1) Given the line \(r : 2x_1 - 3x_2 = 1 \) on an affine plane, find the equations of the projection onto \(r \) in the direction \(\vec{w}(1,1) \) and the equations of the reflection with respect to \(r \) in the direction \(\vec{w} \).

2) Find the equations of the reflection with respect to the plane \(\pi : 2x - y + z = 1 \) in the direction \(\vec{w}(0,1,2) \).

3) Let \(f \) be an affinity with equations
\[
\begin{align*}
 x'_1 &= 2x_1 + 3x_2 - 2 \\
 x'_2 &= 2x_1 + 7x_2 - 3
\end{align*}
\]
find, if possible, the fixed points and the invariant lines under \(f \).

4) Let \(f \) be an affinity with equations
\[
\begin{align*}
 x'_1 &= -2x_1 + x_2 - 1 \\
 x'_2 &= 4x_1 + x_2 - 2
\end{align*}
\]
find, if possible, the fixed points and the invariant lines under \(f \).

5) Let \(A \) be an affine plane and let \(R = (O, B) \) be a reference frame in \(A \). Let \(f \) be an affinity such that \((f(P))_R = (-1,1)\) with \((P)_R = (1,1)\); \((f(Q))_R = (-1,2)\) with \((Q)_R = (2,-1)\) and \((f(T))_R = (0,1)\) with \((T)_R = (1,0)\). Find, if possible, the fixed points and the invariant lines under \(f \).

6) Is it the affinity with equations
\[
\begin{align*}
 x' &= 2x + 2y + 1 \\
 y' &= 3x + y + 3
\end{align*}
\]
a homology? Find, if possible, the invariant lines under \(f \).

7) Let \(f \) be an affinity with \(P(1,2) \) and \(Q(-1,-2) \) as fixed points and taking \(M(-1,0) \) to \(M'(2,0) \).

 a) Is \(f \) a homology? If so, find its axis and its direction
 b) If there existed invariant lines under \(f \), which would they be?.

8) If \(g \) is a homology with axis the line \(m \) and it takes the point \(P \) to the point \(P' \), sketch the image under \(g \) of the line passing through \(N \) and \(T \).
13) If h_1 is a homothety with centre Q that takes M to M' and h_2 is the homology that takes Q to Q' and has the line r as axis, sketch the image under $h_2 \circ h_1$ of X, X'. Explain carefully the steps you take in order to get X'.