

Curso: Técnicas Avanzadas de Visión por Computador Máster Automática y Robótica

Pose Estimation and Position Based Visual Servoing

OUTLINE

- Introduction
- Position Based Visual Servoing PBVS
- Pose estimation techniques
- Results
- Summary
- References

Introduction

INTRODUCTION

Problem

To track and follow the car with one of the **ROBOTS** we have (ground or aerial)

Visual servo control, Visual servoing:

The use of computer vision data to control the motion of a robot

DIAPOSITIVA 3

Introduction

INTRODUCTION

Problem

To track and follow the car with one of the **ROBOTS** we have (ground or aerial)

To achieve the task we need: detection, segmentation, tracking, recognition, alignment-visual servoing.

DIAPOSITIVA 5

Introduction

INTRODUCTION

Problem

To track and follow the car with one of the **ROBOTS** we have (ground or aerial)

To achieve the task we need:

- Robust perception
- Robust control

Introduction

Perceptual Robustness

- Camera configuration static or moving
- Number of cameras
- Calibrations issues
- Image processing techniques

According to K. Toyama and G. Hager, Incremental focus of attention for robust visual tracking, CVPR 1996

Robustness is the **ability of a vision-based tracking** system to track accurately and precisely during or after visual **circumstances that are less than ideal**. ... The robust vision-based tracking problem is therefore a vision-based tracking sub-problem – the problem of **coping with a complex environment**

Introduction

Vision system requirements

- 1. Handling temporal inconsistencies in appearance and occlusions of the target object
- **2. Handling** situations when the object is **outside of the FOV** (reinitialization)
- 3. Adapt to unpredictable object motion
- 4. Be insensitive to **lighting conditions** and specular reflections
- 5. Detect errors (in tracking or detection) and to recover the tracking afterwards
- 6. Produce estimates in **Real-Time**
- 7. Use minimum a-priori knowledge about the object

Introduction

Lack of robustness due to

1- Figure-ground **segmentation** (detection of the target or **initialization** of tracking sequence)

2- **Matching** across images (in particular in the presence of large and varying inter-frame motions)

Introduction

Lack of robustness due to

3- **Inadequate modeling** of motion (to enable prediction of the target in new images)

Introduction

Lack of robustness due to

3- **Inadequate modeling** of motion (to enable prediction of the target in new images)

3 parameters (Tx, Ty, Rz)

4 parameters (Tx, Ty, Rz, scale)

Introduction

However ...

There have been successful works using vision for controlling purpose

On-board cameras: monocular or stereo

Introduction

However ...

There have been successful works using vision for controlling purpose

Introduction

However ...

There have been successful works using vision for controlling purpose

External camera systyem

Position Based Visual Servoing PBVS

PBVS

Position Based Visual Servoing PBVS

PBVS and **IBVS** are **different** in the nature of **the inputs used** in their respective control schemes

PBVS

Both approaches give satisfactory results:

convergence, stability, robust to camera calibration errors, measurements errors.

DIAPOSITIVA 17

PBVS

Position Based Visual Servoing PBVS

Depending on the camera-robot configuration

- Eye to hand
- Eye in hand
- Hybrid approach

PBVS

Position Based Visual Servoing PBVS

Depending on the number of cameras

•Monocular:

There is a **lost of information** (depth), make the control more complicated.

Positioning tasks look for solving this problem:

- Estimating depth before the tasks, or with metric information of the object.

"Almost used with eye in hand configuration"

PBVS

Position Based Visual Servoing PBVS

Depending on the number of cameras

Stereo: 3D information can be obtained

Roomba Pursuit Evasion ICB Summer Intern Project, Institute for Collaborative Biotechnologies, UCSB

Two autonomous robots try to catch a remotely controlled evader

Redundant system: 3D information can be obtained. Adding robustness. Processing time increases

PBVS

Position Based Visual Servoing PBVS

Control structure: direct visual control

PBVS

Position Based Visual Servoing PBVS

Control structure: indirect visual servoing, dynamic look and move

Position Based Visual Servoing PBVS

Error function based on the **3D** cartesian space, It is also called pose-based visual servoing.

Image features are extracted as well, but are additionally **used to estimated 3D** information (pose of the object in the cartesian space), hence it is servoing in 3D

Position Based Visual Servoing PBVS

Error function based on the **3D** cartesian space, It is also called pose-based visual servoing.

Image features are extracted as well, but are additionally **used to estimated 3D** information (pose of the object in the cartesian space), hence it is servoing in 3D

Geometric models: **required** Camera calibration: **required** Camera robot transformation: **required**

DIAPOSITIVA 23

PBVS

Position Based Visual Servoing PBVS

Because there is not direct control in the image plane, the object can go out the field of view of the camera during the control task.

Solution: observing the object and the robot.

Pose Estimation

Solving the pose estimation problem

How to recover 6DOF?

Pose estimation using an on-board camera. There is not a specific object to follow

Pose Estimation

Solving the pose estimation problem

Pose estimation using an on-board camera. Following a specific object

Pose Estimation

Solving the pose estimation problem

Pose estimation using an external camera system.

