Tipos Básicos

Enteros

In [2]: 2 + 4 # suma
Out[2]: 6

In [3]: 3 * 5 # multiplicación
Out[3]: 15

In [4]: 4 - 7 # resta de números enteros
Out[4]: -3

In [5]: 8 // 3 # división entera, cociente
Out[5]: 2

In [6]: 8 % 3 # división entera, resto
Out[6]: 2

In [7]: 2 + 4 * 3 # la multiplicación tiene prioridad
Out[7]: 14

In [8]: (2 + 4) * 3 # los paréntesis cambian esa prioridad
Out[8]: 18

In [9]: 2 ** 3 # potencia
Out[9]: 8

In [10]: a = 5 # utilizamos el nombre a para acceder a un valor
b = a * 3 # podemos utilizar los nombres en las expresiones
a = 2 * a # se evalúa la expresión y se modifica el valor almacenado en a
a, b
Out[10]: (10, 15)

In [11]: n = 7
 (n * (n + 1)) // 2 # los paréntesis no hacen falta en esta expresión
Out[11]: 28
Reales, aritmética de coma flotante

In [14]:
 a = 2.0 # El punto indica la coma decimal
 b = 3.0
 a + b # suma

Out[14]: 5.0

In [15]:
 a * 7.0 # multiplicación

Out[15]: 14.0

In [16]:
 a / 6.0 # división entre reales

Out[16]: 0.3333333333333333

In [17]:
 a * 7 # los enteros se convierten en reales automáticamente

Out[17]: 14.0
In [18]:
```python
def poli(x):
    s = 0.0
    pot = 1
    s = s + (-6 * pot)
    pot = pot * x
    s = s + (-4 * pot)
    pot = pot *x
    s = s + (3 * pot)
    return s
```
poli(5)

Out[18]: 49.0

In [19]:
2.0 ** 3.1 # potencia

Out[19]: 8.574187700290345

In [20]:
```python
import math # podemos usar muchas funciones matemáticas
```

In [21]:
```python
radio = 3
2 * radio * math.pi # math.pi es un nombre que contiene el número pi
```

Out[21]: 18.8495592153876

In [22]:
```python
math.sin(math.pi/3) # math.sin, el seno del ángulo en radianes
```

Out[22]: 0.8660254037844386

In [23]:
```python
math.cos(math.pi/3) # math.cos, el coseno. Obsérverse el error obtenido
```

Out[23]: 0.5000000000000001

In [24]:
```python
math.sqrt(5) # la raíz cuadrada
```

Out[24]: 2.23606797749979

In [25]:
```python
int(3.9) # construye un entero truncando la parte decimal
```

Out[25]: 3

In [26]:
```python
int(-3.9)
```

Out[26]: -3

In [27]:
```python
round(3.2) # redondea al entero más próximo. El resultado sigue siendo real
```

Out[27]: 3.0

In [28]:
```python
round(3.5)
```

Out[28]: 4.0
In [29]: round(-3.5)
Out[29]: -4.0

In [30]: round(-3.2)
Out[30]: -3.0

In [31]: math.floor(3.7) # redondea al entero inferior. El resultado sigue siendo real
Out[31]: 3.0

In [32]: math.floor(-3.2)
Out[32]: -4.0

In [33]: math.ceil(3.2)
Out[33]: 4.0

In [59]: math.ceil(-3.2)
Out[59]: -3.0

Booleanos

In [34]: a = True # valor lógico de cierto
b = False # valor lógico de falso.

In [35]: a and b # conjunción lógica
Out[35]: False

In [36]: a or b # disyunción lógica
Out[36]: True

In [37]: a or True
Out[37]: True

In [38]: b and False
Out[38]: False

In [39]: a = 2
b = 4
b == a * 2 # la comparación devuelve un valor lógico
Out[39]: True
Cadenas de caracteres

In [47]: a = "Hola"
b = 'Hola' # las cadenas de caracteres se pueden poner con comillas dobles o simples.
a, b

Out[47]: ('Hola', 'Hola')

In [48]: a == b

Out[48]: True

In [49]: nombre = "Juan"
saludo = "Hola " + nombre # + es la concatenación de cadenas de caracteres

