

Topic 1: <u>Review of Stochastic Processes</u>

Academic Year 2013 - 2014

P1.- Let the stochastic process be defined by the set of all possible realizations x[n], $-5 \le n \le 5$, generated by 11 independent releases of a 6-sided die and values $x \in \{1,2,3,4,5,6\}$. Obtain:

- a) The PDF of x[n] in the time instant n_1 . What is the probability of observing a realization such that x[0] = 3?
- b) The joint distribution function in the time instants n_1 and n_2 . What is the probability of observing a realization such that x[-1] = 3 y x[1] = 3?
- c) The probability of obtaining the value 1 for all $-5 \le n \le 5$.
- d) The probability of obtaining realizations x[n] > 3 for all $-5 \le n \le 5$.

P2.- Let the stochastic process be defined by the set of all possible realizations x[n], generated by independent measurements of a process which values are distributed uniformly as $X \sim U(-1,1)$. Obtain:

- a) The PDF of the magnitude x[n] at time instant n_1 .
- b) The joint PDF of the magnitude x[n] at the time instants n_1 and n_2 , where $n_1 \neq n_2$.
- c) The probability that given a time instant n_1 , $0 < x[n_1] < 0.5$.
- d) The probability that given two different time instants n_1 and n_2 , $0 < x[n_1] < 0.5$ and $-0.5 < x[n_2] < 0$.

P3.- The PDF of the stochastic, stationary and ergodic process x(t), $f(x_1; t_1)$, is a uniform function $X \sim U(1, 2)$. Obtain:

- a) The fraction of time in which x(t) > 1.5.
- b) The fraction of time in which x(t) < 1.75.
- c) The mean value of x(t).
- d) The mean power of x(t).

P4.- What is the autocorrelation $R_{yy}(\tau)$ of an i.i.d. process ("independent and identically distributed" \rightarrow "independent and stationary") y[n] whose samples are distributed according to $Y \sim N(m_y, \sigma_y^2)$? What is the physical meaning of $R_{yy}(0)$?

P5.- Suppose now that the samples from the process z[n] are distributed according to a random variable Z. If Z is a function of the random variable $Y \sim N(m_y, \sigma_y^2)$, namely Z = aY + b, where a and b are constants, what is the autocorrelation $R_{zz}(\tau)$? What is its physical meaning?

P6. Let x[n] be an uncorrelated process whose samples are distributed according to $X \sim N(0,\sigma_x^2)$. Define the process z[n] as follows: z[n] = x[n + 1] + x[n] + x[n - 1], i.e. a sample of z[n] contains the sum of three consecutive samples of x[n]. What is its autocorrelation $R_{zz}(\tau)$? What is its physical meaning?

P7.- Obtain the power or energy spectral density (as appropiate) of the signal defined as:

$$x(t) = \begin{cases} 1, & |t| < T \\ 0, & resto \end{cases}$$

P8. Obtain the mean value, the energy, the power, the autocorrelation function and the power spectral density of x(t) defined as:

$$x(t) = \cos(2\pi f t + \varphi)$$

P9.- Let n(t) be an uncorrelated Gaussian noise, whose magnitude is distributed with mean 0 and variance σ^2 . Obtain the PDF (as a function of time, i.e. at each instant *t*), the mean value, the power, the autocorrelation and power spectral density of the signal:

$$s(t) = n(t) + \cos(2\pi f t)$$

P10.- Let n(t) be a process whose power spectral density takes a constant value between $\pm f_c - B/2$ and $\pm f_c + B/2$, with $B \ll f_c$ and is zero for any frequency outside these two intervals. The total power of the noise is P_n . Consider this signal uncorrelated with any other. Obtain the spectrum of the signal:

$$s(t) = n(t) + \cos(2\pi f_c t).$$