Computational Logic

Fundamentals (of Definite Programs):

Syntax and Semantics

Towards Logic Programming

e Conclusion: resolution is a complete and effective deduction mechanism using:
Horn clauses (related to “Definite programs”),

Linear, Input strategy
Breadth-first exploration of the tree (or an equivalent approach)
(possibly ordered clauses, but not required — see Selection rule later)

e Very close to what is generally referred to as SLD-resolution (see later)

e This allows to some extent realizing Greene’s dream (within the theoretical limits
of the formal method), and efficiently!

Towards Logic Programming (Contd.)

e Given these results, why not use logic as a general purpose programming
language? [Kowalski 74]

e A “logic program” would have two interpretations:

o Declarative (“LOGIC"): the logical reading (facts, statements, knowledge)
< Procedural ("CONTROL"): what resolution does with the program

e ALGORITHM = LOGIC + CONTROL
e Specify these components separately

e Often, worrying about control is not needed at all (thanks to resolution)

e Control can be effectively provided through the ordering of the literals in the
clauses

Towards Logic Programming: Another (more compact) Clausal Form

e All formulas are transformed into a set of Clauses.

o A clause has the form: concy, ..., CONe,, < condy, ..., cond,
where concy, ..., CONCy, condy, ..., cond,

“Or” and”
are literals, and are the conclusions and conditions of a rule:

concy, ..., CONc,, < condy, ..., cond,

“conclusions” “conditions”
< All variables are implicitly universally quantified: (if X1, ..., X, are the variables)

VX1, ..., X, conci V...V conc, < condi A\ ... \ cond,

e More compact than the traditional clausal form:

© NO connectives, just commas

< no need to repeat negations: all negated atoms on one side, non-negated
ones on the other

e A Horn Clause then has the form: concy < condy, ..., cond,
where n can be zero and possibly conc; empty.

Some Logic Programming Terminology — “Syntax” of Logic Programs

e Definite Program: a set of positive Horn clauses head <« goaly, ..., goal,,
e The single conclusion is called the head.

e The conditions are called “goals” or “procedure calls”.

e goal,...,goal, (n > 0) is called the “body”.

e if n = 0 the clause is called a “fact” (and the arrow is normally deleted)

e Otherwise it is called a “rule”

e Query (question). a negative Horn clause (a “headless” clause)

e A procedure is a set of rules and facts in which the heads have the same
predicate symbol and arity.

e Terms in a goal are also called “arguments”.

Some Logic Programming Terminology (Contd.)

e Examples:
grandfather(X,Y) « father (X,Z), mother(Z,Y).
grandfather(X,Y) «.
grandfather(X,Y).
«— grandfather(X,Y).

LOGIC: Declarative “Reading” (Informal Semantics)

e A rule (has head and body)
head < goaly, ..., goal,.

which contains variables X, ..., X} can be read as
for all X3, ..., X;:
“head” is true if “goal,” and ... and “goal,,” are true

e A fact n=0 (has only head)
head.

for all X4, ..., X;: “head” is true (always)

e A query (the headless clause)

«— goaly, ..., goal,

can be read as:
for which X, ..., X}, are “goal,” and ... and “goal,,” true?

LOGIC: Declarative Semantics — Herbrand Base and Universe

e Given a first-order language L, with a non-empty set of variables, constants,
function symbols, relation symbols, connectives, quantifiers, etc. and given a
syntactic object A,

ground(A) = {A0]|30 € Subst,var(Af) = 0}
l.e. the set of all “ground instances” of A.
e Given L, U, (Herbrand universe) is the set of all ground terms of L.
e B; (Herbrand Base) is the set of all ground atoms of L.

e Similarly, for the language L p associated with a given program P we define Up,
and Bp.

e Example:
P={ p(f(X)) < p
UP:{aab f()7f(b)7
(

Bp = {p(a),p(b),q(a), q

Herbrand Interpretations and Models

e A Herbrand Interpretation is a subset of B;, i.e. the set of all Herbrand
interpretations I, = p(B;).
(Note that I; forms a complete lattice under C — important for fixpoint operations
to be introduced later).

