# Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering Universidad Carlos III de Madrid. Departamento de Matemáticas

# Chapter 2.2 Local Extrema. Taylor's Polynomial

Problem 1. Find the critical points and the local extrema of the following functions:

- i)  $f(x,y) = x^2 + 2y^2 4y$ ,
- ii)  $g(x,y) = x^2 xy + y^2 + 2x + 2y 6$ ,
- iii)  $h(x,y) = 3x^2 + 2xy + 2x + y^2 y + 4$ ,
- iv)  $k(x,y) = 8x^3 24xy + y^3$ .

**Solution:** i) f has a local minimum at (0,1). Its value is f(0,1) = -2; ii) g has a local minimum at (-2,-2). Its value is g(-2,-2) = -10; iii) h has local minimum at (-3/4,5/4). Its value is h(-3/4,5/4) = 21/8; iv) k has at (0,0) a saddle point and at (2,4) a local minimum. Its value is k(2,4) = -64.

Problem 2. Find the critical points and the local extrema of the following functions:

- i)  $f(x, y, z) = y^3 + 2x^2 + y^2 + z^2 + 2yz 4x y + 2$ ,
- ii)  $g(x, y, z) = -z^3 2x^2 y^2 z^2 + 2yz 4x z 2$ ,
- iii)  $h(x, y, z) = x^3 4x^2 2y^2 z^2 2xz + 3x + 4y + 1.$

**Problem 3.** Determine the local extrema of the function  $f(x, y) = e^{-x^2 + \epsilon y^2}$  for  $\varepsilon = 0, 1, -1$ .

**Solution:** If  $\varepsilon = 0$ , then f has absolute maxima at the points (0, y),  $y \in \mathbb{R}$  and f(0, y) = 1; if  $\varepsilon = 1$ , then the unique critical point of f is at (0, 0). It is a saddle point; if  $\varepsilon = -1$ , then the unique critical point of f is again at (0, 0). Now f has an absolute maximum at this point and f(0, 0) = 1.

**Problem 4.** Decide if the origin (0,0) is a local or global extremum of the following function:

$$g(x,y) = \begin{cases} xy + xy^3 \sin(x/y) & \text{if } y \neq 0\\ 0 & \text{if } y = 0. \end{cases}$$

Hint: Approach (0,0) along two different lines. Choose the first/second line in such a way that the function has a maximum/minimum at 0 respectively.

**Solution:**  $\nabla g(0,0) = (0,0)$  and

$$\frac{\partial g}{\partial x}(x,y) = \begin{cases} y + y^3 \sin(x/y) + xy^2 \cos(x/y) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0, \end{cases}$$
$$\frac{\partial g}{\partial y}(x,y) = \begin{cases} x + 3xy^2 \sin(x/y) - x^2y \cos(x/y) & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

Finally,

$$\det Hg(0,0) = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1 < 0,$$

such that the origin will be a saddle point.

**Problem 5.** Consider the function  $\phi : \mathbb{R}^N \to \mathbb{R}$  defined by

$$\phi(\mathbf{x}) = re^{-r}, \qquad r = \|\mathbf{x}\|.$$

- i) Find the local and global extrema of  $\phi$  in the cases N = 1 and N = 2.
- ii) Study the differentiability of  $\phi$  at these points.

**Solution:** If N = 1 we have that  $\phi(x) = |x|e^{-|x|}$  i.e. we obtain that at the points x = 1 and x = -1 there will be local maximum but not global since  $\phi(x) \ge \phi(0) = 0$ . Thus, x = 0 is a local and global minimum.

When N = 2 we have that

$$\phi(x,y) = \sqrt{x^2 + y^2} e^{-\sqrt{x^2 + y^2}}.$$

Therefore, the stationary points will be obtained after solving the equation

$$\frac{1}{\sqrt{x^2 + y^2}} - 1 = 0 \Rightarrow x^2 + y^2 = 1,$$

together with the possibility of having either x = or y = 0. So that, we find the points  $(\pm 1, 0)$ ,  $(0, \pm 1)$  and  $(\cos \alpha, \sin \alpha)$  for any  $\alpha \in \mathbb{R}$  (points on the circumference of radius 1).

