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(1) Consider the set A = {(x, y) ∈ R2 : x2 + y2 ≤ 2, xy > 0}.
(a) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact

or convex.

Solution: The set A, its interior and its boundary are:

X

Y

(√
2, 0
)

(
0,
√

2
)

(
−
√

2, 0
)

(
0,−
√

2
)

A

A

X

Y

(√
2, 0
)

(
0,
√

2
)

(
−
√

2, 0
)

(
0,−
√

2
)

◦
A

◦
A



3

(√
2, 0
)

(
0,
√

2
)

(
−
√

2, 0
)

(
0,−
√

2
)

∂A

Since, the set A does not contain its boundary, it is not closed. And it does not coincide with its
interior. Hence, it is not open. Graphically, we see that te set A is bounded, but not convex. The
set A is not compact.

(b) State Weierstrass’ Theorem. Determine if it is possible to apply Weierstrass’ Theorem to the func-
tion f(x, y) = y − x defined on A. Draw the level curves of f(x, y) = y − x and the direction of
growth of the level curves.

Solution: The function f(x, y) = xy is continuous in R2. Hence, it is continuous in A ⊂ R2.
However, the set A is not compact. The hypotheses of Weierstrass’ theorem do not hold.

The level curves of the function f are given by the equation y = C
x , C ∈ R. Graphically,
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The arrows point in the direction of growth.

(c) Using the level curves of f above, determine if this function attains a maximum and/or a minimum
on the set A. If so, compute the points where the extreme values are attained and the maximum
and/or minimum values of f on the set A.

Solution: Graphically we see that the maximum value of f is attained at the points
where the level curves of the function f are tangent to the boundary of the set A. That is, when
the curves

xy = C, x2 + y2 = 2
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intersect at a unique point. Substituting y = C
x in the second equation, we obtain

x2 +
C2

x2
= 2

that is,
x4 − 2x2 + C2 = 0

Making the change t = x2, the above equation reduces to

t2 − 2t + C2 = 0

The solutions are
2±
√

4− 4C2

2
There is a unique solution iff 4− 4C2 = 0, that is C2 = 1. We obtain the equation t2 − 2t + 1 = 0
whose unique solution is t = 1. Hence, x2 = 1 and from the equation x2 + y2 = 2 we see that
y2 = 1. Graphically, we see that x and y have the same sign. The solutions are (1, 1) and (−1,−1).
The maximum value of the function is f(1, 1) = f(−1,−1) = 1. Graphically,
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Taking points of the form

x = y =
1

n
, con n = 1, 2, . . .

we see that
•
(
1
n ,

1
n

)
∈ A for every n = 1, 2, . . .

• limn→∞ f
(
1
n ,

1
n

)
= 1

n2 .
But, there is no point (x, y) ∈ A such that f(xy) = xy = 0, because if (x, y) ∈ A then x, y 6= 0.
Hence, the function f does not attain a minimum value in the set A.
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(2) Consider the function f(x, y) = ax2 + by2 + 2xy + x + y + 1 in R2, with a, b ∈ R.
(a) Discuss, according to the valores of the parameters a and b, if the function f is strictly concave or

strictly convex in R2.

Solution:
The Hessian matrix of h is

H(h)(x, y, z) =

(
2a 2
2 2b

)
The principal minors are

D1 = 2a

D2 = 4ab− 4 = 4(ab− 1)

• If a > 0 and b > 1/a, then the function f is strictly convex, since D1 > 0, D2 > 0.
• If a < 0 and b < 1/a, then the function f is concave, since D1 < 0, D2 > 0.

(b) Using the above results, determine if the set A = {(x, y) ∈ R2 : −x2 − 4y2 + 2xy + x + y ≥ 6} is
convex.

Solution: Consider the function g(x, y) = −x2 − 4y2 + 2xy + x+ y + 1. This function is obtained
from the function f(x, y) = ax2 + by2 + 2xy +x+ y + 1 by taking a = −1, b = −4. By the previous
part, the function g is strictly concave. Since, A = {(x, y, z) ∈ R3 : g(x, y) ≥ 7}, the set A is convex.
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(3) Consider the equation

x2 + y2 + z2 + xy + 2z = 1

(a) Using the implicit function theorem prove that the above equation defines a function z = h(x, y)
near the point x = 0, y = −1, z = 0.

Solution: Consider the function f(x, y, z) = x2 + y2 + z2 + xy + 2. We see that f(0,−1, 0) = 1.
Furthermore,

∂f

∂z
(0,−1, 0) = (2z + 2)|x=0,y=−1,z=0 = 2 6= 0

By the implicit function theorem, the equation f(x, y, z) = 1 defines a function z = h(x, y) near
the point (0,−1).

(b) Compute

∂z

∂x
(0,−1),

∂z

∂y
(0,−1),

∂2z

∂x∂y
(0,−1).

Solution: Differentiating implicitly the equation f(x, y, z) = 1 we have

0 =
∂f

∂x
= 2x + 2z

∂z

∂x
+ y + 2

∂z

∂x

0 =
∂f

∂y
= 2y + 2z

∂z

∂y
+ x + 2

∂z

∂y

which is valid for (x, y) near the point (0,−1). Substituting x = 0, y = −1, z = 0 we have

0 = −1 + 2
∂z

∂x
(0,−1)

0 = −2 + 2
∂z

∂y
(0,−1)

And we obtain
∂z

∂x
(0,−1) =

1

2

∂z

∂y
(0, 1) = 1

Differentiating, again, the equation

2x + 2z
∂z

∂x
+ y + 2

∂z

∂x
= 0

with respect to y we get

2
∂z

∂y

∂z

∂x
+ 2z

∂2z

∂x∂y
+ 1 + 2

∂2z

∂x∂y
= 0

Substituting

x = 0, y = −1, z = 0,
∂z

∂x
(0,−1) =

1

2
,
∂z

∂y
(0, 1) = 1

we have

2
1

2
+ 1 + 2

∂2z

∂x∂y
(0,−1) = 0

That is,

∂2z

∂x∂y
(0,−1) = −1

(c) Write the equation of the tangent plane to the graph of the function z = h(x, y), computed in part
(a), at the point q = (0,−1).

