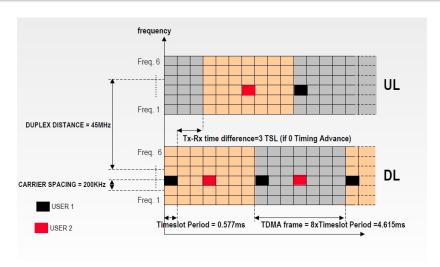
Sistemas de Comunicaciones Móviles. GSM

Diego Méndez Romero

Universidad Carlos III de Madrid

Curso 2017-2018

Índice


- 🚺 Interfaz aéreo
 - Canales físicos
 - Canales lógicos
- 2 Arquitectura
 - General
 - BSS
 - NSS
 - NMS
- Gestión de recursos radio
 - Frequency Hopping
 - Control de Potencia
 - Transmisión discontinua
 - Partición por reuso
- 4 Mejora de utilización de recursos
 - Funciones de Trunking Gain

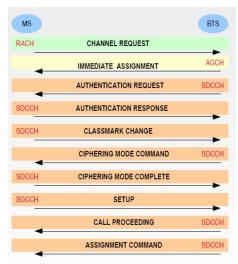
Multiplexación

- Interfaz entre el terminal móvil y la estación base BTS
- MC/TDMA/FDD
 - Multiportadora
 - Múltiples frecuencias en cada UL y DL
 - Time Division Multiple Access
 - 8 slots temporales por portadora para diferentes usos
 - Frecuency Division Duplex
 - Separación frecuencial del DL y UL en dos bandas diferenciadas
- Bandas disponibles
 - 850 MHz en EE.UU., Sudamérica y Asia
 - 900 MHz en Europa
 - 1800 MHz en Europa
 - 1900 MHz en Norteamérica

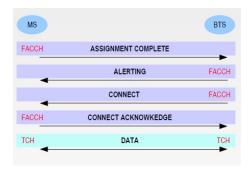
Multiplexación

Ráfagas

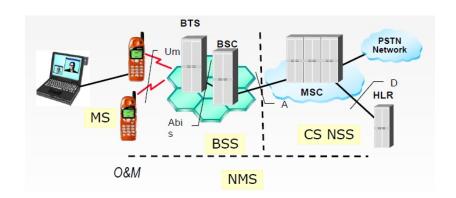
- Contenido de un slot temporal
 - Agrupación de bits con diferente funcionalidad
 - Intervalos de guarda
- Tipos
 - Normal
 - Bits de tráfico
 - Correción de frecuencia
 - Sincronización
 - Acceso
 - Relleno
- Agrupadas en multitramas


Tipos de canales

- Canales de tráfico
 - TCH/F (Full Rate) $\simeq 13$ kbps
 - TCH/H (Half Rate) \simeq 6,5 kbps
- Canales de control dedicados (en ráfagas normales)
 - Slow Associated Control Channel (SACCH)
 - Asociado siempre a un canal de tráfico y transmite información de control dedicada al mantenimiento del enlace
 - Slow Dedicated Control Channel (SDCCH)
 - Señalización para el establecimiento de llamada
 - Fast Associated Control Channel (FACCH)
 - Transmite información de control urgente (reemplaza a un canal de tráfico)


Tipos de canales

- Canales de control broadcast
 - Broadcast Control Channel (BCCH) (en una r\u00e1faga normal)
 - Transmitir información a los MS de parámetros del sistema: identificación de la celda, área de localización, organización de los canales lógicos (CCCH), etc.
 - Synchronization Channel (SCH) (ráfaga de sincronización)
 - Identifica la BTS sintonizada y se sincroniza con la estructura de trama.
 - Frequency Correction Channel (FCCH) (ráfaga de corrección de frec.)
 - Informa al MS de la frecuencia portadora de la BTS.
- Canales de control común
 - Paging Channel (PCH) (ráfaga normal)
 - Avisa al MS de las llamadas entrantes procedentes de la estación base.
 - Random Access Channel (RACH) (ráfaga de acceso)
 - Se utiliza por el MS para realizar una petición de llamada.
 - Access Grant Channel (AGCH) (ráfaga normal)
 - Concede o niega la llamada solicitada por el móvil.


Ejemplo de uso de canales lógicos

Ejemplo de uso de canales lógicos

Esquema general

Base Station Subsystem

- Gestionar la comunicación desde el punto de vista de radiocomunicación
- Comunica estación móvil con el NSS (Network and Swiching Subsystem) → conecta al usuario del móvil con otros usuarios
- Componentes
 - BTS: Base Transceiver Station
 - TRX (transceptores) + antenas + elementos de conexión + instalaciones
 - Gestión de canales terrestres BSC-BTS y de radio
 - TRAU /TC: Transcoder and Rate Adaptation Unit
 - Adaptación de canales de voz de PSTN a GSM
 - BSC: Base Station Controller
 - Gestión de los recursos radio de varias BTS.
 - Gestión de canales en el enlace BSC-MSC y BSC-BTS y de los canales radio (control de potencia, configuración de los canales, etc.)

