
Computational Logic

The (ISO-)Prolog Programming Language
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(ISO-)Prolog

• A practical logic language based on the logic programming paradigm.

• Main differences with “pure” logic programming:

⋄ more control on the execution flow,
⋄ depth-first search rule, left-to-right control rule,
⋄ some pre-defined predicates are not declarative (generally for efficiency),
⋄ higher-order and meta-logical capabilities,
⋄ no occur check in unification; but often regular (i.e., infinite) trees supported.

• Advantages:

⋄ it can be compiled into fast and efficient code,
⋄ more expressive power,
⋄ industry standard (ISO-Prolog),
⋄ mature implementations with modules, graphical environments, interfaces, ...

• Drawbacks: incompleteness (due to depth-first search rule),
possible unsoundness (if no occur check and regular trees not supported).
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Programming interface (writing and running programs)

• Not specified in the language standard.

• Specific to the particular system implementing the language.

• Covers issues such as:

⋄ User interaction (top-level, GUI, etc.).

⋄ Interpreter(s).

⋄ Compiler(s).

⋄ Debugger(s).

⋄ (Module system.)

• Different Prolog systems offer different facilities for these purposes.
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The ISO Standard (Overview)

• Arithmetic

• Type checking and state checking

• Structure inspection

• Term comparison

• Input/Output

• Meta-calls and aggregation predicates

• Dynamic program modification

• Control structures (cut, true, fail, ...)

• Exception handling

Additionally (not in standard):

• Definite Clause Grammars (DCGs): parsing
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Built-in Arithmetic

• Practicality: interface to the underlying CPU arithmetic capabilities.

• These arithmetic operations are not as general as their logical counterparts.

• Interface: evaluator of arithmetic terms.

• The type of arithmetic terms:

⋄ a number is an arithmetic term,

⋄ if f is an n-ary arithmetic functor and X1, ..., Xn are arithmetic terms then
f(X1, ..., Xn) is an arithmetic term.

• Arithmetic functors: +, -, *, / (float quotient), // (integer quotient), mod, and more.
Examples:

⋄ (3*X+Y)/Z, correct if when evaluated X, Y and Z are arithmetic terms,
otherwise it will raise an error.

⋄ a+3*X raises an error (because a is not an arithmetic term).
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Built-in Arithmetic (Contd.)

• Built-in arithmetic predicates:

⋄ the usual <, >, =<, >=, =:= (arithmetic equal), =\= (arithmetic not equal), ...
Both arguments are evaluated and their results are compared

⋄ Z is X

X (which must be an arithmetic term) is evaluated and result is unified with Z.

• Examples: let X and Y be bound to 3 and 4, respectively, and Z be a free variable:

⋄ Y < X+1, X is Y+1, X =:= Y. fail (the system will backtrack).

⋄ Y < a+1, X is Z+1, X =:= f(a). error (abort).
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Arithmetic Programs

• plus(X,Y,Z) :- Z is X + Y

⋄ Only works in one direction (X and Y bound to arithmetic terms).
⋄ Meta-logical tests (see later) allow using it in both directions.
⋄ We have lost the recursive structure of the numbers.
⋄ But we have won (a lot) in performance!

• Factorial:

Using Peano arithmetic:

factorial(0,s(0)).

factorial(s(N),F):-

factorial(N,F1),

times(s(N),F1,F).

Using Prolog arithmetic:

factorial(0,1).

factorial(N,F):-

N > 0,

N1 is N-1,

factorial(N1,F1),

F is F1*N.

• Wrong goal order can raise an error (e.g., moving last call to is/2 before call to
factorial).
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Type Checking Predicates

• Unary relations which check the type of a term:

⋄ integer(X)

⋄ float(X)

⋄ number(X)

⋄ atom(X) (nonvariable term of arity 0 other than a number)

⋄ atomic(X) atom or number

⋄ ...

• They behave as if defined by a (possibly infinite) table of facts (in part, see below).

• They either succeed or fail, but do not produce an error.

• Thus, they cannot be used to generate (e.g., if argument is a variable, they fail
instead of instantiating it to possible values).

• This behaviour is outside first order logic because it allows checking the
instantiation state of a variable.
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Type Checking Predicates (Contd.)

