Python and Bioinformatics

Pierre Parutto

November 23, 2016
Contents

1 Matrices .. 2
 1.1 Matrix Representation 2
 1.1.1 Basic Representation 2
 1.1.2 Using The Library numpy 3
 1.2 Creating Matrices 3
 1.2.1 Examples 4
 1.3 Matrix Characteristics 5
 1.3.1 Example 5
 1.4 Accessing Matrix Elements 6
 1.5 Arithmetic Operations On Matrix 6
 1.5.1 Integer And Matrix 6
 1.5.2 Matrix And Matrix 7
 1.5.2.1 Matrix Multiplication 8
 1.6 Other Functions On Matrices 8
 1.6.1 Transposition 8
 1.6.1.1 Example 9
 1.6.2 Reshaping A Matrix 9
 1.6.2.1 Example 9
 1.6.3 Linear Index To 2D Index 9
 1.6.3.1 Example 10
 1.6.4 Generating A 1D Array 10
 1.6.4.1 Example 10
 1.7 More On Numpy 10
Chapter 1

Matrices

1.1 Matrix Representation

A matrix is an \(n \) dimensional ordered structure that can store only data of one type. When not specified otherwise, we call matrix a 2 dimensional matrix.

1.1.1 Basic Representation

Matrices can be constructed in Python as nested lists. For example the \(2 \times 2 \) matrix below:

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\]

can be constructed in Python as:

```python
>>> m = [[1,2], [3,4]]
```

\(m \) is thus a list of size 2 (the number of lines) where each element is also a list of size 2 (the number of columns). With this construction we can access to each elements with the syntax:

- \(m_{1,1} \):

```python
>>> m[0][0]
1
```

- \(m_{1,2} \):

```python
>>> m[0][1]
2
```

- ...
Remark
We could also have represented the columns first, thus producing the list:

```python
>>> m = [[1,3], [2,4]]
```

Then the first index corresponds to the column and the second to the line:

```python
>>> m[1,0]
2
>>> m[0,1]
3
```

The most common representation used in computer-science is the line-based representation (the first one presented). In the following we will only use this representation.

1.1.2 Using The Library `numpy`

`numpy` is a library that was specifically created to create, manipulate and store matrices. There are two major advantages in using `numpy` matrices over the Python-based matrices:

1. The efficiency: `numpy` functions are written mostly in C++ and use specific libraries (called blas and lapack) to efficiently handle matrices.

2. The functions: `numpy` already define a lot of useful functions on matrices thus you don’t have to re-code them yourself.

Warning
If you want to use `numpy` functions, you will have to import the names from the `numpy` module.

Numpy provides the type `array` to represent matrices.

Warning
In the following, and in the whole class, we only consider `numpy` matrices.

1.2 Creating Matrices

There are four functions that are mostly used to create matrices:

- `zeros(shape: tuple, dtype: type) -> array`, fills the new matrix with 0 values.
- `ones(shape: tuple, dtype: type) -> array`, fills the new matrix with 1 values.
\begin{itemize}
\item \texttt{empty(shape: tuple) -> array, dtype: type}, do not fill the matrix with any value, the matrix contains whatever value was in the new memory spot.
\item \texttt{array(l: list, dtype: type) -> array}: convert a Python list representing an array (as presented at the beginning of the class) into a \texttt{numpy} matrix.
\end{itemize}

The first three functions takes two arguments:

1. \texttt{shape}, a tuple as argument corresponding to the size of the matrix. The new matrix will have \texttt{len(shape)} dimensions, each dimension \texttt{d} with the size \texttt{shape[d]}.

2. \texttt{dtype}, specify the type of the values in the matrix. Three main types you main want to use are: \texttt{bool, float} or \texttt{int}.

\textbf{Remark}

The \texttt{dtype} value is not mandatory in the function, you can specify it or not. By default, for the \texttt{zeros, ones} and \texttt{empty} function, the type will be \texttt{float} and for the \texttt{array} function, it will be the type of the values provided in the list.