Base Station Subsystem

- Interfaces de comunicación
 - \bullet A \rightarrow MSC-BSC
 - Gestión del BSS
 - Manejo de llamadas
 - Gestión de la movilidad
 - ullet Abis o BSC-BTS
 - Utilización de tramas E1/T1
 - Dos tipos de enlaces: canales de tráfico a 64 Kbps (voz o datos) y de señalización BSC-BTS a 16 Kbps
 - PCM cable, fibra óptica o radioenlace
 - $\bullet \; \mathsf{Um} \; (\mathsf{a\acute{e}reo}) \to \mathsf{MS}\text{-}\mathsf{BTS}$
 - Permite a los MS acceder a los servicios y utilidades del sistema GSM

Network Switching Subsystem

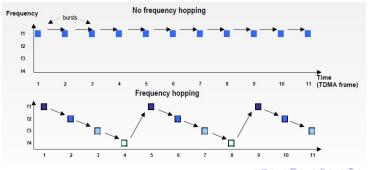
- Funcionalidad
 - Control de llamadas
 - Identificar al usuario
 - Autentificar al usuario
 - Establecer y liberar la llamada
 - Gestión de movilidad
 - Paging (aviso de llamadas)
 - Handover
 - Localización
 - Roaming
 - Tarificación
 - Establecimiento de servicios

Network Switching Subsystem

Elementos

- MSC (Mobile Switching Center)
 - Sistema que conecta sistema radio (BSS) con los sistemas fijos (PSTN, otros MSC)
- VLR (Visitor Location Register)
 - Información temporal local a cada MSC con los usuarios conectados a él
- HLR (Home Location Register)
 - Contiene la información completa sobre el subscriptor móvil (identidad, servicios contratados,...)
- EIR (Equipment Identity Register)
 - Verificación e identificación del terminal
- AuC (Authentication Center)
 - Autenticación de usuario

Network Management System

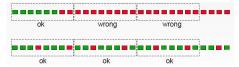

- Funcionalidades
 - Gestionar las comunicaciones entre usuarios GSM y usuarios de otras redes
 - Gestión de la configuración
 - Gestión de fallos
 - Gestión de rendimiento

Necesidad

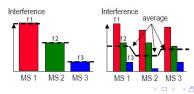
- En entornos urbanos y terrenos abruptos, ocurre el fenómeno del multitrayecto múltiple
- Fenómeno de fading
 - Depende de la frecuencia
 - Dos móviles con distinta frecuencias muy próximos pueden sufrir muy diferente rendimiento
 - Unas ráfagas están muy deterioradas cuando se reciben y otras no
- Interferencia
 - Pueden existir en la misma red frecuencias con más interferencias que otras
- Aunque se usen técnicas de interleaving y códigos robustos que den un resultado dentro de los márgenes a ambos canales, se debe intentar igualar su rendimiento medio

Frequency Hopping

- Definición
 - Cambio de la frecuencia portadora en el enlace radio entre el móvil y la estación base BTS
- En GSM, se cambia la frecuencia tras la transmisión de cada trama (4.615ms)

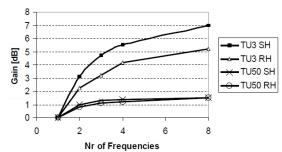


Frequency Hopping


- Modos
 - Salto secuencial (o cíclico)
 - Orden consecutivo
 - 1-2-3-4-1-2-3-4
 - Salto aleatorio
 - Siguiendo secuencias pseudo-aleatorias
 - 63 Diferentes
 - 1-3-2-4-2-3-4-1

Beneficios

- Conversión de errores en ráfaga a errores puntuales
- Errores puntuales corregibles mediante técnicas de codificación y interleaving



- Reparto de errores entre usuarios
- Calidad media para todos

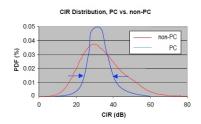
Beneficios

- Ganancia de frequency hopping
 - Depende del modelo de propagación
 - TU3 Typical Urban 3km/h
 - TU50 Typical Urban 5km/h
 - Depende del modo
 - RH Random Hopping
 - SH Sequential Hopping

Generalidades

- Definición
 - Incrementar o decrementar la potencia transmitida por BTS o MS en función de las condiciones radio en cada instante
- Dos tipos
 - Control de Potencia en Downlink
 - De BTS a MS
 - Reducir la interferencia en la red
 - El MS recibe la potencia justa y necesaria para operar correctamente
 - Control de Potencia en Uplink
 - De MS a BTS
 - Reducir consumo de batería del móvil
 - Reducir interferencia en UL

Control de Potencia DL


- Ajuste de potencia de la BTS en función de Measurement Reports
- Algoritmo
 - El MS mide la potencia recibida y la calidad del enlace
 - Medidas cada x slots y promediado en 480 ms (4 multitramas)
 - MS manda reports cada 480 ms con el canal SACCH
 - BTS recibe los reports y decide
 - En el siguiente slot, la potencia se modifica
 - Si los reports son negativos, incremento de a dB
 - Si los *reports* son positivos, decremento de *b* dB
 - Si los reports son estables, mantener potencia actual
- Los parámetros x, a y b se configuran a través del NMS

