
Computational Logic

Developing Programs with a Logic Programming System

1

Our Development Environment: The Ciao System

• We use the (ISO-Prolog subset of the) Ciao multiparadigm programming system.

• In particular, the Ciao system offers both command line and graphical
environments for editing, compiling, debugging verifying, optimizing, and
documenting programs, including:

⋄ A traditional, command line interactive top level.
⋄ A stand-alone compiler (ciaoc).
⋄ Compilation of standalone executables, which can be:

* eager dynamic load
* lazy dynamic load
* static (without the engine –architecture independent)
* fully static/standalone (architecture dependent)

⋄ Prolog scripts (architecture independent).
⋄ Source debugger, embeddable debugger, error location, ...
⋄ Auto-documenter.
⋄ Compile-time checking of assertions (types, modes, determinacy, non-failure,

etc. ...) and static debugging, etc.!

2

• Reading the first slides of the Ciao tutorial regarding the use of the
compiler, top-level, debuggers, environment, module system, etc. is
suggested at this point.

• Also, reading the corresponding parts of the Ciao manual.

3

Programmer Interface: The Classical Top-Level Shell

• Modern Prolog compilers offer several ways of writing, compiling, and running
programs.

• Classical model:

⋄ User interacts directly with top level (includes compiler/interpreter).
⋄ A prototypical session with a classical Prolog-style, text-

based, top-level shell (details are those of the Ciao system, user input in bold):
[37]> ciao Invoke the system
Ciao 1.11 #211: Thu Mar 18 15:28:12 CET 2004

?- use module(file). Load your program file
yes

?- query containing variable X. Query the program
X = binding for X ; See one answer, ask for another using “;”
X = another binding for X <enter> Discard rest of answers using <enter>

?- another query. Submit another query
?-

?- halt. End the session, also with ˆ D

4

Traditional (“Edinburgh”) Program Load

• Compile program (much faster, but typically no debugging capabilities):
?- compile(file).

• Consult program (interpreted, slower, used for debugging in traditional systems):
?- consult(file).

?- [file].

• Compiling/consulting several programs:
?- compile([file1,file2]).

?- [file1,file2].

• Enter clauses from the terminal (not recommended, except for quick hacks):
?- [user].

| append([],Ys,Ys).

| append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

| ^D

{user consulted, 0 msec 480 bytes}

yes

?-

5

Ciao Program Load

• Most traditional (“Edinburgh”) program load commands can be used.

• But more modern primitives available which take into account module system.
Same commands used as in the code inside a module:

⋄ use module/1 – for loading modules.

⋄ ensure loaded/1 – for loading user files.

⋄ use package/1 – for loading packages (see later).

• In summary, top-level behaves essentially like a module.

• In practice, done automatically within graphical environment :

⋄ Open the source file in the graphical environment.

⋄ Edit it (with syntax coloring, etc.).

⋄ Load it by typing C-c l or using menus.

⋄ Interact with it in top level.

6

Top Level Interaction Example

• File member.pl:

:- module(member,[member/2]).

member(X, [X|_Rest]).

member(X, [_Y|Rest]):- member(X, Rest).

?- use_module(member).

yes

?- member(c,[a,b,c]).

yes

?- member(d,[a,b,c]).

no

?- member(X,[a,b,c]).

X = a ? ;

X = b ? (intro)

yes

7

Ciao Programming Environment: file being edited and top-level

8

Top Level Interaction Example

• File pets.pl contains:

:- module(_,_,[bf]).

+ the pet example code as in previous slides.

• Interaction with the system query evaluator (the “top level”):

Ciao 1.13 #0: Mon Nov 7 09:48:51 MST 2005

?- use_module(pets).

yes

?- pet(spot).

yes

?- pet(X).

X = spot ? ;

X = barry ? ;

no

?-

9

The Ciao Module System

• Ciao implements a module system [?] which meets a number of objectives:

⋄ High extensibility in syntax and functionality:
allows having pure logic programming and many extensions.

⋄ Makes it possible to perform modular (separate) processing of program
components (without “makefiles”).

⋄ Greatly enhanced error detection (e.g., undefined predicates).

⋄ Facilitates (modular) global analysis.

⋄ Support for meta-programming and higher-order.

⋄ Predicate based-like, but with functor/type hiding.

while at the same time providing:

⋄ High compatibility with traditional standards (Quintus, SICStus, ...).

⋄ Backward compatible with files which are not modules.

10

Defining modules and exports

• :- module(module name, list of exports, list of packages).

Declares a module of name module name, which exports list of exports and
loads list of packages (packages are syntactic and semantic extensions).

• Example: :- module(lists, [list/1, member/2], [functions]).

• Examples of some standard uses and packages:

⋄ :- module(module name, [exports], []).

⇒ Module uses (pure) kernel language.

⋄ :- module(module name, [exports], [packages]).

⇒ Module uses kernel language + some packages.

⋄ :- module(module name,[exports], [functions]).

⇒ Functional programming.

⋄ :- module(module name,[exports],[assertions,functions]).

⇒ Assertions (types, modes, etc.) and functional programming.

11

Defining modules and exports (Contd.)

• (ISO-)Prolog:

⋄ :- module(module name, [exports], [iso]).

⇒ Iso Prolog module.

⋄ :- module(module name,[exports], [classic]).

⇒ “Classic” Prolog module
(ISO + all other predicates that traditional Prologs offer as “built-ins”).

⋄ Special form:
:- module(module name, [exports]).

Equivalent to:
:- module(module name, [exports], [classic]).

⇒ Provides compatibility with traditional Prolog systems.

