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LTI systems and complex exponentials Introduction

LTI systems response to sinusoidals

Motivation

In the previous topic, the LTI systems were characterized by means of their impulse
response: the time domain.

Now we will see how to characterize the LTI systems by means of their response to sinusoids:
the frequency domain.

Usage of complex exponential functions as a mathematical tool simplifies calculations.

The frequency domain representation is the foundation of current telecommunications
systems.

Outline of this topic

1 We start seeing that the response of LTI systems to complex exponentials depends on the
frequency.

2 We represent periodic signals as the sum of exponential functions: Fourier Series.
3 We represent any type of signals as the sum (by means of integration operation) of

exponential functions: the Fourier Transform.
4 We study to basic applications: filtering and modulation.
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LTI systems and complex exponentials Frequency response of LTI systems

Frequency response of LTI systems

The response of LTI systems to complex exponentials

Consider a continuous time LTI system, characterized by h(t).

Suppose that the LTI system input is a complex exponential x(t) = es0t, being s0 = σ + jω.

The LTI system output is calculated by means of the convolution method:

y(t) = x(t) ∗ h(t) = es0t ∗ h(t) =

∫ ∞
−∞

x(τ)h(t − τ)dτ =

∫ ∞
−∞

x(t − τ)h(τ)dτ =

=

∫ ∞
−∞

es0(t−τ)h(τ)dτ = es0t
∫ ∞
−∞

h(τ)e−s0τdτ = x(t)H(s0)

H(s0) is a (complex) constant, that depends on the impulse response and on the exponent of
the system input (the exponential function).

Complex exponential signals are known as eigenfunctions of the LTI systems, as the system
output to these inputs equals the input multiplied by a constant factor. Both amplitude and
phase may change, but the frequency does not change.
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LTI systems and complex exponentials Frequency response of LTI systems

Frequency response of LTI systems

Response to real exponential functions and to sinusoids

System function

If we represent the factor scales for any s0, we obtain the system function:

H(s) =

∫ ∞
−∞

h(τ)e−sτdτ

Note that this function includes the system response to any complex exponential function.

Also note that this function depends on the impulse response, that includes all the information
related to the LTI system.
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LTI systems and complex exponentials Frequency response of LTI systems

Frequency response of LTI systems

Example: output calculation using the system function

Consider a LTI system characterized by h(t) = u(t). Calculate the output when the input is:

x(t) = Aes1t + Bes2t + Ces3t

We start calculating the system function:

H(s) =

∫ ∞
−∞

h(τ)e−sτdτ =

∫ ∞
−∞

u(τ)e−sτdτ =

∫ ∞
0

e−sτdτ =Real(s)>0

=
1
−s

[e−sτ ]∞0 =
1
−s

[0− 1] =
1
s

Using the linearity property:

y(t) = H(s1)Aes1t + H(s2)Bes2t + H(s3)Ces3t =
A
s1

es1t +
B
s2

es2t C
s3

es3t

where we assume that Real(s1),Real(s2),Real(s3) > 0.
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LTI systems and complex exponentials Frequency response of LTI systems

Frequency response of LTI systems

System function and frequency response

Complex exponentials with an exponent that is an imaginary number, x(t) = ejωt, are always
periodic signals.

Moreover, we will see that any periodic signal can be represented as a weighted sum of this
kind of signals.

What is the LTI system response to these complex exponentials? We can perform
convolution. Or we can use the system function H(s) in the special case s = jω.

y(t) = H(s = jω)x(t) = ejωt
∫ ∞
−∞

h(τ)e−jωτdτ = H(jω)ejωt

The LTI system response to H(jω) is called frequency response or transfer function. This
function depends on the frequency of the input and it will affect (modify) different frequencies
differently (amplitude and phase).
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LTI systems and complex exponentials Frequency response of LTI systems

Frequency response of LTI systems

Example: calculation of the frequency response

Given a LTI system characterized by h(t) = e−tu(t), calculate and plot its frequency response.
Calculate the output when the input is x(t) = 2ej2t + 3ejπt.

