
Computational Logic

Developing Programs with a Logic Programming System
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Our Development Environment: The Ciao System

• We use the (ISO-Prolog subset of the) Ciao multiparadigm programming system.

• In particular, the Ciao system offers both command line and graphical
environments for editing, compiling, debugging verifying, optimizing, and
documenting programs, including:

⋄ A traditional, command line interactive top level.
⋄ A stand-alone compiler (ciaoc).
⋄ Compilation of standalone executables, which can be:

* eager dynamic load
* lazy dynamic load
* static (without the engine –architecture independent)
* fully static/standalone (architecture dependent)

⋄ Prolog scripts (architecture independent).
⋄ Source debugger, embeddable debugger, error location, ...
⋄ Auto-documenter.
⋄ Compile-time checking of assertions (types, modes, determinacy, non-failure,

etc. ...) and static debugging, etc.!
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• Reading the first slides of the Ciao tutorial regarding the use of the
compiler, top-level, debuggers, environment, module system, etc. is
suggested at this point.

• Also, reading the corresponding parts of the Ciao manual.
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Programmer Interface: The Classical Top-Level Shell

• Modern Prolog compilers offer several ways of writing, compiling, and running
programs.

• Classical model:

⋄ User interacts directly with top level (includes compiler/interpreter).
⋄ A prototypical session with a classical Prolog-style, text-

based, top-level shell (details are those of the Ciao system, user input in bold):
[37]> ciao Invoke the system
Ciao 1.11 #211: Thu Mar 18 15:28:12 CET 2004

?- use module(file). Load your program file
yes

?- query containing variable X. Query the program
X = binding for X ; See one answer, ask for another using “;”
X = another binding for X <enter> Discard rest of answers using <enter>

?- another query. Submit another query
?- .......

?- halt. End the session, also with ˆ D
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Traditional (“Edinburgh”) Program Load

• Compile program (much faster, but typically no debugging capabilities):
?- compile(file).

• Consult program (interpreted, slower, used for debugging in traditional systems):
?- consult(file).

?- [file].

• Compiling/consulting several programs:
?- compile([file1,file2]).

?- [file1,file2].

• Enter clauses from the terminal (not recommended, except for quick hacks):
?- [user].

| append([],Ys,Ys).

| append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

| ^D

{user consulted, 0 msec 480 bytes}

yes

?-
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Ciao Program Load

• Most traditional (“Edinburgh”) program load commands can be used.

• But more modern primitives available which take into account module system.
Same commands used as in the code inside a module:

⋄ use module/1 – for loading modules.

⋄ ensure loaded/1 – for loading user files.

⋄ use package/1 – for loading packages (see later).

• In summary, top-level behaves essentially like a module.

• In practice, done automatically within graphical environment :

⋄ Open the source file in the graphical environment.

⋄ Edit it (with syntax coloring, etc.).

⋄ Load it by typing C-c l or using menus.

⋄ Interact with it in top level.
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Top Level Interaction Example

• File member.pl:

:- module(member,[member/2]).

member(X, [X|_Rest]).

member(X, [_Y|Rest]):- member(X, Rest).

?- use_module(member).

yes

?- member(c,[a,b,c]).

yes

?- member(d,[a,b,c]).

no

?- member(X,[a,b,c]).

X = a ? ;

X = b ? (intro)

yes
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Ciao Programming Environment: file being edited and top-level
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Top Level Interaction Example

• File pets.pl contains:

:- module(_,_,[bf]).

+ the pet example code as in previous slides.

• Interaction with the system query evaluator (the “top level”):

Ciao 1.13 #0: Mon Nov 7 09:48:51 MST 2005

?- use_module(pets).

yes

?- pet(spot).

yes

?- pet(X).

X = spot ? ;

X = barry ? ;

no

?-
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The Ciao Module System

• Ciao implements a module system [?] which meets a number of objectives:

⋄ High extensibility in syntax and functionality:
allows having pure logic programming and many extensions.

⋄ Makes it possible to perform modular (separate) processing of program
components (without “makefiles”).

⋄ Greatly enhanced error detection (e.g., undefined predicates).

⋄ Facilitates (modular) global analysis.

⋄ Support for meta-programming and higher-order.

⋄ Predicate based-like, but with functor/type hiding.

while at the same time providing:

⋄ High compatibility with traditional standards (Quintus, SICStus, ...).

⋄ Backward compatible with files which are not modules.
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Defining modules and exports

• :- module(module name, list of exports, list of packages ).

Declares a module of name module name, which exports list of exports and
loads list of packages (packages are syntactic and semantic extensions).

• Example: :- module(lists, [list/1, member/2], [functions]).

• Examples of some standard uses and packages:

⋄ :- module(module name, [exports ], []).

⇒ Module uses (pure) kernel language.

⋄ :- module(module name, [exports ], [packages ]).

⇒ Module uses kernel language + some packages.

⋄ :- module(module name,[exports ], [functions]).

⇒ Functional programming.

⋄ :- module(module name,[exports ],[assertions,functions]).

⇒ Assertions (types, modes, etc.) and functional programming.
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Defining modules and exports (Contd.)

• (ISO-)Prolog:

⋄ :- module(module name, [exports ], [iso]).

⇒ Iso Prolog module.

⋄ :- module(module name,[exports ], [classic]).

⇒ “Classic” Prolog module
(ISO + all other predicates that traditional Prologs offer as “built-ins”).

⋄ Special form:
:- module(module name, [exports ]).

Equivalent to:
:- module(module name, [exports ], [classic]).