Out[49]: 'Hola Juan'
In [50]: "H" * 10 # replicación
Out[50]: 'HHHHHHHHHH'

In [51]: "Juan" < "Jual" # las cadenas de caracteres se comparan según el orden lexicográfico
Out[51]: False

In [52]: "Juan" < "Juap"
Out[52]: True

In [53]: "j" == "J" # las mayúsculas y las minúsculas son diferentes
Out[53]: False

In [54]: "J" < "j"
Out[54]: True

In [55]: len("Hola") # la longitud de una longitud de cadena de caracteres
Out[55]: 4

In [56]: len("Adiós") # Las letras con tilde ocupan 2 bytes.
Out[56]: 6

In [57]: a = "Adiós"

a
Out[57]: 'Adi\xc3\xb3s'

In [58]: print(a)
Adiós

Cadenas de caracteres largas
En un lugar de la Mancha, de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín flaco y galgo corredor. Una olla de algo más vaca que carnero, salpícón las más noches, duelos y quebrantos los sábados, lantejas los viernes, algún palomino de añadidura los domingos, consumían las tres partes de su hacienda. El resto della concluían sayo de velarte, calzas de velludo para las fiestas, con sus pantuflos de lo mismo, y los días de entresemana se honraba con su vellorí de lo más fino. Tenía en su casa una ama que pasaba de los cuarenta, y una sobrina que no llegaba a los veinte, y un mozo de campo y plaza, que así ensillaba el rocín como tomaba la podadera. Frisaba la edad de nuestro hidalgo con los cincuenta años; era de complexión recia, seco de carnes, enjuto de rostro, gran madrugador y amigo de la caza. Quieren decir que tenía el sobrenombre de Quijada, o Quesada, que en esto hay alguna diferencia en los autores que deste caso escriben; aunque, por conjeturas verosímiles, se deja entender que se llamaba Quejana. Pero esto importa poco a nuestro cuento; basta que en la narración dél no se salga un punto de la verdad.”

Caracteres especiales

Las "comillas" son caracteres especiales
In [2]: especial2 = "Las \'comillas\' son caracteres especiales"
 especial2
Out[2]: "Las 'comillas' son caracteres especiales"
In [3]: especial3 = "Por tanto la barra invertida también lo es \""
 especial3
Out[3]: 'Por tanto la barra invertida tambi\xc3\xa9n lo es \'
In [10]: especial4 = "Hay otros caracteres especiales como el salto de línea.\nQue sirve para repren\ntar el fí́n de línea en ficheros.\nLo veremos más adelante"
 print(especial4)
 Hay otros caracteres especiales como el salto de línea.
 Que sirve para representar el fin de línea en ficheros.
 Lo veremos más adelante

Errores comunes

In [24]: def media (a, b):
 ...: return (a + b) / 2 # es la división entre enteros. Conviene usar // por compatibilidad
 ...: media(1, 10)
Out[24]: 5
In [25]: def media (a, b):
 ...: return (a + b) / 2.0 # es la división entre enteros. Conviene usar // por compatibilidad
 ...: media(1, 10)
Out[25]: 5.5
In [26]: def media (a, b):
 ...: return float(a + b) / 2 # la función float construye un real a partir de un entero
 ...: media(1,10)
Out[26]: 5.5
In [27]: def paradoja(a):
 ...: b = math.sqrt(a) # la raíz cuadrada de 2
 ...: return a == b * b # esto debería ser cierto siempre, no lo es por el error de la representación de los reales
 ...: paradoja(2)
Out[27]: False
In [55]: 0.5 == math.cos(math.pi/3) # teóricamente esto también debería ser cierto.
Out[55]: False

In [62]: def fibonacci(n):
 ...: phi = (1 + math.sqrt(5)) / 2
 ...: return (phi ** n - (1 - phi) ** n)/math.sqrt(5)
 ...: fibonacci(4)
Out[62]: 3.0000000000000004

In [64]: def fibonacci(n):
 ...: phi = (1 + math.sqrt(5)) / 2
 ...: return int(round((phi ** n - (1 - phi) ** n)/math.sqrt(5)))
 ...: fibonacci(4)
Out[64]: 3