Solution: The equation of the tangent plane to the graph of the function z = h(x, y) at the point
q = (0,−1) is

z = h(0,−1) +
∂h

∂x
(0,−1)(x− 0) +

∂h

∂y
(0,−1)(y + 1) = 0 +

1

2
x + y + 1 =

1

2
x + y + 1
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Solution: Differentiating implicitly again the equations

0 =
∂f

∂x
= y2

∂z

∂x
+ yexz

(
x
∂z

∂x
+ z

)
0 =

∂f

∂y
= y2

∂z

∂y
+ xyexz

∂z

∂y
+ 2yz + exz

we have

0 =
∂2f

∂x2
= y

(
exz
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∂x
+ z

)2

+ y
∂2z
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+ exz
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0 =
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= y
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+ xy

∂2z

∂x∂y

)
0 =

∂2f
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+ y

∂2z

∂y∂y

)
+ xexz

(
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Substituting x = 0, y = 1, z = 2, ∂z
∂x (0, 1) = −2, ∂z

∂y (0, 1) = −5 we have

0 =
∂2z

∂x2
(0, 1)

0 =
∂z2

∂x∂y
− 7

0 =
∂2z

∂y2
− 16

that is,
∂2z

∂x2
(0, 1) = 0,

∂z2

∂x∂y
= 7,

∂2z

∂y2
= 16



8

(4) Consider a function f(x, y, z) : R3 → R and three functions x(s, t), y(s, t), z(s, t) : R2 → R. Consider
the composite function h : R2 → R defined by h(s, t) = f (x(s, t), y(s, t), z(s, t)).

(a) State the chain rule for

∂h

∂s
,

∂h

∂t

Solution:

∂h

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
+

∂f

∂z

∂z

∂s

∂h

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂z

∂z

∂t

(b) Use part (a) to compute

∂h

∂s
,

∂h

∂t

for the functions

f(x, y, z) =
1

2

(
ln2(x) + ln2(y) + ln2(z)

)
and

x(s, t) = e(s+t), y(s, t) = e(s−t), z(s, t) = est

Solution: By the chain rule

∂h

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
+

∂f

∂z

∂z

∂s

∂h

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂z

∂z

∂t

(c)

∂f

∂x
=

ln(x)

x

∂f

∂y
=

ln(y)

y

∂f

∂z
=

ln(z)

z

∂x

∂s
= e(s+t) = x

∂x

∂t
= e(s+t) = x

∂y

∂s
= e(s−t) = y

∂y

∂t
= −e(s−t) = −y

∂z

∂s
= test = tz

∂z

∂t
= sest = sz

∂f

∂x

∂x

∂s
=

ln(x)

x
x = ln(es+t) = s + t

∂f

∂y

∂y

∂s
=

ln(y)

y
(y) = ln(es−t) = s− t

∂f

∂z

∂z

∂s
=

ln(z)

z
tz = ln(est)t = st2

∂h

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
+

∂f

∂z

∂z

∂s
= s + t + s− t + st2

∂h

∂s
= 2s + st2
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∂f

∂x

∂x

∂t
=

ln(x)

x
x = ln(es+t) = s + t

∂f

∂y

∂y

∂t
=

ln(y)

y
(−y) = − ln(es−t) = −s + t

∂f

∂z

∂z

∂t
=

ln(z)

z
sz = ln(est)s = s2t

∂h

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
+

∂f

∂z

∂z

∂t
= s + t− s + t + s2t

∂h

∂t
= 2t + s2t
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(5) Let g(x, y) = eax−by, v = (1,−1) ∈ R2.

(a) Compute the gradient of g at the point p = (0, 0). Determine for what values of a, b we have that
Dvg(p) = 0.

Solution: Wr have,

∂g

∂x
(0, 0) =

(
aeax−by

)∣∣
x=0,y=0

= a

∂g

∂y
(0, 0) =

(
−beax−by

)∣∣
x=0,y=0

= −b

Therefore,
Dvf(p) = ∇(p) · v = (a,−b) · (1,−1) = a + b = 0

Hence, Dvf(p) = 0 if and only if a = −b with b ∈ R.

(b) Write the de Taylor polynomial of order 2 of the function f(x, y) = e3x−2y near the point p = (0, 0).

Solution: The gradient f is ∇f(x, y) = (3e3x−2y,−2e3x−2y). Therefore,

∇f(0, 0) = (3,−2)

The Hessian matrix of f is

H(f)(x, y) = e3x−2y
(

9 −6
−6 4

)
en el punto p = (0, 0),

H(f)(0, 0) =

(
9 −6
−6 4

)
Taylor’s polynomial is

P2(x, y) = f(0, 0) +∇f(0, 0) · (x, y) +
1

2
· (x, y) ·Hf(0, 0) ·

(
x
y

)
= 1 + (3,−2) · (x, y) +

1

2
· (x, y) ·

(
9 −6
−6 4

)
·
(

x
y

)
= 1 + 3x− 2y +

9

2
x2 − 6xy + 2y2


