Polyolefin Plastics
Still a challenge for Chemical Engineers?
R. J. Koopmans
Corporate R&D
Dow Benelux BV
Polyolefin Plastics

- What does it take to make it
- Applications
- Processing
- Chemistry
- Feedstock
- History
- Future
What does it take to make Plastics?

- Plastics
 - An ensemble of polymers and other organic and/or inorganic components

- Polymers
 - An ensemble of macromolecules of equal chemical composition but of different molecular mass

- Macromolecules
 - An ensemble of large molecules of same chemical composition and molecular mass
What does it take to make Plastics?
What does it take to make Plastics?

The Plastics Industry

- **Western Europe**
 - 1.1 mm employed
 - 135 billion Euro
 - 45 Global Companies
 - 30,000 SME

- **World**
 - > 120 mm T
 - 5% average growth
What does it take to make Plastics?

Primary Resource Development

Raw Materials
- Mineral oil, Natural gas, coal, minerals, animal & vegetable products, salt

Plastic Products
- Powder, granules, pastes, liquids, dispersions, compounded polymers and resin systems for structural uses

Additives
- Plasticisers, lubricants, stabilisers, colourants, antioxidants

Heat

Pressure

Plastic Processing
- Extrusion, injection and compression, moulding, calendering, casting, foaming, laminating

Fabrication and use
- Assembly into finished products for consumer and industrial use

End Use & Recycling

R.J.Koopmans
What does it take to make Plastics?
Plastics Applications & Use by Sectors in Europe

- Thermoplastics
 - Commodity plastics
 - Engineering plastics
- Thermosets

R.J. Koopmans
Plastics Applications & Use by Sectors in Europe

- Building / Construction: 19%
- Electrical / Electronic: 8%
- Agriculture: 3%
- Other Household / Domestic: 18%
- Large Industry: 4%
- Automotive: 7%
- Packaging: 41%
Application Performance

- Low Cost
- Light Weight
- Though
- Easy processing
- Sustainable – recyclable
-
Applications:
Brittle and Ductile failure

Brittle tear

Ductile tear
Applications: Tensile Testing

Stress Strain Behavior

Crazes
Shear bands
Localized neck

Load
Extension

“FAST”
“SLOW”

Yield
Post yield drop
Strain hardening

Consider temperature also

R.J. Koopmans
Applications:
Crystallisation
Extrusion Blown Film Application
Processing of Film:
Extrusion Casting process
Extrusion Blowing process

Output driven
Extrusion Blown Film Process

Collapsing Frame

Stabilizing cage

Air Ring

Extruder

Die

Nip rolls

Winder

R.J.Koopmans
Processing Challenges

Film distortions come in many shapes
Melt Flow Instabilities

\[\eta_0 \text{ key metric of the flow curve} \]
Capillary Rheometer

Rheometer barrel

Die diameter 2R

Capillary die

Extrudate diameter 2R_ex

Pressure

Die entry pressure drop P_{ent}

Capillary pressure gradient

Die exit pressure drop P_{ex}

Shear Viscosity Only!

R.J.Koopmans
Melt Flow Instabilities

- Examples: LLDPE, HDPE, PP, PS
 - all distortion types

- volume distortions
- entrance
- surface distortions
- exit
- free surface
- die land
- spurt distortions

R.J. Koopmans
Extrusion Blow Molding of Bottles

A programmed parison designed to fit a particular mold configuration.
Cast Extrusion

Sheets & Films
-Single or multilayer

R.J. Koopmans
Cast Sheet Extrusion
Cast Extrusion

3 Kinematic hypotheses:
\[\dot{\epsilon} = \begin{bmatrix} \frac{du}{dx} & 0 & 0 \\ 0 & f(x) & 0 \\ 0 & 0 & g(x) \end{bmatrix} \]
Membrane approximation \((\sigma \cdot e_z = 0)\)
\[u(x); v(x, y) = y \cdot f(x); w(x, z) = z \cdot g(x) \]

Mass conservation:
\[\frac{\partial (eL)}{\partial t} + \frac{\partial (eL \dot{u})}{\partial x} = 0 \]

Force Equilibrium:
\[\text{div}(\varepsilon \sigma) = 0 \]
(inertial, gravity, surface tension << drawing force)

Constitutive equations:
\[\begin{cases}
\sigma = \sigma' - \rho I \\
H(\sigma')\sigma' + \frac{\lambda}{\eta} \frac{\partial \sigma'}{\partial t} = 2\eta \dot{\epsilon} \\
H(\sigma) = \exp \left[\frac{\varepsilon \lambda}{\eta} tr(\sigma) \right] I \\
\frac{\partial \sigma'}{\partial t} = \frac{\partial \sigma}{\partial t} + (u \nabla) \sigma' - \varepsilon \cdot u \sigma' - \sigma'' \cdot \nabla \cdot u
\end{cases} \]

Boundary conditions:
\[\sigma \cdot n = 0, \quad U \cdot n = 0 \]
(Edge of the film is a free surface)

Dimensionless numbers:
\[Dr = \frac{u_{\text{roll}}}{u_0}, \quad A = \frac{X}{L_0}, \quad De = \frac{\lambda u_0}{X}, \quad \frac{1}{E} = \frac{FX}{\eta_0 L_0 u_0} \]

Cast Film Stability Map

Viscoelasticity introduces web breaks
Unattainable = Rupture