Pose Estimation

Pose estimation Problem

Pose Estimation

Pose estimation Problem

Assuming flat terrain, dominant movement is due to vehicle movement

Pose Estimation

Tracking of features

Frame to Frame Motion

Feature-based

Direct methods

Recovering different motion models:

- Translation
- Rotation
- Scale
- Homography

Pose Estimation

Pose estimation problem

Frame to Frame Motion

Homography

$$\mathbf{x}' = \begin{bmatrix} 1+p_1 & p_2 & p_3 \\ p_4 & 1+p_5 & p_6 \\ p_7 & p_8 & 1 \end{bmatrix} \mathbf{x}$$
$$\mathbf{H}_{\mathbf{e}} = {}^{\mathbf{c}_2}\mathbf{R}_{\mathbf{c}_1} + \frac{1}{d}{}^{\mathbf{c}_2}\mathbf{t}_{\mathbf{c}_1}\mathbf{n}^{\mathrm{T}}$$

Pose Estimation

Pose estimation problem

Pose Estimation

Pose estimation problem

DIAPOSITIVA 33

Pose Estimation

Pose estimation problem: H decomposition

1- H decomposition: Method in book \rightarrow "An invitation to 3D vision"

Solution 1	R_1	=	$W_1U_1^T$	Solution 3	R_3	=	R_1
	N_1	=	$\widehat{v_2}u_1$		N_3	=	$-N_1$
	$\frac{1}{d}T_1$	=	$(H - R_1)N_1$		$\frac{1}{d}T_3$	=	$-\frac{1}{d}T_1$
Solution 2	R_2	=	$W_2 U_2^T$	Solution 4	R_4	=	R_2
	N_2	=	$\widehat{v_2}u_2$		N_4	=	$-N_2$
	$\frac{1}{d}T_2$	=	$(H - R_2)N_2$		$\frac{1}{d}T_4$	=	$-\frac{1}{d}T_{2}$

Pose Estimation

Pose estimation problem: H decomposition

2- From 4 solutions to 2: applying visibility constraint

All points seen by the camera must lie in front of it

 $\mathbf{m}^* = \mathbf{K}^{-1} \mathbf{p}^*$ $\mathbf{m}^{*\top} \mathbf{n}^* > \mathbf{0}$

TWO SOLUTIONS

DIAPOSITIVA 35

Pose Estimation

3- From 2 solutions to 1: assuming flat terrain

n=[0, 0, 1]

one SOLUTION

	-						
	R_1	=	$W_1 U_1^T$		R_3	=	R_1
Solution 1	N_1	=	$\widehat{v_2}u_1$	Solution 3	N_3	=	$-N_1$
	$\frac{1}{d}T_1$	=	$(H - R_1)N_1$		$\frac{1}{d}T_3$	=	$-\frac{1}{d}T_1$
	R_2	=	$W_2 U_2^T$		R_4	=	R_2
Solution 2	N_2	=	$\widehat{v_2}u_2$	Solution 4	N_4	=	$-N_2$
	$\frac{1}{d}T_2$	=	$(H - R_2)N_2$		$\frac{1}{d}T_4$	=	$-\frac{1}{d}T_2$

DIAPOSITIVA 36

Pose Estimation Results

- This strategy has been **used for pose estimation** of aerial vehicles using **frame to frame motion** estimation.

Pose Estimation Results

Pose Estimation Results

Results: cruise

Pose Estimation Results

Results: landing

Results: - Similar Behavior

- Low drift, only based on visual information

MAPE x,y,z [8.12%,15.44%,3.70%]

RMSE roll, pitch, yaw [8.4, 1.5, 5] deg

Pose Estimation

Problems

- Planar assumption
- Drift due to integration of the data.
- What if there is a frame to frame error, it is integrated

Pose Estimation

Using a external camera system

Define 3D position by detecting the coordinates of the object in each image

Pose Estimation

Using a external camera system

Define 3D position by detecting the coordinates of the object in each image

Pose Estimation

Using a external camera system

Extrinsic parameters must be known

Pose Estimation

Using a external camera system

Pose Estimation

Pose Estimation

Feature extraction and tracking

- Color information
- Feature: center of gravity

Pose Estimation

Using a external camera system

Camera 2

$$x_{u1_i} = f \frac{r_{11}^1 X_w + r_{12}^1 Y_w + r_{13}^1 Z_w + t_w^1}{r_{31}^1 X_w + r_{32}^1 Y_w + r_{33}^1 Z_w + t_x^1} \qquad y_{u1_i} = f \frac{r_{21}^1 X_w + r_{22}^1 Y_w + r_{23}^1 Z_w + t_y^1}{r_{31}^1 X_w + r_{32}^1 Y_w + r_{33}^1 Z_w + t_x^1}$$
$$A_i L_i = b_i,$$

Pose Estimation

Using a external camera system

Pose Estimation

Pose Estimation --> TRINOCULAR SYSTEM

Position estimation during a landing task in manual mode (RC)

