 is N1 - 1,

N2 is N1 - 1, 1fib (N1, F1),

fib(N1, F1), 1fib(N2, F2),

fib(N2, F2), F is F1 + F2,

F is F1 + F2. assert(lemma_fib(N, F)).

:— dynamic lemma_fib/2.

lemma_£fib(0, 0). lemma_fib(1, 1).

e Compare £ib(24,N) versus 1fib(24,N)




Meta-Interpreters

e clause(head ,body):

© Reads a clause head :- body from the program.
o For facts body is true.

e To use clause/2 a predicate must be declared dynamic.

e Simple (“vanilla”) meta-interpreter:

solve(true).
solve((A,B)) :- solve(dA), solve(B).
solve(A) :- clause(A,B), solve(B).

e This code can be enhanced to do many tasks: tracing, debugging, explanations in
expert systems, implementing other computation rules, ...

e Issues / interactions with module system.




Parsing (using append and traditional lists)

%% ?- myphrase([t,h,e,’ ’,p,l,a,n,e,’ ’,f,1,i,e,s]).

myphrase(X) :-
append(A,T1,X), article(A), append(SP,T2,T1), spaces(SP),
append (N,T3,T2), noun(N), append(SPN,V,T3), spaces(SPN), verb(V).

article([a]).
article([t,h,e]).

spaces([’ ’]).
spaces([’ > | Y]) :- spaces(Y).

noun([c,a,r]).
noun([p,1l,a,n,e]).

verb([f,1,i,e,s]).
verb([d,r,i,v,e,s]).




Parsing (using standard clauses and difference lists)

%% ?- myphrase([t,h,e,’ ’,p,l,a,n,e,’ ’,f,1,i,e,s],[]).

myphrase (X,CV) :-
article(X,CA), spaces(CA,CS1), noun(CS1,CN),
spaces(CN,CS2), verb(CS2,CV).

article([t,h,e|X] ,X).
article([al|X] ,X).

spaces([’ ’ | X],X).
spaces([’ ’ | Y],X) :- spaces(Y,X).

noun([p,l,a,n,e | X],X).
noun([c,a,r | X],X).

verb([f,1,i,e,s | X],X).
verb([d,r,i,v,e,s | X],X).




Parsing (same, using some string syntax)

%% 7- myphrase("the plane flies",[]).

myphrase (X,CV) :-
article(X,CA), spaces(CA,CS1), noun(CS1,CN),
spaces(CN,CS2), verb(CS2,CV).

article( "the" || X, X).
article( "a" ] X, X).
spaces( " " Il X, X).
spaces( " " |l Y, X) :- spaces(Y, X).
noun( "plane" || X, X).
noun( "car" ] X, X).
verb( "flies" || X, X).

verb( "drives" || X, X).




Parsing (same, using additional syntax: DCGSs)

e Add syntactic transformation to avoid writing all the auxiliary variables.
The result is called Definite Clause Grammars (“DCGSs”).

%% ?- myphrase("the plane flies",[]).

%% or, use ‘phrase/2’’ builtin:

%% ?- phrase(myphrase,"the plane flies").
:— use_package (dcg) .

myphrase --> article, spaces, noun, spaces, verb.

article --> "the". spaces ——> " ",
article --> "a". spaces --> " "  spaces.
noun —--> "plane". verb --> "flies".

noun --> "car". verb --> "drives".




Parsing + actions (calling Prolog in DCGS)

e Other actions can be interspersed with the grammar.
Raw Prolog can be called (between “{ ... }")

%% ?- myphrase(NChars,"the plane flies",[]).
%% ?- phrase(myphrase(N),"the plane flies").

:— use_package (dcg) .

myphrase(N) --> article(AC), spaces(S1), noun(NC), spaces(S2),
verb(VC), { N is AC + S1 + NC + S2 + VC}.

article(3) --> "the". spaces(l) —-—> " ",
article(1) --> "a". spaces(N) --> " "  gspaces(N1), { N is Ni+1 }
noun(5) --> "plane". verb(5) --> "flies".

noun(3) --> "car". verb(6) --> "drives".




Creating Executables

e Most systems have methods for creating 'executables’

o Saved states (save/1, save_program/2, etc.).
¢ Stand-alone compilers (e.qg., ciaoc).

o Scripts (e.g., prolog-shell).

¢ “Run-time” systems.

o efc.




Other issues in Prolog (see “The Art of Prolog” and Bibliography)

e Exception handling.

e Extending the syntax beyond operators: term expansions/macros.
e Delay declarations/concurrency.

e Operating system interface (and sockets, etc.).

e Foreign language (e.g., C) interfaces.

e Many other built-ins...




Some Typical Libraries in Prolog Systems

e Most systems have a good set of libraries.

e Worth checking before re-implementing existing functionality!

e Some examples:

Arrays Assoc Attributes Heaps
Lists Term Utilities Ordset Queues
Random System Ultilities Tree UGraphs
WGraphs Sockets Linda/Distribution | Persistent DB

CLPB CLPQR CLPFD Objects
GCLA TclTk Tracing Chars I/O

Runtime Utilities Timeout Xrefs WWW

Java Interface




Some Additional Libraries and Extensions (Ciao)

Other systems may offer additional extensions. Some examples from Ciao:
e Other execution rules:

< Breadth-first execution

o Iterative-deepening execution

¢ Fuzzy Prolog, MYCIN rules, ...

¢ Andorra (“determinate-first”) execution

e Interfaces to other languages and systems:

o C, Java, ... interfaces

o Persistent predicates and SQL database interface

o Web/HTML/XML/CGI programming (PiLLoW) / HTTP connectivity
¢ Interface to VRML (ProVRML)

o Tcl/Tk interface

¢ daVinci interface

¢ Calling emacs from Prolog, etc.




Some Additional Libraries and Extensions (Ciao, Contd.)

e Numerous libraries as well as syntactic and semantic extensions:

o Terms with named arguments -records/feature terms
¢ Multiple argument indexing

¢ Functional notation

o Higher-order

o The script interpreter

o Active modules (high-level distributed execution)

¢ Concurrency/multithreading

© Object oriented programming

<




Some Additional Libraries and Extensions (Ciao, Contd.)

e Constraint programming (CLP)
o rationals, reals, finite domains, ...
e Assertions:

o Regular types

¢ Modes

o Properties which are native to analyzers
¢ Run-time checking of assertions

e Advanced programming support:

o Compile-time type, mode, and property inference and checking, ... (CiaoPP).
¢ Automatic documentation (LPdoc).

(O