We calculate the frequency response:

H(jω) =

∫ ∞
−∞

h(τ)e−jωτdτ =

∫ ∞
−∞

e−τu(τ)e−jωτdτ =

∫ ∞
0

e−(1+jω)τdτ =

=
−1

1 + jω
[e−(1+jω)τ ]∞0 =

1
1 + jω

=
1− jω
1 + ω2

Its modulus and phase are:

|H(jω)| =
1

√
1 + ω2

; ∠H(jω) = arctan (−ω)

The requested output is:

y(t) =
2

1 + 2j
ej2t +

3
1 + πj

ejπt
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Fourier series representation

Jean Baptiste J Fourier (advisor and soldier with Napoleon, mathematician and politician)
proved in 1807 that any periodic signal with fundamental period T0 can be represented as a
linear combination (weighted sum) of complex exponential functions.

The set of harmonically related complex exponentials
is defined as:

φk(t) = e
jk 2π

T0
t
, con k = 0,±1,±2, . . .

With fundamental periods: T0,
T0
2 ,

T0
3 , . . .

And frequencies: f0, 2f0, 3f0, . . .

Then, if x(t) = x(t + T0), it may be represented using Fourier series as:

x(t) =
∞∑

k=−∞
akejkω0t

Examples: demo for ECG, speech and square wave.
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Convergence example
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Coefficient calculation

In order to calculate coefficients ak, we multiply both sides by e−jlω0t and integrate over a T0
period: ∫ T0

0
x(t)e−jlω0tdt =

∫ T0

0

∞∑
k=−∞

akejkω0te−jlω0tdt =
∞∑

k=−∞
ak

∫ T0

0
ejkω0te−jlω0tdt

Considering that
∫ T0

0 ej(k−l)ω0tdt =

{
0, si k 6= l
T0, si k = l

then:

∫ T0

0
x(t)e−jlω0tdt = alT0 ⇒ al =

1
T0

∫ T0

0
x(t)e−jlω0tdt

Summary for the Fourier series representation for continuous-time periodic signals:

Analysis equation: x(t) =
∞∑

k=−∞
akejkω0t

Synthesis equation: ak =
1
T0

∫ T0

0
x(t)e−jkω0tdt
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Relation with the frequency response

By means of this relation we can easily characterize the output of a LTI system to an input
that is a periodic signal.

Recall that a LTI system has a frequency response H(jω).

Recall that when the input of a LTI system is x(t) = ejω0t, the output is
y(t) = H(jω0)x(t) = H(jω0)ejω0t.

If x(t) = x(t + T0) (periodic), then it has the following Fourier series representation:

x(t) =

∞∑
k=−∞

akejkω0t

Therefore, the output y(t) can be calculated using the linearity property:

y(t) =

∞∑
k=−∞

akH(jkω0)ejkω0t

Questions:

1 Run the script demoDSF.m and compare the Fourier series representation of the input and
output signals of the given LTI system.
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Example: calculation of Fourier series representation coefficients

Calculate the coefficients of the Fourier series representation of x(t), periodic with
fundamental period T, defined by:

x(t) =

{
1, si |t| < T1

0, si T1 < |t| < T/2

As x(t) is periodic it can be represented using Fourier series: x(t) =
∑∞

k=−∞ akejkω0t.

Coefficient calculation:

ak =
1
T

∫ T

0
x(t)e−jkω0tdt =

1
T

∫ T/2

−T/2
x(t)e−jkω0tdt =

1
T

∫ T1

−T1

1e−jkω0tdt =(k 6=0)

=
1
T
−1

jkω0
[e−jkω0t]

T1
−T1

=
−1

jkω0T
[e−jkω0T1 − ejkω0T1 ] = · · · =

sin(kω0T1)

kπ

For k = 0, we calculate the coefficient independently:

a0 =
1
T

∫
T

x(t)ej0ω0tdt =
1
T

∫ T1

−T1

1dt =
2T1

T

We can see that in this case, it corresponds with the general case of ak for k = 0 by solving
the indeterminate form (this is not the general case).
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Example: calculation of Fourier series representation coefficients by inspection

Calculate the coefficients of the Fourier series representation of x(t) = sin(ω0t).

