Random Signals
Biomedical Engineering Degree
University San Pablo CEU

Seminar

Information Theory: Huffman codes

PART 1

Given a discrete r.v. $X \in\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ with the following probabilities:
$P(X=x 1)=0.04$
$P(X=x 2)=0.3$
$P(X=x 3)=0.1$
$P(X=x 4)=0.1$
$P(X=x 5)=0.06$
$P(X=x 6)=0.4$

1) Compute its entropy
2) Find a binary Huffman code for X. When two symbols (or group of symbols) have the same probability select the order randomly
3) Compute the average length of the resulting code for Y
4) Repeat steps 2 and 3 to obtain a different code. The average length must be the same even if the set of lengths of the codes are different.

PART 2

Given a discrete r.v. $Y \in\left\{y_{1}, y_{2}, y_{3}\right\}$ with the following probabilities:
$P(Y=y 1)=0.2$
$P(Y=y 2)=0.7$
$P(Y=y 3)=0.1$
5) Compute $\mathrm{H}(\mathrm{Y})$
6) Find a binary Huffman code for Y. When two symbols (or group of symbols) have the same probability select the order randomly
7) Compute the average length of the resulting code for Y
8) Repeat questions 4,5 and 6 with a new random variable Y^{\prime} created from all possible couples, with repetitions, from Y .
Note: For instance a possible new symbol of Y^{\prime} is $\mathrm{Y}^{\prime}{ }_{1}=\mathrm{Y} 1 \mathrm{Y} 2$ with probability $P\left(Y^{\prime} 1\right)=P(Y 1) * P(Y 2)=0.2 * 0.7$
Note2: To check if the new code is better than the original one the average length must be divided by 2 .