⇒ Provides compatibility with traditional Prolog systems.
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Defining modules and exports (Contd.)

• Useful shortcuts:

⋄ :- module( , list of exports ).

If given as “ ” module name taken from file name (default).
Example: :- module( , [list/1, member/2]). (file is lists.pl)

⋄ :- module( , ).

If “ ” all predicates exported (useful when prototyping / experimenting).

• “User” files:

⋄ Traditional name for files including predicates but no module declaration.
⋄ Provided for backwards compatibility with non-modular Prolog systems.
⋄ Not recommended: they are problematic (and, essentially, deprecated).
⋄ Much better alternative: use :- module( , ). at top of file.

* As easy to use for quick prototyping as “user” files.
* Lots of advantages: much better error detection, compilation, optimization,

...
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Importing from another module

• Using other modules in a module:

⋄ :- use module(filename ).

Imports all predicates that filename exports.
⋄ :- use module(filename,list of imports ).

Imports predicates in list of imports from filename.
⋄ :- ensure loaded(filename). —for loading user files (deprecated).

• When importing predicates with the same name from different modules, module
name is used to disambiguate:
:- module(main,[main/0]).

:- use_module(lists,[member/2]).

:- use_module(trees,[member/2]).

main :-

produce_list(L),

lists:member(X,L),

...
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Tracing an Execution with The “Byrd Box Model”

• Procedures (predicates) seen as “black boxes” in the usual way.

• However, simple call/return not enough, due to backtracking.

• Instead, “4-port box view” of predicates:

RedoFail

Call Exit

member(X,[Y|Ys]):- member(X,Ys).
member(X,[X|Ys]).

• Principal events in Prolog execution (goal is a unique, run-time call to a predicate):

⋄ Call goal: Start to execute goal.
⋄ Exit goal: Succeed in producing a solution to goal.
⋄ Redo goal: Attempt to find an alternative solution to goal

(soli+1 if soli was the one computed in the previous exit).
⋄ Fail goal: exit with fail, if no further solutions to goal found (i.e., soli was the

last one, and the goal which called this box is entered via the “redo” port).
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Debugging Example

Ciao 1.13 #0: Fri Jul 8 11:46:55 CEST 2005

?- use_module(’/home/logalg/public_html/slides/lmember.pl’).

yes

?- debug_module(lmember).

{Consider reloading module lmember}

{Modules selected for debugging: [lmember]}

{No module is selected for source debugging}

yes

?- trace.

{The debugger will first creep -- showing everything (trace)}

yes

{trace}

?-

• Much easier: open file and type C-c d (or use CiaoDbg menu).
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Debugging Example (Contd.)

?- lmember(X,[a,b]).

1 1 Call: lmember:lmember(_282,[a,b]) ?

1 1 Exit: lmember:lmember(a,[a,b]) ?

X = a ? ;

1 1 Redo: lmember:lmember(a,[a,b]) ?

2 2 Call: lmember:lmember(_282,[b]) ?

2 2 Exit: lmember:lmember(b,[b]) ?

1 1 Exit: lmember:lmember(b,[a,b]) ?

X = b ? ;

1 1 Redo: lmember:lmember(b,[a,b]) ?

2 2 Redo: lmember:lmember(b,[b]) ?

3 3 Call: lmember:lmember(_282,[]) ?

3 3 Fail: lmember:lmember(_282,[]) ?

2 2 Fail: lmember:lmember(_282,[b]) ?

1 1 Fail: lmember:lmember(_282,[a,b]) ?

no
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Options During Tracing

h Get help — gives this list (possibly with more options)
c Creep forward to the next event

Advances execution until next call/exit/redo/fail
intro (same as above)
s Skip over the details of executing the current goal

Resume tracing when execution returns from current goal
l Leap forward to next “spypoint” (see below)
f Make the current goal fail

This forces the last pending branch to be taken
a Abort the current execution
r Redo the current goal execution

very useful after a failure or exit with weird result
b Break — invoke a recursive top level

• Many other options in modern Prolog systems.

• Also, graphical and source debuggers available in these systems.
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Spypoints (and breakpoints)

• ?- spy foo/3.

Place a spypoint on predicate foo of arity 3 – always trace events involving this
predicate.

• ?- nospy foo/3.

Remove the spypoint in foo/3.

• ?- nospyall.

Remove all spypoints.

• In many systems (e.g., Ciao) also breakpoints can be set at particular program
points within the graphical environment.
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Debugger Modes

• ?- debug.

Turns debugger on. It will first leap, stopping at spypoints and breakpoints.

• ?- nodebug.

Turns debugger off.

• ?- trace.

The debugger will first creep, as if at a spypoint.

• ?- notrace.

The debugger will leap, stopping at spypoints and breakpoints.
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Running Pure Logic Programs: the Ciao System’s bf/af Packages

• We will be using Ciao, a multiparadigm programming system which includes (as
one of its “paradigms”) a pure logic programming subsystem:

⋄ A number of fair search rules are available (breadth-first, iterative deepening,
...): we will use “breadth-first” (bf or af).

⋄ Also, a module can be set to pure mode so that impure built-ins are not
accessible to the code in that module.

⋄ This provides a reasonable first approximation of “Greene’s dream”
(of course, at a cost in memory and execution time).

• Writing programs to execute in bf mode:

⋄ All files should start with the following line:

:- module(_,_,[bf]). (or :- module(_,_,[’bf/af’]).)

or, for “user” files, i.e., files that are not modules: :- use package(bf).

⋄ The neck (arrow) of rules must be <- .
⋄ Facts must end with <- . .
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