As x(t) is periodic (fundamental period T0 = 2π/ω0) it can be represented using Fourier
series: x(t) =

∑∞
k=−∞ akejkω0t.

But in this case we don’t need to integrate, as:

x(t) = sin(ω0t) =
1
2j

ejω0t −
1
2j

e−jω0t

Therefore, comparing both equations:

k = 1⇒ a1 =
1
2j

; k = −1⇒ a−1 =
−1
2j

; ak = 0 ∀k 6= ±1

Questions:

2 Calculate the Fourier series representation of x(t) = cos(5πt + π/3) + sin(10πt), without
solving the analysis equation.

3 Is it possible to calculate the Fourier series representation of
x(t) = cos(5πt + π/3) + sin(10t)?
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Average value

Coefficient a0 of any Fourier series representation is the average value of the signal, as:

a0 =
1
T0

∫
T0

x(t)ej0ω0tdt =
1
T0

∫
T0

x(t)dt

Notation

We consider periodic signals, x(t) = x(t + T) and y(t) = y(t + T), with identical fundamental
period T.

The coefficients will be x(t) FS−−→ ak; y(t) FS−−→ bk.

Linearity

If z(t) = Ax(t) + By(t) = z(t + T), then:

z(t) DSF−−→ ck = Aak + Bbk

Proof: z(t) = Ax(t) + By(t) = A
∑∞

k=−∞ akejkω0t + B
∑∞

k=−∞ bkejkω0t =

=
∑∞

k=−∞ (Aak + Bbk) ejkω0t =
∑∞

k=−∞ ckejkω0t.
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Time shifting

Consider y(t) = x(t − t0), then y(t) = y(t + T), and moreover:

y(t) = x(t − t0)
DSF−−→ bk = ake−jkω0t0

Proof: We know that

x(t) =
∞∑

k=−∞
akejkω0t, con ak =

1
T0

∫ T

0
x(t)e−jkω0tdt

As y(t) is also periodic, it can be represented using Fourier series y(t) =
∑∞

k=−∞ bkejkω0t,
given by:

bk =
1
T

∫ T

0
y(t)e−jkω0tdt =

1
T

∫ T

0
x(t − t0)e−jkω0tdt

Variable change: t − t0 = l; dt = dl; t = 0⇒ l = −t0; t = T ⇒ l = T − t0. Therefore:

bk =
1
T

∫ −t0+T

−t0
x(l)e−jkω0(l+t0)dl = e−jkω0t0 1

T

∫
T

x(l)e−jkω0ldl = e−jkω0t0 ak
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Time reversal

Consider y(t) = x(−t). Then y(t) is periodic and:

y(t) = x(−t) FS−−→ bk = a−k

Proof: homework (similar to the time shifting case).

Time scaling

Consider y(t) = x(at). Then y(t) is periodic, but the fundamental period is T1 = T/a and:

y(t) = x(at) FS−−→ bk = ak

Note that this Fourier series representation considers different period, ω1 = aω0, and:

y(t) =
∞∑

k=−∞
akejkω1t

Proof: homework.

18 / 60



Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Multiplication

Consider z(t) = x(t)y(t) that has a fundamental period of T and:

z(t) = x(t)y(t) FS−−→ ck =
∞∑

l=−∞
albk−l

Proof: see Oppenheim.

Conjugation and conjugate symmetry

Consider y(t) = x∗(t) that has a fundamental period of T and:

y(t) = x∗(t) FS−−→ bk = a∗−k

Proof: homework.

This property is fundamental for the understanding of the utility of complex exponential
functions.
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Parseval’s relation

The average power of a periodic signal x(t) equals the sum of the squared module of all its
Fourier series representation coefficients.

Pm =
1
T

∫
T
|x(t)|2dt =

∞∑
k=−∞

|ak|2

Proof: homework, consider that
∫

T |x(t)|2dt =
∫

T x(t)x∗(t)dt.

Differentiation and integration

We have the following:

y(t) =
dx(t)

dt
FS−−→ bk = jkω0ak

z(t) =

∫ t

−∞
x(τ)dτ FS−−→ ck =

1
jkω0

ak

Proofs: homework.

