Exercises for Differential calculus in several variables. Bachelor Degree Biomedical Engineering

Universidad Carlos III de Madrid. Departamento de Matemáticas

Chapter 2.2 Local Extrema. Taylor's Polynomial

Problem 1. Find the critical points and the local extrema of the following functions:
i) $f(x, y)=x^{2}+2 y^{2}-4 y$,
ii) $g(x, y)=x^{2}-x y+y^{2}+2 x+2 y-6$,
iii) $h(x, y)=3 x^{2}+2 x y+2 x+y^{2}-y+4$,
iv) $k(x, y)=8 x^{3}-24 x y+y^{3}$.

Solution: i) f has a local minimum at $(0,1)$. Its value is $f(0,1)=-2 ; i i) g$ has a local minimum at $(-2,-2)$. Its value is $g(-2,-2)=-10$; iii) h has local minimum at $(-3 / 4,5 / 4)$. Its value is $h(-3 / 4,5 / 4)=21 / 8 ; i v) k$ has at $(0,0)$ a saddle point and at $(2,4)$ a local minimum. Its value is $k(2,4)=-64$.

Problem 2. Find the critical points and the local extrema of the following functions:
i) $f(x, y, z)=y^{3}+2 x^{2}+y^{2}+z^{2}+2 y z-4 x-y+2$,
ii) $g(x, y, z)=-z^{3}-2 x^{2}-y^{2}-z^{2}+2 y z-4 x-z-2$,
iii) $h(x, y, z)=x^{3}-4 x^{2}-2 y^{2}-z^{2}-2 x z+3 x+4 y+1$.

Problem 3. Determine the local extrema of the function $f(x, y)=e^{-x^{2}+\epsilon y^{2}}$ for $\varepsilon=0,1,-1$.
Solution: If $\varepsilon=0$, then f has absolute maxima at the points $(0, y), y \in \mathbb{R}$ and $f(0, y)=1$; if $\varepsilon=1$, then the unique critical point of f is at $(0,0)$. It is a saddle point; if $\varepsilon=-1$, then the unique critical point of f is again at $(0,0)$. Now f has an absolute maximum at this point and $f(0,0)=1$.

Problem 4. Decide if the origin $(0,0)$ is a local or global extremum of the following function:

$$
g(x, y)=\left\{\begin{array}{cl}
x y+x y^{3} \sin (x / y) & \text { if } y \neq 0 \\
0 & \text { if } y=0
\end{array}\right.
$$

Hint: Approach $(0,0)$ along two different lines. Choose the first/second line in such a way that the function has a maximum/minimum at 0 respectively.

Solution: $\nabla g(0,0)=(0,0)$ and

$$
\begin{gathered}
\frac{\partial g}{\partial x}(x, y)= \begin{cases}y+y^{3} \sin (x / y)+x y^{2} \cos (x / y) & \text { if } y \neq 0 \\
0 & \text { if } y=0\end{cases} \\
\frac{\partial g}{\partial y}(x, y)= \begin{cases}x+3 x y^{2} \sin (x / y)-x^{2} y \cos (x / y) & \text { if } y \neq 0 \\
0 & \text { if } y=0\end{cases}
\end{gathered}
$$

Finally,

$$
\operatorname{det} H g(0,0)=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=-1<0
$$

such that the origin will be a saddle point.

Problem 5. Consider the function $\phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ defined by

$$
\phi(\mathbf{x})=r e^{-r}, \quad r=\|\mathbf{x}\| .
$$

i) Find the local and global extrema of ϕ in the cases $N=1$ and $N=2$.
ii) Study the differentiability of ϕ at these points.

Solution: If $N=1$ we have that $\phi(x)=|x| e^{-|x|}$ i.e. we obtain that at the points $x=1$ and $x=-1$ there will be local maximum but not global since $\phi(x) \geq \phi(0)=0$. Thus, $x=0$ is a local and global minimum.

When $N=2$ we have that

$$
\phi(x, y)=\sqrt{x^{2}+y^{2}} e^{-\sqrt{x^{2}+y^{2}}}
$$

Therefore, the stationary points will be obtained after solving the equation

$$
\frac{1}{\sqrt{x^{2}+y^{2}}}-1=0 \Rightarrow x^{2}+y^{2}=1
$$

together with the possibility of having either $x=$ or $y=0$. So that, we find the points $(\pm 1,0),(0, \pm 1)$ and ($\cos \alpha, \sin \alpha$) for any $\alpha \in \mathbb{R}$ (points on the circumference of radius 1).

