Lógica y Estructuras Discretas Septiembre 2011 Código de la asignatura: 71901037 **Tipo de examen: D** Duración: 2 horas **Material Permitido: Ninguno**

Instrucciones: Responda al test en la plantilla impresa que se le facilita. Si responde al desarrollo, hágalo en una hoja aparte (con su nombre escrito). *Entregue sólo las respuestas del test y la hoja de desarrollo (si la ha respondido), no las hojas del enunciado.* Si considera que hay erratas, indíquelas en una hoja aparte y entréguela. Todas las hojas entregadas deberán ser escaneadas.

Corrección del examen: El examen consta de dos partes: (a) test, 9 puntos, (b) desarrollo, 1 punto. Test (18 preguntas): correcta, +0'5; incorrecta, -0'25; en blanco, -0. El desarrollo se corregirá sólo si se han obtenido al menos 7'5 puntos de los 9 del test.

Datos

Datos de lógica proposicional y de predicados

$X_1: (p \lor q) \to ((\neg o \lor t) \land r \land s)$ $X_2: \neg o \lor (\neg r \land p)$ $X_3: \neg p \lor (q \land r)$ $X_4: ((s \lor t) \to o) \land t$	
$Y_{1}: (\forall x \exists y \neg Sxy) \rightarrow \neg(\forall z \exists w \neg Szw))$ $Y_{2}: \neg(\forall x \exists y Sxy)$ $Y_{3}: \neg(\exists w \exists t \neg Stw)$ $Y_{4}: \exists t (Pt \rightarrow Stt)$	I^{Y} : dominio $U = \{0,1\}$, con $P = \emptyset$ $S = \{(0,0),(0,1)\}$

Test

- 1. Señale el conjunto satisfacible:
 - a) $\{X_1, X_2, X_4\}$
 - b) $\{X_1, X_2, X_3, X_4\}$
 - c) $\{X_1, X_3, X_4\}$
- 2. Es equivalente a X_3 :
 - $a) \ (\neg q \lor \neg r) \to \neg p$
 - b) $p \lor (q \land r)$
 - $c) \neg p \rightarrow \neg (q \land r)$
- 3. No es consecuencia correcta:
 - a) $X_1, X_2 \models \neg X_4$
 - b) $X_2, X_4 \models \neg X_3$
 - c) $X_1, X_2 \models \neg X_3$
- 4. Señale el conjunto insatisfacible:
 - a) $\{X_1, X_2, X_3\}$
 - b) $\{X_2, X_3, X_4\}$
 - c) $\{X_2, X_3\}$
- 5. Sean ϕ_1 , ϕ_2 y ψ cualesquiera tres fórmulas de lógica proposicional. Si $\neg(\phi_1 \land \phi_2 \land \psi)$ es tautología, ¿cuál de las siguientes afirmaciones es cierta?
 - *a*) $\{\varphi_1, \varphi_2\} \models \psi$
 - *b*) $\{\varphi_1, \psi\} \models \neg \varphi_2$
 - c) $\neg((\phi_1 \land \phi_2) \rightarrow \psi)$ es insatisfacible
- 6. Es insatisfacible:
 - a) $\{Y_1, Y_2, Y_4\}$

- b) $\{Y_2, Y_3, Y_4\}$
- c) $\{Y_1, Y_2\}$
- 7. Es consecuencia:
 - *a*) $\{Y_1, Y_2\} \models \neg Y_4$
 - b) $\{Y_1, Y_4\} \models \neg Y_3$
 - c) $\{Y_2\} \models \neg Y_3$
- 8. Señale la tautología:
 - a) $Y_1 \rightarrow \neg Y_2$
 - b) $Y_2 \rightarrow \neg Y_3$
 - c) $Y_1 \rightarrow \neg Y_4$
- 9. La interpretación I^Y no satisface:
 - *a*) *Y*₁
 - b) Y₂
 - c) Y₃
- 10. Sea A un conjunto finito cualquiera, y sea n = |A|. ¿Cuál es la cardinalidad del conjunto A^2 ?
 - a) n
 - b) n^2
 - c) n^n
- 11. Sean A el conjunto de los números enteros pares y sea B el conjunto de los números enteros que son múltiplos de 3. ¿Cuál de los siguientes conjuntos es subconjunto de A × B?
 - a) El conjunto de los números enteros múltiplos de 6
 - b) El conjunto $\{(3,2)\}$
 - c) El conjunto $\{(2,3)\}$
- 12. Sea el conjunto $A = \{1, 2\}$. ¿Cuál de los siguientes conjuntos es el conjunto potencia de A?

- a) $\{\emptyset\} \cup \{\{1\}, \{2\}\} \cup \{A\}$
- b) $\emptyset \cup \{\{1\}, \{2\}\} \cup A$
- $c) \varnothing \cup \{\{1\}, \{2\}\} \cup \{A\}$
- 13. ¿Tienen los conjuntos ℕ y el conjunto potencia de ℕ la misma cardinalidad?
 - a) Sí.
 - b) No.
 - c) Dado que ambos conjuntos son infinitos, no tiene sentido hablar de su cardinalidad.
- 14. ¿Cuál de las siguientes relaciones es una función de $X = \{a, b, c\}$ a $Y = \{1, 2, 3\}$?
 - a) $\{(a,1),(b,2),(a,3)\}$
 - b) $\{(b,1),(c,2),(b,3),(a,2)\}$
 - c) $\{(c,1),(b,1),(a,1)\}$
- 15. Sea un digrafo cualquiera G. ¿Cuál de las siguientes afirmaciones es cierta?
 - a) Si G es conexo (débilmente conexo) entonces es unilateralmente conexo.
 - b) Si G no es unilateralmente conexo entonces es conexo.
 - c) Si un grafo G no es conexo entonces no es fuertemente conexo.
- 16. Un grafo no dirigido es conexo si:
 - a) Desde cualquiera de sus nodos se puede llegar a cualquier otro.
 - b) El grado de entrada de todo nodo es igual a 1.
 - c) Permite bucles en cada uno de sus nodos.
- 17. Sea d la distancia del nodo a al nodo b en un digrafo G. ¿Cuál de las siguientes afirmaciones es cierta para cualesquiera nodos a y b?
 - a) d es un número primo.
 - b) $d \ge 1$, pero d no puede ser infinito (∞).
 - c) d puede ser infinito (∞).
- 18. Sea G un grafo dirigido con n nodos. ¿Cuál es el número de arcos de un árbol de expansión para G?

- a) n^2 .
- b) n-1.
- c) No lo podemos saber sólo con los datos que nos da la pregunta.

Pregunta de desarrollo

Demuestre mediante un tableau que es correcto el siguiente argumento:

$$\forall x \exists y (\neg Pxy \lor \neg Pyx) \models \exists x (\exists y \neg Pxy \lor \exists y \neg Pyx)$$