Note: for the integration property, it is necessary that a0 = 0 so z(t) is periodic. In this case, it
is easy to see that c0 = 0.
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Tabla de propiedades del DSF
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Fourier Transform
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for periodic square wave (I)

Fourier also proposed a representation for aperiodic signals using complex exponentials. This
representation uses the limit and integral concepts (instead of sums).

We begin with a square wave, where ak =
sin(kω0T1)

kπ and a0 = 2T1
T , with ω0 = 2π

T .

For fixed T1 and for increasing T, we can see how the Fourier series representation
coefficients vary. For that, we can express these coefficients as:

Tak =
2 sin(ωT1)

ω |ω=kω0

We plot for T = 4T1, T = 8T1 and T = 16T1.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for periodic square wave (II)

In this case,

limT→∞x(t) = Π

(
t

T1

)
the Fourier series representation coefficients become more and more closely spaced
samples of the envelope, that is a sinc function.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for aperiodic signals (I)

In general, any finite-time aperiodic signal x(t) can be represented as:

x(t) = limT→∞x̃(t) = limT→∞

∞∑
k=−∞

x(t − kT)

Signal x̃(t) is periodic with fundamental period T, and it admits a Fourier series
representation:

x̃(t) =
∞∑

k=−∞
akejkω0t, con ak =

1
T

∫
T

x̃(t)e−jkω0tdt
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for aperiodic signals (II)

We can calculate the Fourier series representation coefficients as:

ak =
1
T

∫ T/2

−T/2
x̃(t)e−jkω0tdt =

1
T

∫ T1

−T1

x(t)e−jkω0tdt

We define the Fourier Transform of x(t) as the envelope of Tak:

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt

Therefore, we can write the coefficients as
ak = 1

T X(jkω0), and then:

x̃(t) =
∞∑

k=−∞

1
T

X(jkω0)ejkω0t =

=
1

2π

∞∑
k=−∞

X(jkω0)ejkω0tω0
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for aperiodic signals (III)

Calculating the limit limT→∞ in the previous equation, we obtain:

x̃(t)→ x(t); kω0 → ω (it is a continuous variable)∑
→
∫

; ω0 → dω (infinitesimally close)

and the obtained equation is the Inverse Fourier Transform:

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω

Even if this demo is performed for finite-time signals, it is also suitable for all energy-defined
signals (more precisely when the Dirichlet boundary conditions are fulfilled).

Summary for the Fourier Transform:

Analysis equation: x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω

Synthesis equation: X(jω) =

∫ ∞
−∞

x(t)e−jωtdt
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Example: Calculation of the Fourier Transform of a positive exponential function

Calculate the Fourier Transform of x(t) = e−atu(t), being a > 0.

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt =

∫ ∞
0

e−ate−jωtdt = · · · =
1

a + jω

Higher values are localized at low frequencies.

Example: Calculation of the Fourier Transform of the unit impulse

Calculate the Fourier Transform of x(t) = δ(t).

X(jω) =

∫ ∞
−∞

δ(t)e−jωtdt =

∫ ∞
−∞

δ(t)dt = 1

The unit impulse has a Fourier Transform consisting of equal contributions at all frequencies.

Questions:

4 Calculate the Fourier Transform of x(t) = e−a|t|.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Example: Calculation of the Fourier Transform of the rectangular pulse signal

Calculate the Fourier Transform of x(t) = Π
(

t
T1

)
(rectangular pulse between −T1 y T1).

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt =

∫ T1

−T1

e−jωtdt = · · · =
2T1 sin(ωT1)

ωT1
= 2T1sinc(ωT1)

The Fourier Transform of a rectangular pulse is the sing function. Their width are inversely
proportional.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Example: rectangular pulse and sinc
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Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Properties of the Fourier Transform (I)

We use the notation x(t) FT−−→ X(jω).

Linearity: z(t) = ax(t) + by(t) FT−−→ Z(jω) = aX(jω) + bY(jω).

Time shifting: y(t) = x(t − t0)
FT−−→ Y(jω) = e−jωt0 X(jω).