Moreover, the origin $(0,0)$ is also a critical point since

$$
\phi(x, y) \geq \phi(0,0)=0
$$

Actually a global minimum. The points $(\cos \alpha, \sin \alpha)$ are global and local maximum. Also,

$$
\lim _{r \rightarrow \infty} \phi(r \cos \alpha, r \sin \alpha)=\lim _{r \rightarrow \infty} r e^{-r}=\lim _{r \rightarrow \infty} \frac{r}{e^{r}}=\lim _{r \rightarrow \infty} \frac{1}{e^{r}}=0
$$

Indeed, $\phi(\cos \alpha, \sin \alpha)=e^{-1}$, so that

$$
0 \leq \phi(x, y) \leq \frac{1}{e}, \quad \forall(x, y) \in \mathbb{R}^{2}
$$

Problem 6. Classify all critical points of the following functions:
(i) $f(x, y)=\sin (x) \cos (y)$.
(ii) $g(x, y)=\sin \left(x^{2}\right)-\sin \left(y^{2}\right)$.

Solution:

i) (i) Maxima/minima at $\mathbf{x}\left(k_{1}, k_{2}\right)=\left(\frac{\pi}{2}+k_{1} \pi, k_{2} \pi\right), k_{1}, k_{2} \in \mathbb{Z}$, if $k_{1}+k_{2}$ is even/odd. Saddle points at $\mathbf{y}\left(k_{1}, k_{2}\right)=\left(k_{1} \pi, \frac{\pi}{2}+k_{2} \pi\right), k_{1}, k_{2} \in \mathbb{Z}$.
ii) Saddle point at $(0,0)$; Minima/saddle points at $\mathbf{x}(k)=\left(0, \pm \sqrt{\frac{\pi}{2}+k \pi}\right), k \in \mathbb{Z}$, if k is even/odd; Maxima/saddle points at $\mathbf{x}(k)=\left(\pm \sqrt{\frac{\pi}{2}}+k \pi, 0\right), k \in \mathbb{Z}$, if k is even/odd; saddle points at $\mathbf{x}\left(k_{1}, k_{2}\right)=\left(\pm \sqrt{\frac{\pi}{2}+k_{1} \pi}, \pm \sqrt{\frac{\pi}{2}+k_{2} \pi}\right), k_{1}, k_{2} \in \mathbb{Z}$, if $k_{1}+k_{2}$ is even and minimum/maximum at $\mathbf{x}\left(k_{1}, k_{2}\right)=\left(\pm \sqrt{\frac{\pi}{2}+k_{1} \pi}, \pm \sqrt{\frac{\pi}{2}+k_{2} \pi}\right), k_{1}, k_{2} \in \mathbb{Z}$ if $\left(k_{1}\right.$ is odd, k_{2} is even $) /\left(k_{1}\right.$ is even, k_{2} is odd $)$.

Problem 7. Write down Taylor's second-order formula for the following scalar fields, close to the origin:

$$
\begin{aligned}
\text { i) } \quad f(x, y) & =\sin \left(x^{2}+y^{2}\right), & \text { ii) } \quad f(x, y)=e^{x+y} \\
\text { iii) } \quad f(x, y) & =\tan (x+y), & \text { iv) } \quad f(x, y)=\sin x \sin y
\end{aligned}
$$

Solution:

i) $P_{2,(0,0)}(x, y)=2 x^{2}+y^{2}$.

Problem 8. Power-expand the following polynomials in terms of the specified variables:
i) $f(x, y)=x^{2}+x y+y$, as powers of $(x-2)$ and $(y+1)$.
ii) $f(x, y)=x^{2}+y^{2}-x y$, as powers of $(x-1)$ and $(y-2)$.
iii) $f(x, y)=x^{3}+y^{2}+x y^{2}$, as powers of $(x-1)$ and $(y-2)$.
i) $P_{2,(2,-1)}(x, y)=1+x-2+3(y+1)+2(x-2)^{2}+2(y+1)(x-2)+(y+1)^{2}$.

Problem 9. Let h be a real function of a single real variable, which is differentiable close to -1 , and such that $h(-1)=1$. We define the two-variable function

$$
f(x, y)=h(x y)+2 h(y / x)-4, \quad x \neq 0 .
$$

i) Find $\nabla f(-1,1)$ in terms of $h^{\prime}(-1)$.
ii) Write down Taylor's first order polynomial for f around $(-1,1)$.
iii) Compute $h^{\prime}(-1)$ knowing that the previous polynomial vanishes at $(0,0)$.

Solution:

i) $\nabla f(-1,1)=h^{\prime}(-1)(-1,-3)$.
ii) $P(x, y)=h^{\prime}(-1)(2-x-3 y)-1$.
iii) $h^{\prime}(-1)=\frac{1}{2}$.