• Example: implementing a better behavior for plus/3:

plus(X,Y,Z):- number(X),number(Y), Z is X + Y.

plus(X,Y,Z):- number(X),number(Z), Y is Z - X.

plus(X,Y,Z):- number(Y),number(Z), X is Z - Y.

Then:

?- plus(3,Y,5).

Y = 2 ?

• Still, it cannot be used to partition a number into two others:

?- plus(X,Y,5).

no

(in fact, this should raise an error, rather than simply failing).
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Structure Inspection

• functor(X, F, A):

⋄ X is a compound term f(X1,...,Xn)→ F=f A = n

⋄ F is the atom f and A is the integer n → X = f(X1,..,Xn)

⋄ Error if X, and either F or A are variables

⋄ Fails if the unification fails, A is not an integer, or F is not an atom

Examples:

⋄ functor(t(b,a),F,A)→ F=t, A=2.

⋄ functor(Term,f,3)→ Term = f( , , ).

⋄ functor(Vector,v,100)→ Vector = v( , ... , ).

(Note: in some systems functor arity is limited to 256)
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Structure Inspection (Contd.)

• arg(N, X, Arg):

⋄ N integer, X compound term → Arg unified with n-th argument of X.
⋄ Allows accessing a structure argument in constant time and in a compact way.
⋄ Error if N is not an integer, or if X is a free variable.
⋄ Fails if the unification fails.

Examples:

?- _T=date(9,February,1947), arg(3,_T,X).

X = 1947

?- _T=date(9,February,1947), _T=date(_,_,X).

X = 1947

?- functor(Array,array,5),

arg(1,Array,black),

arg(5,Array,white).

Array = array(black,_,_,_,white).

• What does ?- arg(2,[a,b,c,d],X). return?
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Example of Structure Inspection

• Define subterm(Sub,Term) (Term will always be a compound term):

subterm(Term,Term).

subterm(Sub,Term):-

functor(Term,F,N),

subterm(N,Sub,Term).

subterm(N,Sub,Term):-

arg(N,Term,Arg), % also checks N > 0 (arg/1 fails otherwise!)

subterm(Sub,Arg).

subterm(N,Sub,Term):-

N>1,

N1 is N-1,

subterm(N1,Sub,Term).
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Example of Structure Access

• Define add arrays(A1,A2,A3):
add_arrays(A1,A2,A3):- % Same N imposes equal length:

functor(A1,array,N), functor(A2,array,N), functor(A3,array,N),

add_elements(N,A1,A2,A3).

add_elements(0,_A1,_A2,_A3).

add_elements(I,A1,A2,A3):-

I>0, arg(I,A1,X1), arg(I,A2,X2), arg(I,A3,X3),

X3 is X1 + X2, I1 is I - 1,

add_elements(I1,A1,A2,A3).

• Alternative, using lists instead of structures:
add_arrays_lists([],[],[]).

add_arrays_lists([X|Xs],[Y|Ys],[Z|Zs]):-

Z is X + Y,

add_arrays_lists(Xs,Ys,Zs).

• In the latter case, where do we check that the three lists are of equal length?
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Higher-Order Structure Inspection

• T =.. L (known as “univ”)
⋄ L is the decomposition of a term T into a list comprising its principal functor

followed by its arguments.

?- date(9,february,1947) =.. L.

L = [date,9,february,1947].

?- _F = ’+’, X =.. [_F,a,b].

X = a + b.

⋄ Allows implementing higher-order primitives (see later).
Example: Extending derivative

derivative(sin(X),X,cos(X)).

derivative(cos(X),X,-sin(X)).

derivative(FG_X, X, DF_G * DG_X):-

FG_X =.. [_, G_X],

derivative(FG_X, G_X, DF_G), derivative(G_X, X, DG_X).

⋄ But do not use unless strictly necessary: expensive in time and memory.
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Conversion Between Strings and Atoms (New Atom Creation)

• Classical primitive: name(A,S)

⋄ A is the atom/number whose name is the list of ASCII characters S

?- name(hello,S).

S = [104,101,108,108,111]

?- name(A,[104,101,108,108,111]).

A = hello

?- name(A,"hello").