Conjugation and Conjugate Symmetry: y(t) = x∗(t) FT−−→ Y(jω) = X∗(−jω).

Differentiation and Integration:

y(t) =
dx(t)

dt
FT−−→ Y(jω) = jωX(jω)

y(t) =

∫ t

−∞
x(τ)dτ FT−−→ Y(jω) =

1
jω

X(jω) + πX(0)δ(ω)

Questions:

5 Prove these properties.
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Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Properties of the Fourier Transform (II)

Time scaling: y(t) = x(at) FT−−→ Y(jω) = 1
|a|X(jωa ).

Time reversing: y(t) = x(−t) FT−−→ Y(jω) = X(−jω).

Duality:

g(t) FT−−→ f (ω)

f (t) FT−−→ 2πg(−ω)

32 / 60



Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Questions:

6 Prove the previous properties.

7 Show that the property holds by using that the Fourier Transform of a sinc is a rectangular
pulse and viceversa.

Example: Duality property

We know that x(t) = e−2|t| FT−−→ X(jω) = 2
1+ω2 .

We want to calculate the Fourier Transform of y(t) = 2
1+t2

.

By using the duality property, Y(jω) = 2πe−2|ω|.
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Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Properties of the Fourier Transform (III)

It also worth mention that:

y(t) = −jtx(t) FT−−→ Y(jω) =
dX(jω)

dω

y(t) = ejω0tx(t) FT−−→ Y(jω) = X(j(ω − ω0))

y(t) = −
1
jt

x(t) + πx(0)δ(t) FT−−→ Y(jω) =

∫ ω

−∞
X(jη)dη

Parseval’s Relation

The energy of signal x(t) can be calculated in the frequency domain as:

E∞ =

∫ ∞
−∞
|x(t)|2dt =

1
2π

∫ ∞
−∞
|X(jω)|2dω

Questions:

8 Prove the previous properties.
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Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

The convolution property

For a LTI system, characterized in the time domain by h(t) and in the frequency domain by
H(jω):

y(t) = x(t) ∗ h(t) FT−−→ Y(jω) = X(jω)H(jω)

Proof:
Y(jω) =

∫ ∞
−∞

y(t)e−jωtdt =

∫ ∞
−∞

∫ ∞
−∞

x(τ)h(t − τ)dτe−jωtdt =

=

∫ ∞
−∞

x(τ)

∫ ∞
−∞

h(t − τ)e−jωtdtdτ =(t−τ=u) · · · =

=

∫ ∞
−∞

x(τ)

(∫ ∞
−∞

h(u)e−jωudu
)

e−jωτdτ = H(jω)

∫ ∞
−∞

x(τ)ejωτdτ =

= H(jω)X(jω)

It also worth mention that:

z(t) = x(t)y(t) FT−−→ Z(jω) =
1

2π
X(jω) ∗ Y(jω)
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Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Questions:

9 Consider the Fourier Transform of a rectangular pulse. Calculate the Fourier Transform of:

y(t) = u(t − 1) + 0.5u(t − 2)− 0.5u(t − 3)− u(t − 4)
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Fourier Transform Basic Fourier Transform pairs

Basic Fourier Transform pairs

Fourier Transform of a pure imaginary exponential function

The Fourier Transform of a pure imaginary exponential function is an impulse.

x(t) = ejω0t FT−−→ X(jω) = 2πδ(ω − ω0)

Proof: as X(jω) = 2πδ(ω − ω0), then:

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω =

∫ ∞
−∞

δ(j(ω − ω0))ejωtdω =

=

∫ ∞
−∞

δ(j(ω − ω0))ejω0tdω = ejω0t

However, this proof is only valid for energy-defined signals.

Note that the Fourier Transform can be also calculated for power-defined signals. In this case
we obtain impulse functions in the transformed signal.
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Fourier Transform Basic Fourier Transform pairs

Basic Fourier Transform pairs

Fourier Transform for periodic signals

Using previous transform pair, we can obtain the Fourier Transform for any periodic signal
x(t) = x(t + T), using the linearity property:

x(t) =
∞∑

k=−∞
akejkω0t FT−−→ X(jω) =

∞∑
k=−∞

2πakδ(ω − kω0)

Fourier Transform of a cosine signal

We can express x(t) = cos(ω0t) as x(t) = 1
2 ejω0t + 1

2 e−jω0t. Therefore, its coefficients are
a1 = a−1 = 1/2, y ak = 0 for k 6= 0.

