1) Let \(\{ \vec{e}_1, \vec{e}_2 \} \) be a basis of a Euclidean vector space \(E \) satisfying:

\[
\begin{align*}
\vec{e}_1, (3\vec{e}_1 + \vec{e}_2) &= 2 \\
\vec{e}_2, \vec{e}_2 &= 2 \\
\vec{e}_2, (-2\vec{e}_1 + \vec{e}_2) &= 4
\end{align*}
\]

a) Find the scalar product matrix with respect to \(B \) and the angle between the vector of the basis.

b) If \(W \) is a subspace with equations (on \(B \)) \(x - 2y = 0 \), find the equations of \(W^\perp \) (on \(B \)).

c) Find an orthonormal basis of \(E \).

d) Find the equations (on \(B \)) of the orthogonal reflection with respect to \(W \).

2) Let \(\{ \vec{e}_1, \vec{e}_2 \} \) be a basis of a Euclidean vector space \(E \)

\[
\left\| \vec{e}_2 \right\| = \sqrt{2}, \quad \vec{e}_1 - \vec{e}_2 \text{ is a unit vector,} \quad (\vec{e}_1 - \vec{e}_2) \cdot \vec{e}_2 = -1
\]

a) Find the scalar product matrix with respect to \(B \) and the angle that \(\vec{e}_1 \) has with \(\vec{e}_2 \).

b) Find the equations of the orthogonal projection onto the subspace \(W \) spanned by \(\vec{e}_2 \) and the equations of the orthogonal reflection with respect to \(W \).

3) Let \(\{ \vec{e}_1, \vec{e}_2 \} \) be a basis for a Euclidean vector space \(E \) such that the scalar (inner) product matrix with respect to \(B \) is

\[
\frac{2}{\sqrt{5}} \quad \frac{-1}{\sqrt{5}} \\
\frac{-1}{\sqrt{5}} \quad \frac{2}{\sqrt{5}}
\]

a) Find the angle that \(\vec{e}_1 \) has with \(\vec{e}_2 \).

b) If \(f \) is a linear map such that \(f(\vec{e}_1) = \frac{7}{5}\vec{e}_1 + \frac{8}{5}\vec{e}_2 \) and \(f(\vec{e}_2) = -\frac{4}{5}\vec{e}_1 - \frac{1}{5}\vec{e}_2 \), is \(f \) a symmetric tensor? If possible, find a spectral basis for \(f \) of \(E \).

4) Consider a basis \(\{ \vec{e}_1, \vec{e}_2 \} \) for a Euclidean vector plane verifying \(\left\| \vec{e}_1 \right\| = 1 \) \(y \vec{e}_1 \cdot \vec{e}_2 = 2 \). If

\[
\frac{2}{\sqrt{5}} \quad \frac{-1}{\sqrt{5}} \\
\frac{-1}{\sqrt{5}} \quad \frac{2}{\sqrt{5}}
\]

is the matrix of an orthogonal tensor with respect to \(B \), find the inner product matrix with respect to \(B \) and an orthonormal basis.

5) Let \(\{ \vec{e}_1, \vec{e}_2 \} \) be a basis for a Euclidean vector space satisfying:

\[
\begin{align*}
\vec{e}_1 \cdot \vec{e}_2 &= -1 \\
(\vec{e}_2 - \vec{e}_1)(\vec{e}_1 + \vec{e}_2) &= -3 \\
\left\| \vec{e}_2 \right\| &= 1
\end{align*}
\]

a) Find the scalar product matrix with respect to \(B \) and the angle between the vectors of the basis.

b) If \(W \) is a subspace with equations on \(B \) : \(x_1 - x_2 = 0 \), find the equations of the orthogonal complement of \(W, W^\perp \) (on \(B \)).

c) If \(f \) is a linear map such that \(f(\vec{e}_1) = 3\vec{e}_1 + \vec{e}_2 \) and \(f(\vec{e}_2) = 2\vec{e}_2 \), is \(f \) an orthogonal vector reflection? Justify your answer.

d) Find the image under the vector rotation of angle \(\frac{\pi}{2} \) of the vector \(\vec{e}_2 \).