A = hello

⋄ Ambiguity when converting strings which represent numbers.
Example: ?- name(’1’,X), name(Y,X).

⋄ In the ISO standard fixed by dividing into two:

* atom codes(Atom,String)

* number codes(Number,String)
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Meta-Logical Predicates

• var(X): succeed iff X is a free variable.
?- var(X), X = f(a). % Succeeds

?- X = f(a), var(X). % Fails

• nonvar(X): succeed iff X is not a free variable.
?- X = f(Y), nonvar(X). % Succeeds

• ground(X): succeed iff X is fully instantiated.
?- X = f(Y), ground(X). % Fails

• Outside the scope of first order logic.

• Uses:

⋄ control goal order,

⋄ restore some flexibility to programs using certain builtins.
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Meta-Logical Predicates (Contd.)

• Example:

length(Xs,N):-

var(Xs), integer(N), length_num(N,Xs).

length(Xs,N):-

nonvar(Xs), length_list(Xs,N).

length_num(0,[]).

length_num(N,[_|Xs]):-

N > 0, N1 is N - 1, length_num(N1,Xs).

length_list([],0).

length_list([X|Xs],N):-

length_list(Xs,N1), N is N1 + 1.

• But note that it is not really needed: the normal definition of length is actually
reversible! (although less efficient than length num(N,L) when L is a variable).
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Comparing Non-ground Terms

• Many applications need comparisons between non–ground/non–numeric terms.

• Identity tests:

⋄ X == Y (identical)

⋄ X \== Y (not identical)

?- f(X) == f(X). %Succeeds

?- f(X) == f(Y). %Fails

• Term ordering:

⋄ X @> Y, X @>= Y, X @< Y, X @=< Y (alphabetic/lexicographic order)

?- f(a) @> f(b). %Fails

?- f(b) @> f(a). %Succeeds

?- f(X) @> f(Y). %Implementation dependent!
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Comparing Non-ground Terms (Contd.)

• Reconsider subterm/2 with non-ground terms

subterm(Sub,Term):- Sub == Term.

subterm(Sub,Term):- nonvar(Term),

functor(Term,F,N),

subterm(N,Sub,Term).

where subterm/3 is identical to the previous definition

• Insert an item into an ordered list:

insert([], Item, [Item]).

insert([H|T], Item, [H|T]):- H == Item.

insert([H|T], Item, [Item, H|T]):- H @> Item.

insert([H|T], Item, [H|NewT]) :- H @< Item, insert(T, Item, NewT).

• Compare with the same program with the second clause defined as

insert([H|T], Item, [Item|T]):- H = Item.
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Input/Output

• A minimal set of input-output predicates (“DEC-10 Prolog I/O”):

Class Predicate Explanation
I/O stream control see(File) File becomes the current input stream.

seeing(File) The current input stream is File.
seen Close the current input stream.
tell(File) File becomes the current output stream.
telling(File) The current output stream is File.
told Close the current output stream.

Term I/O write(X) Write the term X on the current output stream.
nl Start a new line on the current output stream.
read(X) Read a term (finished by a full stop) from the

current input stream and unify it with X.
Character I/O put code(N) Write the ASCII character code N. N can be a

string of length one.
get code(N) Read the next character code and unify its

ASCII code with N.
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Input/Output (Contd.)

• Other stream-based input-output predicates:

Class Predicate Explanation
I/O stream control open(File,M,S) Open ‘File’ with mode M and return in

S the stream associated with the file. M
may be read, write or append.

close(Stream) Close the stream ‘Stream’.
Term I/O write(S,X) Write the term X on stream S.

nl(S) Start a new line on stream S.
read(S,X) Read a term (finished by a full stop)

from the stream S and unify it with X.
Character I/O put code(S,N) Write the ASCII character code N on

stream S.
get code(S,N) Read from stream S the next character

code and unify its ASCII code with N.
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Input/Output (Contd.)

• Example:

write_list_to_file(L,F) :-

telling(OldOutput), % Grab current output stream.

tell(F), write_list(L), told, % Write into F, close.

tell(OldOutput). % Reset previous output stream.

write_list([]).

write_list([X|Xs]):- write(X), nl, write_list(Xs).