Its Fourier Transform is:

X(jω) =
∞∑

k=−∞
2πakδ(ω − kω0) = 2π

(
1
2
δ(ω − ω0) +

1
2
δ(ω + ω0)

)

Therefore:
x(t) = cos(ω0t) FT−−→ X(jω) = π (δ(ω − ω0) + δ(ω + ω0))
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Basic Fourier Transform pairs

Fourier Transform of a sine signal

For x(t) = sin(ω0t) we can obtain the Fourier Transform in a similar way:

x(t) = sin(ω0t) FT−−→ X(jω) =
π

j
(δ(ω − ω0)− δ(ω + ω0))

Fourier Transform of a constant

The Fourier Transform of signal x(t) = 1 can be calculated considering x(t) as a periodic
signal with fundamental period T, where a0 = 1 y ak = 0 for k 6= 0. Then:

X(jω) =
∞∑

k=−∞
2πakδ(ω − kω0) = 2πδ(ω)
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Basic Fourier Transform pairs

Fourier Transforms considering train of impulses

Questions

10 Calculate the Fourier Transform of the train of impulses x(t) =
∑∞

k=−∞ δ(t − kT).

11 Calculate the Fourier Transform of x(t) =
sin(Wt)
πt .

12 Calculate the Fourier Transform of y(t) = u(t).

13 Calculate the Fourier Transform of x(t) = δ(t − t0).

14 Calculate the Fourier Transform of x(t) = te−atu(t), with a > 0.
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Summary of the Fourier Transform

Properties of the Fourier Transform
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Summary of the Fourier Transform

Basic Fourier Transform pairs
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Fourier Transform Basic Fourier Transform pairs

Symmetries

Cuestiones

15 The Fourier Transform of any real signal is a Hermitian function (the magnitude is an even
function of frequency and the phase is an odd function of frequency or equivalently the real
part is an even function of frequency and the imaginary part is an odd function of frequency).
Prove this symmetry property graphically using the signal x(t) = e−atu(t), with a > 0.

16 The Fourier Transform for any real and even signal is also a real and even function with the
frequency. Prove this symmetry property graphically using the signal x(t) = e−a|t|, with a > 0.

17 The Fourier Transform of the real part of a real signal x(t) is the real part of X(jω). Calculate,
using the symmetry property, the Fourier Transform of x(t) = e−a|t|, with a > 0.

18 Prove the Conjugation property. Using this property, prove that if x(t) is a real signal, its
Fourier Transform is a Hermitian Function. Moreover, prove that is spectrum |X(jω)| is an
even function of frequency.
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Problems

Problem 1 (∗)

Let be x(t) a periodic real signal with fundamental period T = 8 s. The non-zero coefficientes of
the Fourier Series of x(t) are a1 = a−1 = 2, a3 = a∗−3 = 4j. Express x(t) in the following way:

x(t) =
∞∑

k=0

Ak cos (ωkt + φk)

Problem 2 (∗)

Compute the Fourier Series coefficients ak of the following periodic signal with ω0 = 2π.

x(t) =

{
0.5, 0 ≤ t < 0.5
−0.5, 0.5 ≤ t < 1
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Problem 3

Consider the each of the following signals:
x(t) = cos(4πt); y(t) = sin(4πt); z(t) = x(t)y(t).

1 Determine the FS coefficients of x(t).
2 Determine the FS coefficients of y(t).
3 Determine the coefficients of z(t) using the

direct expression of the multiplication of
both signals (without using properties).