o Example: P ={ p(f(X)) < p(X). pla). qla). q(). }
Up ={a,b, f(a), f(b), f(f(a)), F(f(b)),...}
Bp = {pla),p(b), q(a), q(b), p(f(a)), p(f (b)),

Ip = all subsets of Bp

e A Herbrand Model is a Herbrand interpretation which contains all logical
consequences of the program.

e The Minimal Herbrand Model Hp is the smallest Herbrand interpretation which
contains all logical consequences of the program. (It is unique.)

e Example:

Hp = {q(a),q(b), p(a), p(f(a)), p(f(f(a))), -}

Declarative Semantics, Completeness, Correctness

e Declarative semantics of a logic program P:
the set of ground facts which are logical consequences of the program (i.e., Hp).
(Also called the “least model” semantics of P).

e Intended meaning of a logic program P:
the set M of ground facts that the user expects to be logical consequences of the
program.

e A logic program is correct if Hp C M.
e A logic program is complete if M C Hp.

e Example:
father(john,peter).

father(john,mary).
mother(mary,mike).
grandfather(X,Y) « father(X,2), father(Z,Y).

with the usual intended meaning is correct but incomplete.

CONTROL.: Linear (Input) Resolution in this Clausal Form

We now turn to the operational semantics of logic programs,
given by a concrete operational procedure: Linear (Input) Resolution.

e Complementary literals:
< 1n two different clauses
< on different sides of «—

< unifiable with unifier 6

father(john,mary)«
grandfather(X,Y) < father(X,Z), mother(Z,Y)

0 ={X/john, Z/mary}

CONTROL: Linear (Input) Resolution in this Clausal Form (Contd.)

e Resolution step (linear, input, ...):
< given a clause and a resolvent, we can build a new resolvent which follows
from them by:
* renaming apart the clause (“standardization apart” step)
* putting all the conclusions to the left of the +
* putting all the conditions to the right of the

* if there are complementary literals (unifying literals at different sides of the
arrow in the two clauses), eliminating them and applying 6 to the new
resolvent

e LD-Resolution: linear (and input) resolution, applied to definite programs
Note that then all resolvents are negative Horn clauses (like the query).

Example

e from
father(john,peter) «
mother(mary,david) «
we can infer
father(john,peter), mother(mary,david) <

e from

father(john,mary) «

grandfather(X,Y) « father(X,Z), mother(Z,Y)
we can infer

grandfather(john,Y’) < mother(mary,Y’)

CONTROL.: A proof using LD-Resolution

e Prove “grandfather(john,david) <" using the set of axioms:
1. father(john,peter) «—

father(john,mary) «—

father(peter,mike) «—

mother(mary,david) «

grandfather(L,M) < father (L,N), father(N,M)

grandfather(X,Y) « father (X,Z), mother(Z,Y)

e \We introduce the predicate to prove (negated!)
7. «— grandfather(john,david)

ok wN

e We start resolution: e.g. 6 and 7
8. « father(john,Z"), mother(Z!,david) X!/john, Y'!/david

e UsSing 2 and 8
9. « mother(mary,david) Z/mary

e Using4 and 9

H

CONTROL: Rules and SLD-Resolution

e Two control-related issues are still left open in LD-resolution.
Given a current resolvent R and a set of clauses K:

o given a clause C' in K, several of the literals in R may unify the non-negated a
complementary literal in C'

< given a literal L in R, it may unify with complementary literals in several
clauses in K

e A Computation (or Selection rule) is a function which, given a resolvent (and
possibly the proof tree up to that point) returns (selects) a literal from it. This is
the goal that will be used next in the resolution process.

e A Search rule is a function which, given a literal and a set of clauses (and
possibly the proof tree up to that point), returns a clause from the set. This is the
clause that will be used next in the resolution process.

CONTROL: Rules and SLD-Resolution (Contd.)

e SLD-resolution: Linear resolution for Definite programs with Selection rule.

e An SLD-resolution method is given by the combination of a computation (or
selection) rule and a search rule.

e Independence of the computation rule: Completeness does not depend on the
choice of the computation rule.

e Example: a “left-to-right” rule (as in ordered resolution) does not impair
completeness — this coincides with the completeness result for ordered resolution.

e Fundamental result;

“Declarative” semantics (Hp) = “operational” semantics (SLD-resolution)
l.e., all the facts in Hp can be deduced using SLD-resolution.