Moreover, the origin (0,0) is also a critical point since

$$\phi(x,y) \ge \phi(0,0) = 0,$$

Actually a global minimum. The points  $(\cos \alpha, \sin \alpha)$  are global and local maximum. Also,

$$\lim_{r \to \infty} \phi(r \cos \alpha, r \sin \alpha) = \lim_{r \to \infty} r e^{-r} = \lim_{r \to \infty} \frac{r}{e^r} = \lim_{r \to \infty} \frac{1}{e^r} = 0.$$

Indeed,  $\phi(\cos \alpha, \sin \alpha) = e^{-1}$ , so that

$$0 \le \phi(x, y) \le \frac{1}{e}, \quad \forall (x, y) \in \mathbb{R}^2.$$



Problem 6. Classify all critical points of the following functions:

- (i)  $f(x, y) = \sin(x) \cos(y)$ .
- (ii)  $g(x, y) = \sin(x^2) \sin(y^2)$ .

#### Solution:

- i) (i) Maxima/minima at  $\mathbf{x}(k_1, k_2) = (\frac{\pi}{2} + k_1 \pi, k_2 \pi), k_1, k_2 \in \mathbb{Z}$ , if  $k_1 + k_2$  is even/odd. Saddle points at  $\mathbf{y}(k_1, k_2) = (k_1 \pi, \frac{\pi}{2} + k_2 \pi), k_1, k_2 \in \mathbb{Z}$ .
- ii) Saddle point at (0,0); Minima/saddle points at  $\mathbf{x}(k) = (0, \pm \sqrt{\frac{\pi}{2} + k\pi}), k \in \mathbb{Z}$ , if k is even/odd; Maxima/saddle points at  $\mathbf{x}(k) = (\pm \sqrt{\frac{\pi}{2} + k\pi}, 0), k \in \mathbb{Z}$ , if k is even/odd; saddle points at  $\mathbf{x}(k_1, k_2) = (\pm \sqrt{\frac{\pi}{2} + k_1\pi}, \pm \sqrt{\frac{\pi}{2} + k_2\pi}), k_1, k_2 \in \mathbb{Z}$ , if  $k_1 + k_2$  is even and minimum/maximum at  $\mathbf{x}(k_1, k_2) = (\pm \sqrt{\frac{\pi}{2} + k_1\pi}, \pm \sqrt{\frac{\pi}{2} + k_2\pi}), k_1, k_2 \in \mathbb{Z}$  if  $(k_1 \text{ is odd}, k_2 \text{ is even})/(k_1 \text{ is even}, k_2 \text{ is odd})$ .

Problem 7. Write down Taylor's second-order formula for the following scalar fields, close to the origin:

i) 
$$f(x,y) = \sin(x^2 + y^2)$$
, ii)  $f(x,y) = e^{x+y}$ ,  
iii)  $f(x,y) = \tan(x+y)$ , iv)  $f(x,y) = \sin x \sin y$ .

## Solution:

i)  $P_{2,(0,0)}(x,y) = 2x^2 + y^2$ .

Problem 8. Power-expand the following polynomials in terms of the specified variables:

- i)  $f(x,y) = x^2 + xy + y$ , as powers of (x-2) and (y+1).
- ii)  $f(x, y) = x^2 + y^2 xy$ , as powers of (x 1) and (y 2).

iii)  $f(x,y) = x^3 + y^2 + xy^2$ , as powers of (x - 1) and (y - 2).

i) 
$$P_{2,(2,-1)}(x,y) = 1 + x - 2 + 3(y+1) + 2(x-2)^2 + 2(y+1)(x-2) + (y+1)^2.$$

**Problem 9.** Let *h* be a real function of a single real variable, which is differentiable close to -1, and such that h(-1) = 1. We define the two-variable function

$$f(x,y) = h(xy) + 2h(y/x) - 4, \quad x \neq 0.$$

- i) Find  $\nabla f(-1, 1)$  in terms of h'(-1).
- ii) Write down Taylor's first order polynomial for f around (-1, 1).
- iii) Compute h'(-1) knowing that the previous polynomial vanishes at (0,0).

## Solution:

- i)  $\nabla f(-1,1) = h'(-1)(-1,-3).$
- ii) P(x,y) = h'(-1)(2 x 3y) 1.
- iii)  $h'(-1) = \frac{1}{2}$ .