Last Name:	Name:	
ID number:	Degree:	Group:

IMPORTANT

- DURATION OF THE EXAM: 2h
- Calculators are NOT allowed.
- Scrap paper: You may use the last two pages of this exam and the space behind this page.
- Do NOT UNSTAPLE the exam.
- You must show a valid ID to the professor.

Problem	Points
1	
2	
3	
4	
5	
Total	

(1) Consider the set $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 2, x y>0\right\}$.
(a) Draw the set A, its interior and boundary. Justify if the set A is open, closed, bounded, compact or convex.

Solution: The set A, its interior and its boundary are:

Since, the set A does not contain its boundary, it is not closed. And it does not coincide with its interior. Hence, it is not open. Graphically, we see that te set A is bounded, but not convex. The set A is not compact.
(b) State Weierstrass' Theorem. Determine if it is possible to apply Weierstrass' Theorem to the function $f(x, y)=y-x$ defined on A. Draw the level curves of $f(x, y)=y-x$ and the direction of growth of the level curves.

Solution: The function $f(x, y)=x y$ is continuous in \mathbb{R}^{2}. Hence, it is continuous in $A \subset \mathbb{R}^{2}$. However, the set A is not compact. The hypotheses of Weierstrass' theorem do not hold.

The level curves of the function f are given by the equation $y=\frac{C}{x}, \quad C \in \mathbb{R}$. Graphically,

The arrows point in the direction of growth.
(c) Using the level curves of f above, determine if this function attains a maximum and/or a minimum on the set A. If so, compute the points where the extreme values are attained and the maximum and/or minimum values of f on the set A.

Solution: Graphically we see that the maximum value of f is attained at the points where the level curves of the function f are tangent to the boundary of the set A. That is, when the curves

$$
x y=C, \quad x^{2}+y^{2}=2
$$

intersect at a unique point. Substituting $y=\frac{C}{x}$ in the second equation, we obtain

$$
x^{2}+\frac{C^{2}}{x^{2}}=2
$$

that is,

$$
x^{4}-2 x^{2}+C^{2}=0
$$

Making the change $t=x^{2}$, the above equation reduces to

$$
t^{2}-2 t+C^{2}=0
$$

The solutions are

$$
\frac{2 \pm \sqrt{4-4 C^{2}}}{2}
$$

There is a unique solution iff $4-4 C^{2}=0$, that is $C^{2}=1$. We obtain the equation $t^{2}-2 t+1=0$ whose unique solution is $t=1$. Hence, $x^{2}=1$ and from the equation $x^{2}+y^{2}=2$ we see that $y^{2}=1$. Graphically, we see that x and y have the same sign. The solutions are $(1,1)$ and $(-1,-1)$. The maximum value of the function is $f(1,1)=f(-1,-1)=1$. Graphically,

Taking points of the form

$$
x=y=\frac{1}{n}, \quad \text { con } n=1,2, \ldots
$$

we see that

- $\left(\frac{1}{n}, \frac{1}{n}\right) \in A$ for every $n=1,2, \ldots$
- $\lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{1}{n}\right)=\frac{1}{n^{2}}$.

But, there is no point $(x, y) \in A$ such that $f(x y)=x y=0$, because if $(x, y) \in A$ then $x, y \neq 0$. Hence, the function f does not attain a minimum value in the set A.
(2) Consider the function $f(x, y)=a x^{2}+b y^{2}+2 x y+x+y+1$ in \mathbb{R}^{2}, with $a, b \in \mathbb{R}$.
(a) Discuss, according to the valores of the parameters a and b, if the function f is strictly concave or strictly convex in \mathbb{R}^{2}.