Problem 4 (∗)

Determine FS for each of the following signals.
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Problems

Problem 5 (∗)

Let be X(jω) the Fourier Transform of the signal x(t). Use FT properties to obtain the following
transforms:

1 x1(t) = x(1− t) + x(−1− t)
2 x2(t) = x(3t − 6)

3 x3(t) =
d2x(t−1)

dt2

Problem 6

Considere the following signal:

x(t) =

{
0, |t| > 1
(t + 1)/2, |t| ≤ 1

1 Determine the expression of X(jω).
2 Considering the real part of X(jω), show that is the FT of the even part of x(t).
3 Which is the FT of the odd part of x(t)?
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Problem 7 (∗)

Let’s suppose we know a given signal and its FT:

e−|t| ↔
2

1 + ω2

1 Use FT properties to compute the FT of te−|t|.
2 Apply duality property to obtain the FT of 4t

(1+t2)2 .

Problem 8

Let be a signal with FT X(jω) = δ(ω) + δ(ω − π) + δ(ω − 5) and let be h(t) = u(t)− u(t − 2).

1 Is x(t) periodic?
2 Is x(t) ∗ h(t) periodic?
3 Can be periodic the convolution of two periodic signals?
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Problem 9 (∗)

Let h(t) the impulse response of a causal LTIS,
with FT:

H(jω) =
1

jω + 3

For a given input x(t), the systems produces the
output y(t) = e−3tu(t) −e−4tu(t). Determine x(t).

Problema11 (∗)

Compute the convolution of the signals x(t) and
h(t), by first computing their FT, and applying
then the convolution property of the FT and
FT−1:

1 x(t) = te−2tu(t) with h(t) = e−4tu(t)
2 x(t) = te−2tu(t) with h(t) = te−4tu(t)
3 x(t) = e−tu(t) with h(t) = etu(−t)

Problem 10

Given the following signal:

x0(t) =

{
e−t, 0 ≤ t ≤ 1
0, resto

Determine the FT for each of the following
signals. (Note: begin by determining the FT of
x0(t) and use properties).
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Problems

Problem 12

Let be x(t) = e−(t−2)u(t − 2) and h(t) = u(t + 1)− u(t − 3). Verify that the FT of the convolution is
then same as the product of each FT.

Problema 13

Let be H(jω) the FT of the impulse response for a particual LTIS, compute h(t) in the following
cases:

1 H(jω) = 2 (δ(ω − 1)− δ(ω + 1)) + 3 (δ(ω − 2π)− δ(ω + 2π)).
2 H(jω) = |H(jω)|ej∠H(jω), con |H(jω)| = 2 (u(ω + 3)− u(ω − 3)) y ∠H(jω) = − 3

2ω + π.

3 H(jω) =
sin2(3ω) cos(ω)

ω2 .
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Problems

Problema 14 (∗)

Compute the FT of the following signals.

Problem 15 (∗)

Considere a LTIS with a FT of the impulse
respones given by the figure (a). Considere also
the periodic signal in figure (b)

1 Find the impulse response h(t).
2 Compute the FT of x(t).
3 Compute the FS coefficients for x(t).
4 What is the power of the signalx(t)? What

percentage of this power is in the output?
5 Compute the expression of the output signal

in the time domain.
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Problems

Problem 16

Considere the periodic signal, with period T=0
sketched in the figure.

1 Find the FS coefficients.
2 Compute its FT and sketch it (signal

spectrum)
3 This signal is the input for a system with a

FT of the impulse response
H(jω) = u(ω + 4π/T0)− u(ω − 4π/T0).
What percentage of the input signal power
is findiing in the output of the system?

4 Compute and sketch the output signal in the
time domain.

Problem 17 (∗)

Let be x(t) the input of a LTIS with the following
impulse response:

h(t) =
2W1W2

π
sinc
(

W1t
π

)
sinc
(

W2t
π

)
where W1 > W2. Compute the output y(t), when
the input is:

x(t) =
(W1 −W2)2

2π
sinc2

(
W1 −W2

2π
t
)
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Problems

Problema 18 (∗)

Let be X(jω) the FT of x(t), according to the
figure..

1 Find ∠X(jω).
2 Find X(j0).
3 Find

∫∞
−∞ X(jω)dω.

4 Evaluate
∫∞
−∞ ‖X(jω)‖2dω

5 Sketch the inverse FT of Real{X(jω)}.
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