WORKSHEET 4: Applications of the Derivative

1. $\left(^{*}\right)$ Calculate the second-order Taylor polynomial at a and find the approximate value of the function using the polynomial at $x=a+0.1$.
a) $f(x)=e^{x}$ at $a=0$
b) $f(x)=\frac{\ln x}{x}$ at $a=1$
a) $P(x)=1+x+x^{2} / 2$, so $f(0.1) \approx 1.105$
b) $P(x)=(x-1)-3 \frac{(x-1)^{2}}{2}$, so $f(1.1) \approx 0.085$
2. $\left(^{*}\right)$ Given the second-order Taylor polynomial of f at $a=0$, find out if the function has a local maximum or minimum at the point $(0, f(0))$.
a) $P(x)=1+2 x^{2}$
b) $P(x)=1+x+x^{2}$
c) $P(x)=1-2 x^{2}$
a) f has a local minimum at the point $(0, f(0))$.
b) f has not a local maximum or mínimum at the point $(0, f(0))$.
c) f has a local maximum at the point $(0, f(0))$.
.
3. Find the relative and absolute extrema of f in the given intervals:
a) $\left({ }^{*}\right) f(x)=3 x^{2 / 3}-2 x$ in $[-1,2]$
b) $f(x)=x e^{-x}$ in $\left[\frac{1}{2}, \infty\right),[0, \infty)$ and \mathbb{R}
a) i) f obtains a local minimum in $\mathrm{x}=0$ and a local maximum in $\mathrm{x}=1$.
ii) f obtains its absolute minimum in $x=0$.
iii) f obtains its absolute maximum in $x=-1$.
b) i) f obtains a local and absolute maximum at $x=1$.
ii) f obtains an absolute minimum, but not a local one, at $x=0$ on $[0, \infty)$.
iii) f has no local nor absolute minimum when f defined either on $\left[\frac{1}{2}, \infty\right)$ or on \mathbb{R}.
4. $\left(^{*}\right)$ Calculate the point of the graph of $y=-x^{3}+2 x^{2}+x+2$ where its tangent line has the greatest slope. $x=\frac{2}{3}$.
5. $\left(^{*}\right)$ The figure A shows the graph of the derivative function of f. Determine the increasing/decreasing and concavity/convexity intervals of f, its local extrema and inflection points.

Figure A

Figure B
f is increasing in $(-\infty, 1]$ and in $[5, \infty)$ and f is decreasing in $[1,5]$.
So, f obtains a local maximum in 1 and a local minimum in 5 . On the other hand,
f is convex in $[2,3],[4,6]$ and in $[7, \infty)$ and f is concave in $(-\infty, 2],[3,4]$ and in $[6,7]$.
So f has inflection points in $2,3,4,6$ y 7 .
6. The figure B shows the graph of the second derivative function of f. Determine concavity and convexity intervals of f and its inflection points. Determine the monotonicity and local extrema of f assuming that $f^{\prime}(-3)=f^{\prime}(0)=0$.
f is convex on $[-2, \infty) . f$ is concave on $(-\infty,-2]$.
Therefore, f has an inflection point in $x=-2$.
Also, f is increasing on $(-\infty,-3]$. And f is decreasing on $[-3,0]$.
in the same way, f is increasing on $[0, \infty)$.
Therefore, f reaches a local maximum at $x=-3$ and a local minimum at $x=0$.
7 . ${ }^{(*)}$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, and $x>0$. Check the following inequalities graphically: $f(1)<\frac{1}{2}(f(1-x)+f(1+x))<\frac{1}{2}(f(1-2 x)+f(1+2 x))$
8. $\left(^{*}\right)$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave function, and $x>0$. Check the following inequalities graphically: $f(1)>\frac{1}{2}(f(1-x)+f(1+x))>\frac{1}{2}(f(1-2 x)+f(1+2 x))$
9. Let $f:[0, \infty] \rightarrow \mathbb{R}$ be a convex function such that $f^{\prime}(1)=0$
a) Find the local extrema of f.
b) What can be state about the global extrema of f ?
c) Suppose now that $f:[0, n] \rightarrow \mathbb{R}$. What can be stated about the global extrema of f ?
a) y b): 1 is both local and global minimizer of f

Also, it does not exist a global maximizer of f, since $\lim _{x \rightarrow \infty} f(x)=\infty$.
c) In this case besides what we have found regarding the minimizers we know that there will exist a global maximizer at 0 (if $f(n) \leq f(0))$ or at the point $n($ si $f(0) \leq f(n))$.
10. $\left({ }^{*}\right)$ Given the total cost function $C(x)=4000+10 x+0.02 x^{2}$ and the demand function $p(x)=100-\frac{x}{100}$, find the unitary price p that obtains the maximum benefit.
$p=85$
11. (*)Let $p(x)=x^{2}-x+\frac{1}{3}$ be the sale price of one kilo of plutonium when x kilograms are sold. Taking into account that the firm sells a maximum of 2 kilograms on the market, find the value of x that maximizes the profits of the firm. We can assume that the Government pays all costs of the firm.
The maximum income is reached when $x=2$.
12. $\left(^{*}\right)$ Let $p(x)=100-\frac{x^{2}}{2}$ be the demand function of a product and $C(x)=48+4 x+3 x^{2}$ its cost function. What is the production x that minimizes the average cost?
$x=4$