• More powerful and format-based input-output predicates are available (see, e.g.,
format/2 and format/3 –Prolog system manuals).

• All these input-output predicates are “side-effects”!
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Meta–calls and Implementing Higher Order

• The meta-call call(X) converts a term X into a goal and calls it.

• When called, X must be instantiated to a term, otherwise an error is reported.

• Used for meta-programming, specially interpreters and shells.
Also for defining negation (as we will see) and implementing higher order.

• Example:

q(a). p(X) :- call(X).

?- p(q(Y)).

Y = a

• Example:

q(a,b). apply(F,Args) :- G =.. [F|Args], call(G).

?- apply(q,[Y,Z]).

Y = a

Z = b
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Meta–calls – Aggregation Predicates

• Other meta-calls are, e.g., findall/3, bagof/3, and setof/3.

• findall(Term, Goal, ListResults): ListResults is the set of all instances of
Term such that Goal is satisfied

⋄ If there are no instances of Term ListResults is []

⋄ For termination, the number of solutions should be finite (and enumerable in
finite time).

likes(bill, cider).

likes(dick, beer).

likes(tom, beer).

likes(tom, cider).

likes(harry, beer).

likes(jan, cider).

?- findall(X, likes(X,Y), S).

S = [bill,dick,tom,tom,harry,jan] ?

yes

?- findall(X, likes(X,water), S).

S = [] ?

yes

?-
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Meta–calls – Aggregation Predicates (Contd.)

• setof(Term, Goal, ListResults): ListResults is the ordered set (no
duplicates) of all instances of Term such that Goal is satisfied

⋄ If there are no instances of Term the predicate fails

⋄ The set should be finite (and enumerable in finite time)

⋄ If there are un-instantiated variables in Goal which do not also appear in Term

then a call to this built-in predicate may backtrack, generating alternative
values for ListResults corresponding to different instantiations of the free
variables of Goal

⋄ Variables in Goal will not be treated as free if they are explicitly bound within
Goal by an existential quantifier as in Y^...

(then, they behave as in findall/3)

• bagof/3 same, but returns list unsorted and with duplicates (in backtracking
order)
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Meta-calls – Aggregation Predicates: Examples

likes(bill, cider).

likes(dick, beer).

likes(harry, beer).

likes(jan, cider).

likes(tom, beer).

likes(tom, cider).

?- setof(X, likes(X,Y), S).

S = [dick,harry,tom],

Y = beer ? ;

S = [bill,jan,tom],

Y = cider ? ;

no

?- setof((Y,S), setof(X, likes(X,Y), S), SS).

SS = [(beer,[dick,harry,tom]),

(cider,[bill,jan,tom])] ? ;

no

?- setof(X, Y^(likes(X,Y)), S).

S = [bill,dick,harry,jan,tom] ? ;

no
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Meta-calls – Negation as Failure

• Uses the meta-call facilities, the cut and a system predicate fail that fails when
executed (similar to calling a=b).

not(Goal) :- call(Goal), !, fail.

not(Goal).

• Available as the (prefix) predicate \+/1: \+ member(c, [a,k,l])

• It will never instantiate variables.

• Termination of not(Goal) depends on termination of Goal. not(Goal) will
terminate if a success node for Goal is found before an infinite branch.

• It is very useful but dangerous:

unmarried_student(X):- not(married(X)), student(X).

student(joe).

married(john).

• Works properly for ground goals (programmer’s responsibility to ensure this).
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Cut-Fail

• Cut-fail combinations allow forcing the failure of a predicate — somehow
specifying a negative answer (useful but very dangerous!).

• Example – testing groundness: fail as soon as a free variable is found.

ground(Term):- var(Term), !, fail.

ground(Term):-

nonvar(Term),

functor(Term,F,N),

ground(N,Term).

ground(0,T). %% All subterms traversed

ground(N,T):-

N>0,

arg(N,T,Arg),

ground(Arg),

N1 is N-1,

ground(N1,T).
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Repeat Loops

• repeat always succeeds: it has infinite answers.

• Used to implement loops: make use of backtracking to iterate by failing
repeatedly.