Pose Estimation

Pose Estimation --> TRINOCULAR SYSTEM

Position estimation during a landing task in manual mode (RC)

* Visual estimation corresponds with real UAV position
* Improvement of the UAV's position estimation

Pose Estimation

Results

UAV'S YAW ANGLE ESTIMATION

USING AN EXTERNAL TRINOCULAR SYSTEM

Computer Vision Group

Universidad Politécnica de Madrid

PBVS results

Position Based Visual Servoing PBVS Results

PBVS results

Robo-Tenis

Monocular eye in hand, dynamic look and move strategy

Fig. 6.2 Esquema básico de control del sistema Robotenis.

$$e(k) = {}^{c}p_{b}^{*}(k) - {}^{c}p_{b}(k)$$
$$e(k) = {}^{c}p_{b}^{*}(k) - {}^{c}R_{w}\left({}^{w}p_{b}(k) - {}^{w}p_{c}(k)\right)$$

PBVS results

Robo-Tenis

Monocular eye in hand, dynamic look and move strategy

PBVS results

Hybrid approach

PBVS results

External camera system

Trinocular eye to hand, dynamic look and move strategy

PBVS results

External camera system

PBVS results

External camera system

Controlling Z axis

Vision-based landing task

vision4uav.com

VISION-BASED LANDING

UAV'S HEIGHT CONTROL USING AN EXTERNAL TRINOCULAR SYSTEM

Computer Vision Group

Universidad Politécnica de Madrid

PBVS results

External camera system

Vicon system: http://www.vicon.com/

Precise Aggressive Maneuvers for Autonomous Quadrotors

Daniel Mellinger, Nathan Michael, Vijay Kumar GRASP Lab, University of Pennsylvania

Summary

Summarizing ...

-Different visual control strategies depending on the error function:

- PBVS
- IBVS
- Hybrid

Summary

Summarizing

-Different visual control strategies depending on the error function:

- PBVS
- IBVS
- Hybrid

-Position based visual servoing **depends on the pose estimation algorithm**

Summary

Summarizing

-Different visual control strategies depending on the error function:

- PBVS
- IBVS
- Hybrid

-Position based visual servoing **depends on the pose estimation algorithm**

-Pose estimation algorithms (depending on the number of cameras):

- Monocular: require additional information to solve the depth
- Multi-camera systems: by triangulation, problem speed.

Summary

Summarizing

-Different visual control strategies depending on the error function:

- PBVS
- IBVS
- Hybrid

-Position based visual servoing **depends on the pose estimation algorithm**

-Pose estimation algorithms (depending on the number of cameras):

- Monocular: require additional information to solve the depth
- Multi-camera systems: by triangulation, problem speed.

- Depending on the references: PBVS with velocity commands or position commands.

References

References

Slides based on:

Thesis: Pablo Lizardo Pari Control Visual Basado en Características de un Sistema Articulado. Estimación del Jacobiano de la Imagen Utilizando Múltiples Vistas

Thesis

Alberto Traslocheros Michel Desarrollo, Implementación y Evaluación de Estrategias de Control Servo Visual para Robots Paralelos: Aplicación a la Plataforma Robotenis

Thesis

Luis Mejías Alvarez Control Visual de un Vehículo Aéreo Autónomo Usando Detección y Seguimiento de Características en Espacioes Exteriores

References

References

Papers

Agin, G.J., "Real Time Control of a Robot with a Mobile Camera". Technical Note 179, SRI International, Feb. 1979.

S. A. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control. IEEE Trans. Robot. Automat., 12(5):651--670, Oct. 1996.

F. Chaumette, S. Hutchinson. Visual Servo Control, Part I: Basic Approaches. IEEE Robotics and Automation Magazine, 13(4):82-90, December 2006

F. Chaumette, S. Hutchinson. Visual Servo Control, Part II: Advanced Approaches. IEEE Robotics and Automation Magazine, 14(1):109-118, March 2007

F. Chaumette. Potential problems of stability and convergence in image-based and positionbased visual servoing. In D. Kriegman, G. Hager, and S. Morse, editors, The confluence of vision and control, volume 237 of Lecture Notes in Control and Information Sciences, pages 66–78. Springer-Verlag, 1998.

References

References

Papers

P. Corke and S. A. Hutchinson. A new partitioned approach to image-based visual servo control. IEEE Trans. Robot. Autom., 17(4):507–515, Aug. 2001.

E. Malis, F. Chaumette and S. Boudet, 2.5 D visual servoing, IEEE Transactions on Robotics and Automation, 15(2):238-250, 1999

E. Marchand, F. Spindler, F. Chaumette. ViSP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine, Special Issue on "Software Packages for Vision-Based Control of Motion", P. Oh, D. Burschka (Eds.), 12(4):40-52, December 2005.

;Thanks!

The Flying Machine Arena Quadrocopter Ball Juggling

Pose Estimation and Position Based Visual Servoing Carol Martínez May 2011