Solution:

The Hessian matrix of h is

$$
\mathrm{H}(h)(x, y, z)=\left(\begin{array}{cc}
2 a & 2 \\
2 & 2 b
\end{array}\right)
$$

The principal minors are

$$
\begin{aligned}
& D_{1}=2 a \\
& D_{2}=4 a b-4=4(a b-1)
\end{aligned}
$$

- If $a>0$ and $b>1 / a$, then the function f is strictly convex, since $D_{1}>0, D_{2}>0$.
- If $a<0$ and $b<1 / a$, then the function f is concave, since $D_{1}<0, D_{2}>0$.
(b) Using the above results, determine if the set $A=\left\{(x, y) \in \mathbb{R}^{2}:-x^{2}-4 y^{2}+2 x y+x+y \geq 6\right\}$ is convex.

Solution: Consider the function $g(x, y)=-x^{2}-4 y^{2}+2 x y+x+y+1$. This function is obtained from the function $f(x, y)=a x^{2}+b y^{2}+2 x y+x+y+1$ by taking $a=-1, b=-4$. By the previous part, the function g is strictly concave. Since, $A=\left\{(x, y, z) \in \mathbb{R}^{3}: g(x, y) \geq 7\right\}$, the set A is convex.
(3) Consider the equation

$$
x^{2}+y^{2}+z^{2}+x y+2 z=1
$$

(a) Using the implicit function theorem prove that the above equation defines a function $z=h(x, y)$ near the point $x=0, y=-1, z=0$.

Solution: Consider the function $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y+2$. We see that $f(0,-1,0)=1$. Furthermore,

$$
\frac{\partial f}{\partial z}(0,-1,0)=\left.(2 z+2)\right|_{x=0, y=-1, z=0}=2 \neq 0
$$

By the implicit function theorem, the equation $f(x, y, z)=1$ defines a function $z=h(x, y)$ near the point $(0,-1)$.
(b) Compute

$$
\frac{\partial z}{\partial x}(0,-1), \quad \frac{\partial z}{\partial y}(0,-1), \quad \frac{\partial^{2} z}{\partial x \partial y}(0,-1)
$$

Solution: Differentiating implicitly the equation $f(x, y, z)=1$ we have

$$
\begin{aligned}
& 0=\frac{\partial f}{\partial x}=2 x+2 z \frac{\partial z}{\partial x}+y+2 \frac{\partial z}{\partial x} \\
& 0=\frac{\partial f}{\partial y}=2 y+2 z \frac{\partial z}{\partial y}+x+2 \frac{\partial z}{\partial y}
\end{aligned}
$$

which is valid for (x, y) near the point $(0,-1)$. Substituting $x=0, y=-1, z=0$ we have

$$
\begin{aligned}
& 0=-1+2 \frac{\partial z}{\partial x}(0,-1) \\
& 0=-2+2 \frac{\partial z}{\partial y}(0,-1)
\end{aligned}
$$

And we obtain

$$
\frac{\partial z}{\partial x}(0,-1)=\frac{1}{2} \quad \frac{\partial z}{\partial y}(0,1)=1
$$

Differentiating, again, the equation

$$
2 x+2 z \frac{\partial z}{\partial x}+y+2 \frac{\partial z}{\partial x}=0
$$

with respect to y we get

$$
2 \frac{\partial z}{\partial y} \frac{\partial z}{\partial x}+2 z \frac{\partial^{2} z}{\partial x \partial y}+1+2 \frac{\partial^{2} z}{\partial x \partial y}=0
$$

Substituting

$$
x=0, y=-1, z=0, \frac{\partial z}{\partial x}(0,-1)=\frac{1}{2}, \frac{\partial z}{\partial y}(0,1)=1
$$

we have

$$
2 \frac{1}{2}+1+2 \frac{\partial^{2} z}{\partial x \partial y}(0,-1)=0
$$

That is,

$$
\frac{\partial^{2} z}{\partial x \partial y}(0,-1)=-1
$$

(c) Write the equation of the tangent plane to the graph of the function $z=h(x, y)$, computed in part (a), at the point $q=(0,-1)$.