• Example – reading loop:

read_loop :-

repeat,

read(X),

process(X),

X == end_of_file,

!.

process(end_of_file):- !.

process(X):- ... <deterministic computation> ...
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Dynamic Program Modification (I)

• assert/1, retract/1, abolish/1, ...

• Very powerful: allows run–time modification of programs. Can also be used to
simulate global variables.

• Sometimes this is very useful, but very often a mistake:

⋄ Code hard to read, hard to understand, hard to debug.

⋄ Typically, slow.

• Program modification has to be used scarcely, carefully, locally.

• Still, assertion and retraction can be logically justified in some cases:

⋄ Assertion of clauses which logically follow from the program. (lemmas)

⋄ Retraction of clauses which are logically redundant.

• Other typically non-harmful use: simple global switches.

• Behavior/requirements may differ between Prolog implementations.
Typically, the predicate must be declared :- dynamic.
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Dynamic Program Modification (II)

• Example program:

relate_numbers(X, Y):- assert(related(X, Y)).

unrelate_numbers(X, Y):- retract(related(X, Y)).

• Example query:

?- related(1, 2).

{EXISTENCE ERROR: ...}

?- relate_numbers(1, 2).

yes

?- related(1, 2).

yes

?- unrelate_numbers(1, 2).

yes

?- related(1, 2).

no

• Rules can be asserted dynamically as well.
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Dynamic Program Modification (III)

• Example program:
fib(0, 0).

fib(1, 1).

fib(N, F):-

N > 1,

N1 is N - 1,

N2 is N1 - 1,

fib(N1, F1),

fib(N2, F2),

F is F1 + F2.

lfib(N, F):- lemma_fib(N, F), !.

lfib(N, F):-

N > 1,

N1 is N - 1,

N2 is N1 - 1,

lfib(N1, F1),

lfib(N2, F2),

F is F1 + F2,

assert(lemma_fib(N, F)).

:- dynamic lemma_fib/2.

lemma_fib(0, 0). lemma_fib(1, 1).

• Compare fib(24,N) versus lfib(24,N)
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Meta-Interpreters

• clause(head,body):

⋄ Reads a clause head :- body from the program.

⋄ For facts body is true.

• To use clause/2 a predicate must be declared dynamic.

• Simple (“vanilla”) meta-interpreter:

solve(true).

solve((A,B)) :- solve(A), solve(B).

solve(A) :- clause(A,B), solve(B).

• This code can be enhanced to do many tasks: tracing, debugging, explanations in
expert systems, implementing other computation rules, ...

• Issues / interactions with module system.
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Parsing (using append and traditional lists)

%% ?- myphrase([t,h,e,’ ’,p,l,a,n,e,’ ’,f,l,i,e,s]).

myphrase(X) :-

append(A,T1,X), article(A), append(SP,T2,T1), spaces(SP),

append(N,T3,T2), noun(N), append(SPN,V,T3), spaces(SPN), verb(V).

article([a]).

article([t,h,e]).

spaces([’ ’]).

spaces([’ ’ | Y]) :- spaces(Y).

noun([c,a,r]).

noun([p,l,a,n,e]).

verb([f,l,i,e,s]).

verb([d,r,i,v,e,s]).

34



Parsing (using standard clauses and difference lists)

%% ?- myphrase([t,h,e,’ ’,p,l,a,n,e,’ ’,f,l,i,e,s],[]).

myphrase(X,CV) :-

article(X,CA), spaces(CA,CS1), noun(CS1,CN),

spaces(CN,CS2), verb(CS2,CV).

article([t,h,e|X],X).

article([a|X],X).

spaces([’ ’ | X],X).

spaces([’ ’ | Y],X) :- spaces(Y,X).

noun([p,l,a,n,e | X],X).

noun([c,a,r | X],X).

verb([f,l,i,e,s | X],X).

verb([d,r,i,v,e,s | X],X).
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Parsing (same, using some string syntax)

%% ?- myphrase("the plane flies",[]).

myphrase(X,CV) :-

article(X,CA), spaces(CA,CS1), noun(CS1,CN),

spaces(CN,CS2), verb(CS2,CV).

article( "the" || X, X).

article( "a" || X, X).

spaces( " " || X, X).

spaces( " " || Y, X) :- spaces(Y, X).

noun( "plane" || X, X).

noun( "car" || X, X).

verb( "flies" || X, X).

verb( "drives" || X, X).
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Parsing (same, using additional syntax: DCGs)

• Add syntactic transformation to avoid writing all the auxiliary variables.
The result is called Definite Clause Grammars (“DCGs”).

