
87 Worst, Average, and Amortized Analysis

so that t(n) is O(nalogn) for sorne suitable constant, a. Thus t(n) grows no faster
than a subexponential. In fact, t(n) is n(nb log n), as can be shown by further
arguments in the same style.4

Average-Case Analysis: Binary Search Trees

We now tum to average-case analysis. As noted earlier, such analysis presup
poses knowledge of the probability distribution of the instances of the problem¡
as we also noted, such knowledge is, in fact, rarely available, so that a uniform
distribution (all instances are equally likely) is typically assumed. The difficulties
associated with worst-case analysis all appear in average-case analysis, but they
·are compounded by the need to compute averages, i.e., expressions of the forro
¿¡p¡f(i), where Pi is the instance probability of object i. Such suros may not
always lend themselves to reduction to a dosed form and thus encumber the
analysis throughout. As even uniforro distributions often give rise to binomial
coefficients, average-case analysis often requires familiarity with the manipula
tion of such coefficients.

Consider the problem of characterizing the average behavior of stélndard
binary search trees. Although the worst-case behavior for aH three operations
(search, insertion, and deletion) is linear, as is easily shown on a tree constructed
from a sorted list, it is well known that these trees behave much better in prac
tice and usuaHy exhibit logarithmic behavior. How can we prove that such is
indeed the corred average behavior, say for insertion? We begin by postulating
the usual assumption of uniforrnity: for a given input size n, all n!distinct in
put sequences (of n insertions) are equally likely. Now let us build the binary
search tree from the "average" input sequence, which we denote k1 , k2 , •.• , k".
The first key in the sequence becomes the root of the tree, thereby splitting our
task into two subtasks: building the left subtree and building the rtght subtree,
respectively. The left subtree contains all keys smaller than k1; assume that there
are ni such keys and let n r = n - 1 - n/. Note that the (n - 1)! possible input
sequen ces beginning with key k1 consist of all possible mergings of the ni! pos
sible sequences of keys smalIer than k1 and the n r ! possible sequences of keys
larger than kl' This property allows us to proceed recursively.

4Program 2,2 is a good example of a "reluctant" algorithm; in fact, this couId. be termed a
"multiply-and-surrender" algorithm (as opposed to the divide-and-conquer algorithms of Chapter 7).
~ the words of the inventors of this algorithm: "The basic multiply and surrender strategy consists
In replacing the problem (jt hand with two or more subproblems, each slight!y simpler than the
original, and continue multiplying subproblems and subsubproblems recursively in this fashion as
long as possibIe. At sorne point the subproblems will alJ become so simple that their solution can
no Ionger be postponed, and we will ha ve to surrender. Experience shows that, in most cases, by
the time this point is reached the total work will be substantially higher than what couId have been
wasted by a more direct approach."

88 Chapter 2. Mathematical Techniques

Since each node, once inserted, remains in place, a suitable measure need
only account for the distance from the root to every node in the final tree. One
such measure is the internal path length, I(T), which is simply the sum of these
distances and which equals the total number of comparisons made by all the
insertions while building the tree. The internal path length obeys the recurrence

I(T) = ITI- 1 + I(TI) + I(T,.),

where T denotes a binary tree, ITI its number of nodes, and TI and TI' its left and
right subtrees. Now we can write a recurrence for lav(n), the average internal
path length of binary search trees over n keys:

n-l

lav(n) = n -1 + ~. L(Iav(i) + lav(n -1 - i)). (2.14)
n i=O

While the real base case is lav(1) = O, we use lav(O) = O, because we need a value
to substitute into the recurrence. The sum includes aH n possible choices for the
root of the tree (i.e., all possible choices for k1, the first key in the sequence);
since each c~6tce determines a unique partition of the keys into the leH and the
right subtrees, we simply use the defining recurrence for the internal path length
to obtain (2.14).

Now, this recurrence is not in a form which we can handle, because it in
volves all terms of lower order. Such recurrences, caUed full-history recurrences,
occur commonly in the analysis of algorithms and can almost always be reduced
to a form with a fixed number of terms by the simple expedient of subtracting
the value at n - 1 from the value at n, with coefficients chosen so as to cancel
lower-order terms. In the present case, we choose the subtraction

n·lav (n) - (n -l)·lav (n -1),

so that, upon substituting from Equation 2.14 and simplifying (the two sums
cancel except for the highest term), we get

n·lav (n) - (n -l)·lav (n -1) = 2n - 2 + 21av(n -1)

or

n·lav(n) - (n + l)·lav (n - 1) = 2n - 2.

Only two function terms appear; however, they do not have constant coefficients.
This difficulty can be overcome by dividing throughout by n(n + 1) to yield

n-1
2· --:---,-:

n(n + 1)'

Worst, Average, and Amortized Analysis

and by substituting g(n) = Iav(n)/(n + 1), to get the linear recurrence with con
stant coefficients

n-l
g(n) - g(n -1) = 2·~~---, with g(O) = O.

n(n + 1)

Repeated substitution gives

1/ i - 1
g(n):=2L i (i+1

,=1

But note that, for i > 3, we have

1 i - 1 1

i+ <i(T+l)<i+2'

so that we may write

The sum term appearing in this equation ís known as a harmonic number, n'lore
precisely in this case, the nth harmonic number, Hn. Recalling from calculus
that E:'=11/i is bounded below by JI"+I

(l/x) dx and bounded above by 1 +
JI" (l/x) dx, we get

ln(n + 1) :$ Hn :$ In n + 1,

and thus Hn = 8(Iogn). Hence we have g(n) = 8(Iogn) and thus Iav(n) =
8(nlogn). At great expense oí time and patience, we could obtain a more
precise characterization by keeping the driving term intact, but we have argued
that algorithmic analysis should be in asymptotic terms and thus have no need for
additiortaI precision. The resuIt confirms our expectations: the average internal
path length of binary search trees is optimal in 8() terms.

Since a successful search stops at a node in the tree, its average behavior
can be characterized in terms of the internaI path length of the tree, namely,
by I(T)/ITI. Since insertion takes place at external nodes, it corresponds to an
unsuccessful search, and thus its behavior can be characterized in terms of the
external path length of the tree, namely, by E(T) / (¡T¡ + 1). A simple induction
argument shows that E(T) = I(T) +2/T¡. Therefore, our results also imply that,
on average, both successful and unsuccessful searches run in logarithmic time;
however, the same reasoning cannot be extended to the average height of the

89

trees-although it is, in fact, logarithmic as well ..