12

Defining modules and exports (Contd.)

• Useful shortcuts:

⋄ :- module(, list of exports).

If given as “ ” module name taken from file name (default).
Example: :- module(, [list/1, member/2]). (file is lists.pl)

⋄ :- module(,).

If “ ” all predicates exported (useful when prototyping / experimenting).

• “User” files:

⋄ Traditional name for files including predicates but no module declaration.
⋄ Provided for backwards compatibility with non-modular Prolog systems.
⋄ Not recommended: they are problematic (and, essentially, deprecated).
⋄ Much better alternative: use :- module(,). at top of file.

* As easy to use for quick prototyping as “user” files.
* Lots of advantages: much better error detection, compilation, optimization,

...

13

Importing from another module

• Using other modules in a module:

⋄ :- use module(filename).

Imports all predicates that filename exports.
⋄ :- use module(filename,list of imports).

Imports predicates in list of imports from filename.
⋄ :- ensure loaded(filename). —for loading user files (deprecated).

• When importing predicates with the same name from different modules, module
name is used to disambiguate:
:- module(main,[main/0]).

:- use_module(lists,[member/2]).

:- use_module(trees,[member/2]).

main :-

produce_list(L),

lists:member(X,L),

...

14

Tracing an Execution with The “Byrd Box Model”

• Procedures (predicates) seen as “black boxes” in the usual way.

• However, simple call/return not enough, due to backtracking.

• Instead, “4-port box view” of predicates:

RedoFail

Call Exit

member(X,[Y|Ys]):- member(X,Ys).
member(X,[X|Ys]).

• Principal events in Prolog execution (goal is a unique, run-time call to a predicate):

⋄ Call goal: Start to execute goal.
⋄ Exit goal: Succeed in producing a solution to goal.
⋄ Redo goal: Attempt to find an alternative solution to goal

(soli+1 if soli was the one computed in the previous exit).
⋄ Fail goal: exit with fail, if no further solutions to goal found (i.e., soli was the

last one, and the goal which called this box is entered via the “redo” port).

15

Debugging Example

Ciao 1.13 #0: Fri Jul 8 11:46:55 CEST 2005

?- use_module(’/home/logalg/public_html/slides/lmember.pl’).

yes

?- debug_module(lmember).

{Consider reloading module lmember}

{Modules selected for debugging: [lmember]}

{No module is selected for source debugging}

yes

?- trace.

{The debugger will first creep -- showing everything (trace)}

yes

{trace}

?-

• Much easier: open file and type C-c d (or use CiaoDbg menu).

16

Debugging Example (Contd.)

?- lmember(X,[a,b]).

1 1 Call: lmember:lmember(_282,[a,b]) ?

1 1 Exit: lmember:lmember(a,[a,b]) ?

X = a ? ;

1 1 Redo: lmember:lmember(a,[a,b]) ?

2 2 Call: lmember:lmember(_282,[b]) ?

2 2 Exit: lmember:lmember(b,[b]) ?

1 1 Exit: lmember:lmember(b,[a,b]) ?

X = b ? ;

1 1 Redo: lmember:lmember(b,[a,b]) ?

2 2 Redo: lmember:lmember(b,[b]) ?

3 3 Call: lmember:lmember(_282,[]) ?

3 3 Fail: lmember:lmember(_282,[]) ?

2 2 Fail: lmember:lmember(_282,[b]) ?

1 1 Fail: lmember:lmember(_282,[a,b]) ?

no

17

Options During Tracing

h Get help — gives this list (possibly with more options)
c Creep forward to the next event

Advances execution until next call/exit/redo/fail
intro (same as above)
s Skip over the details of executing the current goal

Resume tracing when execution returns from current goal
l Leap forward to next “spypoint” (see below)
f Make the current goal fail

This forces the last pending branch to be taken
a Abort the current execution
r Redo the current goal execution

very useful after a failure or exit with weird result
b Break — invoke a recursive top level

• Many other options in modern Prolog systems.

• Also, graphical and source debuggers available in these systems.

18

Spypoints (and breakpoints)

• ?- spy foo/3.

Place a spypoint on predicate foo of arity 3 – always trace events involving this
predicate.

• ?- nospy foo/3.

Remove the spypoint in foo/3.

• ?- nospyall.

Remove all spypoints.

• In many systems (e.g., Ciao) also breakpoints can be set at particular program
points within the graphical environment.

19

Debugger Modes

• ?- debug.

Turns debugger on. It will first leap, stopping at spypoints and breakpoints.

• ?- nodebug.

Turns debugger off.

• ?- trace.

The debugger will first creep, as if at a spypoint.

• ?- notrace.

The debugger will leap, stopping at spypoints and breakpoints.

20

Running Pure Logic Programs: the Ciao System’s bf/af Packages

• We will be using Ciao, a multiparadigm programming system which includes (as
one of its “paradigms”) a pure logic programming subsystem:

⋄ A number of fair search rules are available (breadth-first, iterative deepening,
...): we will use “breadth-first” (bf or af).

⋄ Also, a module can be set to pure mode so that impure built-ins are not
accessible to the code in that module.

⋄ This provides a reasonable first approximation of “Greene’s dream”
(of course, at a cost in memory and execution time).

• Writing programs to execute in bf mode:

⋄ All files should start with the following line:

:- module(_,_,[bf]). (or :- module(_,_,[’bf/af’]).)

or, for “user” files, i.e., files that are not modules: :- use package(bf).

⋄ The neck (arrow) of rules must be <- .
⋄ Facts must end with <- . .

21