Control de Potencia UL

- Ajuste de potencia transmitida del MS
 - Suficiente para alcanzar la BTS (cobertura)
 - Considerando C/I en UL
- Rango dinámico entre mínimo y máximo del MS
- Algoritmo
 - BTS toma medidas cada 480 ms
 - BSC decide que debe realizar el MS
 - BSC se lo comunica al MS
 - MS modifica su configuración

Beneficios

- Mantiene un ventana de calidad aceptable sin problemas de cobertura
- Distribución C/I
 - Usuarios con buena calidad reducen potencias
 - Usuarios con mala calidad aumentan potencias
 - El resto, no cambia

- No corrige fast fading (procedimiento muy lento)
- Adapta la interferencia
- Mejor uso de recursos ⇒ Mejorar la capacidad

DTX

- Motivación
 - La mayoría de las comunicaciones en sistemas móviles son de voz (activas menos de la mitad de tiempo)
- DTX → Discontinuous transmission
 - Evitar transmisión aérea en periodos de silencio
 - Ambos UL y DL
- Desde el transmisor...
 - Se detecta el inicio y parada de un silencio
 - Se comunica al lado opuesto ambos eventos
- En el receptor...
 - Decodifica las tramas de silencio como ruido de fondo
- Beneficios
 - Reduce la potencia necesaria a la mitad
 - Reducción de interferencia (3 dB de media)
 - Ampliación de la batería del MS

Partición por reuso

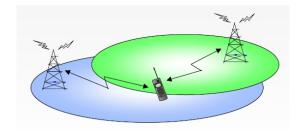
Principio

- Uso de diferentes capas con diferente distancia de reuso
- Generalmente dos capas: Reuso estrecho y amplio
- Underlay Reuso estrecho para MS próximos a BTS
- Overlay Reuso amplio para MS lejos de BTS

Underlay

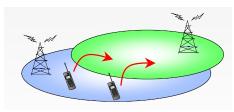
- Para una C/I mínima, a mayor potencia de portadora, mayor interferencia admitida, menor factor de reuso
- Menor reuso ⇒ Mayor número de frecuencias
- Mayor número de frecuencias ⇒ Más capacidad

Overlay


- Para una C/I mínima, a menor potencia de portadora, menor interferencia admitida, mayor factor de reuso
- Mayor reuso ⇒ Menor número de frecuencias
- Menor número de frecuencias ⇒ Menor capacidad
- Menor capacidad para un número de usuarios también menor

Necesidad

- Problema
 - Carga no homogénea
 - Áreas Hotspot
 - Picos de tráfico
- Solución
 - Sobredimensionar
 - Muy caro para el operador
 - Funciones Trunking Gain
 - Mejorar el uso de recursos
 - Balance de carga
 - Compartir tráfico entre celdas próximas


Reintento directo

- Utilizado durante el establecimiento de llamadas
- Cuando un usuario es bloqueado en su celda...
 - Llamada redirigida a otra celda
 - No percibido por usuario
- Requiere solapamiento entre celdas

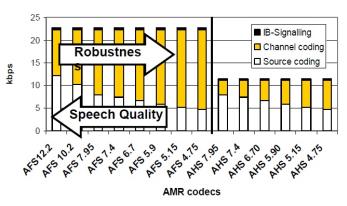
Handover por motivos de tráfico

- Balance de carga
 - Si mi celda no puede, me transfiere a otra cercana
- Después de...
 - Fase de señalización
 - Establecimiento de llamada
- Procedimiento
 - Umbral de carga
 - Comprobación de usuarios
 - Traspaso (handover) de usuarios

GSM Half Rate

- Incluido en especificación GSM inicial
 - Codificación de voz Full-rate (FR)
 - Codificación de voz Half-rate (HR)
- HR
 - Creado para reserva de recursos
 - Un canal por cada dos usuarios
 - Menos TRX (módulo de transmisión)
- Trasmisión de menos información
 - No afecta a la calidad del enlace
 - Afecta a la calidad subjetiva del usuario

GSM Half Rate


- No utilizado de manera general
 - Poca calidad sonora
- Situaciones de carga elevada
 - Algunos usuarios con HR
 - Evitar problemas de bloqueo
 - Móviles cambian de HR a FR y viceversa
- Adaptative Multi-Rate (AMR) Audio Codec
 - Mejorar la calidad sonora
 - Selección adaptativa según necesidades

AMR

- Formato de compresión de audio optimizado para la codificación de voz (combina el uso de FR y HR)
- Balance entre:
 - Protección frente a errores
 - Calidad sonora de la voz
- Códec de voz de banda estrecha de múltiples velocidades, que codifica señales de banda estrecha a velocidades de bits variables que van desde 4,75 hasta 12,2 kpbs (habla peaje de la calidad a partir de 7,4 kbps).
- Mejor calidad sonora para cada situación en función de condiciones radio

AMR

Tradeoff Speech Encoding vs Channel Protection

