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so that t(n) is O(nalogn) for sorne suitable constant, a. Thus t(n) grows no faster 
than a subexponential. In fact, t(n) is n(nb log n), as can be shown by further 
arguments in the same style.4 

Average-Case Analysis: Binary Search Trees 

We now tum to average-case analysis. As noted earlier, such analysis presup
poses knowledge of the probability distribution of the instances of the problem¡ 
as we also noted, such knowledge is, in fact, rarely available, so that a uniform 
distribution (all instances are equally likely) is typically assumed. The difficulties 
associated with worst-case analysis all appear in average-case analysis, but they 
·are compounded by the need to compute averages, i.e., expressions of the forro 
¿¡p¡f(i), where Pi is the instance probability of object i. Such suros may not 
always lend themselves to reduction to a dosed form and thus encumber the 
analysis throughout. As even uniforro distributions often give rise to binomial 
coefficients, average-case analysis often requires familiarity with the manipula
tion of such coefficients. 

Consider the problem of characterizing the average behavior of stélndard 
binary search trees. Although the worst-case behavior for aH three operations 
(search, insertion, and deletion) is linear, as is easily shown on a tree constructed 
from a sorted list, it is well known that these trees behave much better in prac
tice and usuaHy exhibit logarithmic behavior. How can we prove that such is 
indeed the corred average behavior, say for insertion? We begin by postulating 
the usual assumption of uniforrnity: for a given input size n, all n!distinct in
put sequences (of n insertions) are equally likely. Now let us build the binary 
search tree from the "average" input sequence, which we denote k1 , k2 , •.• , k". 
The first key in the sequence becomes the root of the tree, thereby splitting our 
task into two subtasks: building the left subtree and building the rtght subtree, 
respectively. The left subtree contains all keys smaller than k1; assume that there 
are ni such keys and let n r = n - 1 - n/. Note that the (n - 1)! possible input 
sequen ces beginning with key k1 consist of all possible mergings of the ni! pos
sible sequences of keys smalIer than k1 and the n r ! possible sequences of keys 
larger than kl' This property allows us to proceed recursively. 

4Program 2,2 is a good example of a "reluctant" algorithm; in fact, this couId. be termed a 
"multiply-and-surrender" algorithm (as opposed to the divide-and-conquer algorithms of Chapter 7). 
~ the words of the inventors of this algorithm: "The basic multiply and surrender strategy consists 
In replacing the problem (jt hand with two or more subproblems, each slight!y simpler than the 
original, and continue multiplying subproblems and subsubproblems recursively in this fashion as 
long as possibIe. At sorne point the subproblems will alJ become so simple that their solution can 
no Ionger be postponed, and we will ha ve to surrender. Experience shows that, in most cases, by 
the time this point is reached the total work will be substantially higher than what couId have been 
wasted by a more direct approach." 
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Since each node, once inserted, remains in place, a suitable measure need 
only account for the distance from the root to every node in the final tree. One 
such measure is the internal path length, I(T), which is simply the sum of these 
distances and which equals the total number of comparisons made by all the 
insertions while building the tree. The internal path length obeys the recurrence 

I(T) = ITI- 1 + I(TI) + I(T,.), 

where T denotes a binary tree, ITI its number of nodes, and TI and TI' its left and 
right subtrees. Now we can write a recurrence for lav(n), the average internal 
path length of binary search trees over n keys: 

n-l 

lav(n) = n -1 + ~. L(Iav(i) + lav(n -1 - i)). (2.14) 
n i=O 

While the real base case is lav(1) = O, we use lav(O) = O, because we need a value 
to substitute into the recurrence. The sum includes aH n possible choices for the 
root of the tree (i.e., all possible choices for k1, the first key in the sequence); 
since each c~6tce determines a unique partition of the keys into the leH and the 
right subtrees, we simply use the defining recurrence for the internal path length 
to obtain (2.14). 

Now, this recurrence is not in a form which we can handle, because it in
volves all terms of lower order. Such recurrences, caUed full-history recurrences, 
occur commonly in the analysis of algorithms and can almost always be reduced 
to a form with a fixed number of terms by the simple expedient of subtracting 
the value at n - 1 from the value at n, with coefficients chosen so as to cancel 
lower-order terms. In the present case, we choose the subtraction 

n·lav (n) - (n -l)·lav (n -1), 

so that, upon substituting from Equation 2.14 and simplifying (the two sums 
cancel except for the highest term), we get 

n·lav (n) - (n -l)·lav (n -1) = 2n - 2 + 21av(n -1) 

or 

n·lav(n) - (n + l)·lav (n - 1) = 2n - 2. 

Only two function terms appear; however, they do not have constant coefficients. 
This difficulty can be overcome by dividing throughout by n(n + 1) to yield 

n-1
2· --:---,-:

n(n + 1)' 
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and by substituting g(n) = Iav(n)/(n + 1), to get the linear recurrence with con
stant coefficients 

n-l 
g(n) - g(n -1) = 2·~~---, with g(O) = O. 

n(n + 1) 

Repeated substitution gives 

1/ i - 1 
g(n):=2L i (i+1

,=1 

But note that, for i > 3, we have 

1 i - 1 1 

i+ <i(T+l)<i+2' 


so that we may write 

The sum term appearing in this equation ís known as a harmonic number, n'lore 
precisely in this case, the nth harmonic number, Hn. Recalling from calculus 
that E:'=11/i is bounded below by JI"+I

(l/x) dx and bounded above by 1 + 
JI" (l/x) dx, we get 

ln(n + 1) :$ Hn :$ In n + 1, 

and thus Hn = 8(Iogn). Hence we have g(n) = 8(Iogn) and thus Iav(n) = 
8(nlogn). At great expense oí time and patience, we could obtain a more 
precise characterization by keeping the driving term intact, but we have argued 
that algorithmic analysis should be in asymptotic terms and thus have no need for 
additiortaI precision. The resuIt confirms our expectations: the average internal 
path length of binary search trees is optimal in 8( ) terms. 

Since a successful search stops at a node in the tree, its average behavior 
can be characterized in terms of the internaI path length of the tree, namely, 
by I(T)/ITI. Since insertion takes place at external nodes, it corresponds to an 
unsuccessful search, and thus its behavior can be characterized in terms of the 
external path length of the tree, namely, by E(T) / (¡T¡ + 1). A simple induction 
argument shows that E(T) = I(T) +2/T¡. Therefore, our results also imply that, 
on average, both successful and unsuccessful searches run in logarithmic time; 
however, the same reasoning cannot be extended to the average height of the 
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trees-although it is, in fact, logarithmic as well .. 