Solution: The equation of the tangent plane to the graph of the function $z=h(x, y)$ at the point $q=(0,-1)$ is
$z=h(0,-1)+\frac{\partial h}{\partial x}(0,-1)(x-0)+\frac{\partial h}{\partial y}(0,-1)(y+1)=0+\frac{1}{2} x+y+1=\frac{1}{2} x+y+1$

Solution: Differentiating implicitly again the equations

$$
\begin{aligned}
0 & =\frac{\partial f}{\partial x}=y^{2} \frac{\partial z}{\partial x}+y e^{x z}\left(x \frac{\partial z}{\partial x}+z\right) \\
0 & =\frac{\partial f}{\partial y}=y^{2} \frac{\partial z}{\partial y}+x y e^{x z} \frac{\partial z}{\partial y}+2 y z+e^{x z}
\end{aligned}
$$

we have
$0=\frac{\partial^{2} f}{\partial x^{2}}=y\left(e^{x z}\left(x \frac{\partial z}{\partial x}+z\right)^{2}+y \frac{\partial^{2} z}{\partial x \partial x}+e^{x z}\left(2 \frac{\partial z}{\partial x}+x \frac{\partial^{2} z}{\partial x \partial x}\right)\right)$
$0=\frac{\partial^{2} f}{\partial x \partial y}=y\left(2 \frac{\partial z}{\partial x}+y \frac{\partial^{2} z}{\partial x \partial y}\right)+e^{x z}\left(y \frac{\partial z}{\partial y}+\left(x y \frac{\partial z}{\partial y}+1\right)\left(x \frac{\partial z}{\partial x}+z\right)+x y \frac{\partial^{2} z}{\partial x \partial y}\right)$
$0=\frac{\partial^{2} f}{\partial y^{2}}=y\left(4 \frac{\partial z}{\partial y}+y \frac{\partial^{2} z}{\partial y \partial y}\right)+x e^{x z}\left(\frac{\partial z}{\partial y}\left(x y \frac{\partial z}{\partial y}+2\right)+y \frac{\partial^{2} z}{\partial y \partial y}\right)+2 z$
Substituting $x=0, y=1, z=2, \frac{\partial z}{\partial x}(0,1)=-2, \frac{\partial z}{\partial y}(0,1)=-5$ we have

$$
\begin{aligned}
0 & =\frac{\partial^{2} z}{\partial x^{2}}(0,1) \\
0 & =\frac{\partial z^{2}}{\partial x \partial y}-7 \\
0 & =\frac{\partial^{2} z}{\partial y^{2}}-16
\end{aligned}
$$

that is,

$$
\frac{\partial^{2} z}{\partial x^{2}}(0,1)=0, \quad \frac{\partial z^{2}}{\partial x \partial y}=7, \quad \frac{\partial^{2} z}{\partial y^{2}}=16
$$

(4) Consider a function $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ and three functions $x(s, t), y(s, t), z(s, t): \mathbb{R}^{2} \rightarrow \mathbb{R}$. Consider the composite function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $h(s, t)=f(x(s, t), y(s, t), z(s, t))$.
(a) State the chain rule for

$$
\frac{\partial h}{\partial s}, \quad \frac{\partial h}{\partial t}
$$

Solution:

$$
\begin{aligned}
\frac{\partial h}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
\frac{\partial h}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
\end{aligned}
$$

(b) Use part (a) to compute

$$
\frac{\partial h}{\partial s}, \quad \frac{\partial h}{\partial t}
$$

for the functions

$$
f(x, y, z)=\frac{1}{2}\left(\ln ^{2}(x)+\ln ^{2}(y)+\ln ^{2}(z)\right)
$$

and

$$
x(s, t)=e^{(s+t)}, y(s, t)=e^{(s-t)}, z(s, t)=e^{s t}
$$

Solution: By the chain rule

$$
\begin{aligned}
& \frac{\partial h}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
& \frac{\partial h}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
\end{aligned}
$$