\textbf{Remark}

If you use the \texttt{array} function and specify a \texttt{dtype} different from the type of the list, the values will be converted into the specified type:

- \texttt{bool}, the values: \texttt{None}, \texttt{0.0}, \texttt{0} will be converted to \texttt{False} while all other value will be considered as \texttt{True}.
- \texttt{int} and you provide float values, the values will be rounded to the \texttt{smallest} integer.

\subsection*{1.2.1 Examples}
For the three first functions:

\begin{verbatim}
>>> from numpy import zeros, ones, empty
>>> zeros((2,2))
array([[0., 0.],
 [0., 0.]])
>>> zeros((2,2), dtype=int)
array([[0, 0],
 [0, 0]])
>>> ones((3,2), dtype=bool)
array([[True, True],
 [True, True]])
\end{verbatim}
For the `array` function:

```python
>>> from numpy import array
>>> array([[1, 2], [3, 4]])
array([[1, 2],
[3, 4]])
>>> array([[0, 1], [2, 3]], dtype=bool)
array([[False, True],
[ True, True]], dtype=bool)
>>> array([[0.9, 7.4, 5.3], [0.0, -0.1, 0.0005]], dtype=int)
array([[0, 7, 5],
[0, 0, 0]])
```

1.3 Matrix Characteristics

If `m` is a `numpy` matrix (of type array), the following values are associated to `m`:

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>m.size</code></td>
<td>int</td>
<td>Number of elements</td>
</tr>
<tr>
<td><code>m.ndim</code></td>
<td>int</td>
<td>Number of dimensions</td>
</tr>
<tr>
<td><code>m.shape</code></td>
<td>tuple</td>
<td>Number of elements per dimension</td>
</tr>
<tr>
<td><code>m.dtype</code></td>
<td>str</td>
<td>Type of the matrix elements</td>
</tr>
</tbody>
</table>

Remark

`m.shape` is a tuple of size `m.ndim` where each element is the size of the corresponding dimension.

Remark

For a `numpy` matrix, We always have the following relation:

\[
m.size = \prod_{i=0}^{i<\text{m.ndim}} m.shape[i]
\]

1.3.1 Example
1.4 Accessing Matrix Elements

For an N dimensional matrix:

\[M[\text{val}_{\text{dim1}}, \ldots, \text{val}_{\text{dimN}}] \]

For a 2 dimensional matrix, by definition the first dimension represents the lines of the matrix and the second dimension the columns. Thus the syntax:

\[M[i,j] \]

accesses to the element located on the ith line and jth column.

You can also use slicing to access to a full line or column:

- \[m[i,:] \]: accesses to the ith line;
- \[m[:,j] \]: accesses to the jth column.

Warning

Be careful, in math, matrix indices starts at 1 while in numpy they start at 0:

- \(m_{1,1} \rightarrow m[0,0] \);
- \(m_{2,1} \rightarrow m[1,0] \);
- \(\ldots \)

1.5 Arithmetic Operations On Matrix

1.5.1 Integer And Matrix

Intuitively, if you have and integer n and a matrix A of size $m \times n$, the following operations are defined:
• \(n + A \) produces the matrix \(C \) of size \(m \times n \) such that:
\[
c_{i,j} = n + a_{i,j}
\]

• \(n - A \) produces the matrix \(C \) of size \(m \times n \) such that:
\[
c_{i,j} = n - a_{i,j}
\]

• \(n \times A \) produces the matrix \(C \) of size \(m \times n \) such that:
\[
c_{i,j} = n \times a_{i,j}
\]

• \(n \div A \) produces the matrix \(C \) of size \(m \times n \) such that:
\[
c_{i,j} = n \div a_{i,j}
\]

• \(A^{ \text{**} } n \) produces the matrix \(C \) of size \(m \times n \) such that:
\[
c_{i,j} = (a_{i,j})^n
\]

1.5.2 Matrix And Matrix

All classical operations are elementwise, with \(A, B \) two matrices of size \(m \times n \):

• \(A + B \) produces a matrix \(C \) of size \(m \times n \), such that:
\[
c_{i,j} = a_{i,j} + b_{i,j}
\]