%% ?- myphrase("the plane flies",[]).

%% or, use ‘‘phrase/2’’ builtin:

%% ?- phrase(myphrase,"the plane flies").

:- use_package(dcg).

myphrase --> article, spaces, noun, spaces, verb.

article --> "the". spaces --> " ".

article --> "a". spaces --> " ", spaces.

noun --> "plane". verb --> "flies".

noun --> "car". verb --> "drives".
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Parsing + actions (calling Prolog in DCGs)

• Other actions can be interspersed with the grammar.
Raw Prolog can be called (between “{ ... }”)

%% ?- myphrase(NChars,"the plane flies",[]).

%% ?- phrase(myphrase(N),"the plane flies").

:- use_package(dcg).

myphrase(N) --> article(AC), spaces(S1), noun(NC), spaces(S2),

verb(VC), { N is AC + S1 + NC + S2 + VC}.

article(3) --> "the". spaces(1) --> " ".

article(1) --> "a". spaces(N) --> " ", spaces(N1), { N is N1+1 }.

noun(5) --> "plane". verb(5) --> "flies".

noun(3) --> "car". verb(6) --> "drives".
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Creating Executables

• Most systems have methods for creating ’executables’:

⋄ Saved states (save/1, save program/2, etc.).

⋄ Stand-alone compilers (e.g., ciaoc).

⋄ Scripts (e.g., prolog-shell).

⋄ “Run-time” systems.

⋄ etc.
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Other issues in Prolog (see “The Art of Prolog” and Bibliography)

• Exception handling.

• Extending the syntax beyond operators: term expansions/macros.

• Delay declarations/concurrency.

• Operating system interface (and sockets, etc.).

• Foreign language (e.g., C) interfaces.

• Many other built-ins...

• ...
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Some Typical Libraries in Prolog Systems

• Most systems have a good set of libraries.

• Worth checking before re-implementing existing functionality!

• Some examples:

Arrays Assoc Attributes Heaps
Lists Term Utilities Ordset Queues

Random System Utilities Tree UGraphs
WGraphs Sockets Linda/Distribution Persistent DB

CLPB CLPQR CLPFD Objects
GCLA TclTk Tracing Chars I/O

Runtime Utilities Timeout Xrefs WWW
Java Interface ... ... ...
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Some Additional Libraries and Extensions (Ciao)

Other systems may offer additional extensions. Some examples from Ciao:

• Other execution rules:

⋄ Breadth-first execution
⋄ Iterative-deepening execution
⋄ Fuzzy Prolog, MYCIN rules, ...
⋄ Andorra (“determinate-first”) execution

• Interfaces to other languages and systems:

⋄ C, Java, ... interfaces
⋄ Persistent predicates and SQL database interface
⋄ Web/HTML/XML/CGI programming (PiLLoW) / HTTP connectivity
⋄ Interface to VRML (ProVRML)
⋄ Tcl/Tk interface
⋄ daVinci interface
⋄ Calling emacs from Prolog, etc.
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Some Additional Libraries and Extensions (Ciao, Contd.)

• Numerous libraries as well as syntactic and semantic extensions:

⋄ Terms with named arguments -records/feature terms

⋄ Multiple argument indexing

⋄ Functional notation

⋄ Higher-order

⋄ The script interpreter

⋄ Active modules (high-level distributed execution)

⋄ Concurrency/multithreading

⋄ Object oriented programming

⋄ ...

43



Some Additional Libraries and Extensions (Ciao, Contd.)

• Constraint programming (CLP)

⋄ rationals, reals, finite domains, ...

• Assertions:

⋄ Regular types

⋄ Modes

⋄ Properties which are native to analyzers

⋄ Run-time checking of assertions

• Advanced programming support:

⋄ Compile-time type, mode, and property inference and checking, ... (CiaoPP).

⋄ Automatic documentation (LPdoc).

⋄ ...
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