(c)

$$
\begin{array}{ll}
\frac{\partial f}{\partial x}=\frac{\ln (x)}{x} & \frac{\partial f}{\partial y}=\frac{\ln (y)}{y} \\
\frac{\partial x}{\partial s}=e^{(s+t)}=x & \frac{\partial x}{\partial t}=e^{(s+t)}=x \\
\frac{\partial y}{\partial s}=e^{(s-t)}=y & \frac{\partial y}{\partial t}=-e^{(s-t)}=-y \\
\frac{\partial z}{\partial s}=t e^{s t}=t z & \frac{\partial z}{\partial t}=s e^{s t}=s z \\
\frac{\partial f}{z} & \frac{\partial x}{\partial s}=\frac{\ln (x)}{x} x=\ln \left(e^{s+t}\right)=s+t \\
\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}=\frac{\ln (y)}{y}(y)=\ln \left(e^{s-t}\right)=s-t \\
\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}=\frac{\ln (z)}{z} t z=\ln \left(e^{s t}\right) t=s t^{2} \\
\frac{\partial h}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}=s+t+s-t+s t^{2} \\
\frac{\partial h}{\partial s}=2 s+s t^{2} \\
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial x} \frac{\partial x}{\partial t}=\frac{\ln (x)}{x} x=\ln \left(e^{s+t}\right)=s+t \\
& \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}=\frac{\ln (y)}{y}(-y)=-\ln \left(e^{s-t}\right)=-s+t \\
& \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}=\frac{\ln (z)}{z} s z=\ln \left(e^{s t}\right) s=s^{2} t \\
& \frac{\partial h}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}=s+t-s+t+s^{2} t \\
& \frac{\partial h}{\partial t}=2 t+s^{2} t
\end{aligned}
$$

(5) Let $g(x, y)=e^{a x-b y}, v=(1,-1) \in \mathbb{R}^{2}$.
(a) Compute the gradient of g at the point $p=(0,0)$. Determine for what values of a, b we have that $D_{v} g(p)=0$.

Solution: Wr have,

$$
\begin{aligned}
& \frac{\partial g}{\partial x}(0,0)=\left.\left(a e^{a x-b y}\right)\right|_{x=0, y=0}=a \\
& \frac{\partial g}{\partial y}(0,0)=\left.\left(-b e^{a x-b y}\right)\right|_{x=0, y=0}=-b
\end{aligned}
$$

Therefore,

$$
D_{v} f(p)=\nabla(p) \cdot v=(a,-b) \cdot(1,-1)=a+b=0
$$

Hence, $D_{v} f(p)=0$ if and only if $a=-b$ with $b \in \mathbb{R}$.
(b) Write the de Taylor polynomial of order 2 of the function $f(x, y)=e^{3 x-2 y}$ near the point $p=(0,0)$.

Solution: The gradient f is $\nabla f(x, y)=\left(3 e^{3 x-2 y},-2 e^{3 x-2 y}\right)$. Therefore,

$$
\nabla f(0,0)=(3,-2)
$$

The Hessian matrix of f is

$$
\mathrm{H}(f)(x, y)=e^{3 x-2 y}\left(\begin{array}{rr}
9 & -6 \\
-6 & 4
\end{array}\right)
$$

en el punto $p=(0,0)$,

$$
\mathrm{H}(f)(0,0)=\left(\begin{array}{rr}
9 & -6 \\
-6 & 4
\end{array}\right)
$$

Taylor's polynomial is

$$
\begin{aligned}
P_{2}(x, y) & =f(0,0)+\nabla f(0,0) \cdot(x, y)+\frac{1}{2} \cdot(x, y) \cdot H f(0,0) \cdot\binom{x}{y} \\
& =1+(3,-2) \cdot(x, y)+\frac{1}{2} \cdot(x, y) \cdot\left(\begin{array}{rr}
9 & -6 \\
-6 & 4
\end{array}\right) \cdot\binom{x}{y} \\
& =1+3 x-2 y+\frac{9}{2} x^{2}-6 x y+2 y^{2}
\end{aligned}
$$