• \(A \times B \) produces a matrix \(C \) of size \(m \times n \), such that:
\[
c_{i,j} = a_{i,j} \times b_{i,j}
\]

• \(A \div B \) produces a matrix \(C \) of size \(m \times n \), such that:
\[
c_{i,j} = a_{i,j} \div b_{i,j}
\]

• \(A^{ \text{**} } B \) produces a matrix \(C \) of size \(m \times n \), such that:
\[
c_{i,j} = (a_{i,j})^{b_{i,j}}
\]

Warning

With these operators, the two matrices must have the same size.
1.5.2.1 Matrix Multiplication

An important operation on matrices is the multiplication. You can do it using the function `dot`:

```python
>>> from numpy import dot, array
>>> A = array([[1,2], [3,4]])
>>> B = array([[5,6], [7,8]])
>>> dot(A, B)
array([[19, 22], [43, 50]])
```

Warning

Be careful with the dimensions of the matrices. If you want to manipulate both 2D matrices and vectors (a 2D matrix with only 1 dimension), the vector must also be a 2D matrix, and not a 1D one.

For example:

```python
>>> from numpy import array, dot
>>> A = array([[1,2,3], [4,5,6], [7,8,9]])  # this is a 3×3 matrix
>>> v = array([1,2,3])  # this is a row vector 1×3
>>> dot(v, A)  # 1×3 * 3×3 is OK, creates a 1×3 array
array([30, 36, 42])
>>> dot(v, A)  # 3×3 * 1×3 is NOT OK
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: objects are not aligned
>>> vv = array([[1], [2], [3]])  # this is a column vector 3×1
>>> dot(vv, A)  # 3×1 * 3×3 is NOT OK
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: objects are not aligned
>>> dot(A, vv)  # 3×3 * 3×1 is OK, creates a 3×1 array
array([[14],
       [32],
       [50]])
```

1.6 Other Functions On Matrices

1.6.1 Transposition

Transposing a matrix consists in transforming the lines into columns and vice versa. It can be done easily for a matrix `m` with the syntax `m.T`.
1.6.1.1 Example

```python
>>> from numpy import array
>>> m = array([[1,2],[3,4],[5,6]])
>>> m
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> m.size
(3,2)
>>> n = m.T
>>> n
array([[1, 3, 5],
       [2, 4, 6]])
>>> n.shape
(2,3)
```

1.6.2 Reshaping A Matrix

You can reshape matrices, changing the number of dimensions and the number of elements per dimension. The only constraint is that the size of the matrix remains the same. Numpy provides the function:

```
m.reshape(s: tuple) -> array
```

Where `m` is a variable of type array.

1.6.2.1 Example

```python
>>> from numpy import array
>>> A = array([1,2,3,4])
>>> A.reshape((2,2))
array([[1, 2],
       [3, 4]])
```

1.6.3 Linear Index To 2D Index

If you are given a linear (1D value, corresponding to a flattened version of the array) index from a function from `numpy`, you can transform it to a 2D index using the following function:

```
unravel_index(idx: int, shape: tuple) -> tuple
```

Takes the 1D index and transforms it to an ND index using the shapes provided in `shape`.
1.6.3.1 Example

```python
>>> from numpy import array, unravel_index
>>> A = array([[1,2,3], [4,5,6]])
>>> unravel_index(4, A.shape)
(1,1)
```

1.6.4 Generating A 1D Array

The family of functions:

- `arange(m: float) -> array`
- `arange(m: float, n: float) -> array`
- `arange(m: float, n: float, s: float) -> array`

Are similar to the corresponding `range` functions from Python except for two points:

1. The return value is of type `array` (from `numpy`) and not `list`.
2. `m, n, s` can be of type `float` and not just integers.

1.6.4.1 Example

```python
>>> from numpy import arange
>>> arange(0,1,0.2)
array([0, 0.2, 0.4, 0.6, 0.8])
```

1.7 More On Numpy

There are a lot lot more that can be told about the `numpy` library. To find more about it, visit the [online documentation](#).