CONTROL: Procedural reading of a logic program

e Given arule
head < goaly, ..., goal,.

it can be seen as a description of the goals the solver (resolution method) has to
execute in order to solve “head”

e Possible, given computation and search rules.
e In general, “In order to solve ‘head’, solve ‘goal,’ and ... and solve ‘goal,,’ ”

e If ordered resolution is used (left-to-right computation rule), then read “In order to
solve ‘head’, first solve ‘goal,’ and then ‘goal,’ and then ... and finally solve ‘goal,;’

e Thus the “control” part corresponding to the computation rule is often associated
with the order of the goals in the body of a clause

e Another part (corresponding to the search rule) is often associated with the order
of clauses

CONTROL: Procedural reading of a logic program (Contd.)

e Example — read “procedurally”:
father(john,peter).
father(john,mary).
father(peter,mike).
father(X,Y) < mother(Z,Y), married(X,Z2).

Towards a Fixpoint Semantics for LP — Fixpoint Basics

e A fixpoint for an operator 7' : X — X is an element of € X such that x = T'(z).
e If X is a poset, T'is monotonic if Vz,y € X, v <y = T(z) < T(y)

e If X Iis a complete lattice and 7" is monotonic the set of fixpoints of T is also a
complete lattice [Tarski]

e The least element of the lattice is the least fixpoint of 7', denoted ifp (T)

e Powers of a monotonic operator (successive applications):
T70(x)==x
TTn(x)=T(T7T (n—1)(x))(nis a successor ordinal)
T7Tw(x)=L{T T n()|n < w}
We abbreviate T T a(l)as T T «

e Thereissome wsuchthatT T w=IfpT. ThesequenceT 10,7 1 1,....Ifp T is the
Kleene sequence for T’

e In a finite lattice the Kleene sequence for a monotonic operator 7' is finite

Towards a Fixpoint Semantics for LP — Fixpoint Basics (Contd.)

e A subset Y of a poset X is an (ascending) chainiff Vy,y € Y,y <y ' Vi <y

e A complete lattice X is ascending chain finite (or Noetherian) if all ascending
chains are finite

e In an ascending chain finite lattice the Kleene sequence for a monotonic operator
T is finite

Lattice Structures

finite

d e
&N
W

1
finite depth

=~ W l\')H—'

T

%\ 1
A \j A - A\ ‘ ‘ ascending chain finite

... Inf ...

v

A Fixpoint Semantics for Logic Programs, and Equivalences

e The Immediate consequence operator T» is a mapping: Tp : Ip — Ip defined by:
Tp(I)={A € Bp|3C € ground(P),C =A« Ly,...,L,and Ly,...L, € I}

(in particular, if (A <) € P, then every element of ground(A) isin Tp(I), V I).
e T’» is monotonic, so it has a least fixpoint I* so that Tp»(I*) = I'*, which can be

obtained by applying T'» iteratively starting from the bottom element of the lattice
(the empty interpretation)

e (Characterization Theorem) [Van Emden and Kowalski]
A program P has a Herbrand model Hp such that :
© Hp is the least Herbrand Model of P.
o Hp is the least fixpoint of T (ifp Tp).
o Hp=1Tp T w.
l.e., least model semantics (Hp) = fixpoint semantics (Ifp Tp)

e Because it gives us some intuition on how to build H p, the least fixpoint
semantics can in some cases (e.g., finite models) also be an operational
semantics (e.g., in deductive databases).

A Fixpoint Semantics for Logic Programs: Example

e Example:

P ={p(f(X)) — p(X).
pla).
q(a).
q(b). }

Up ={a,b, f(a), f(b), f(f(a)), F(f(D)),...}
Bp = {p(a),p(b), q(a), q
Ip = all subsets o

Hp = {Q(a)a Q(b)ap

(), p(f(a), p(f(D)),q(f(a)), ..}

Ve N 2)
=
!
A~
=
=
Nt
=
~
A~
=
=
~—
Nt
—

