El examen consta de tres partes: la primera es una prueba objetiva sobre la teoría, de 15 ítems, que trata de averiguar el grado en que los alumnos comprenden y saben interpretar los contenidos de la asignatura; la segunda parte, conforme a la Guía de Estudio, es una prueba objetiva sobre la parte práctica, que consiste en el enunciado de un problema y 10 ítems sobre el mismo (del 16 al 25). La tercera parte, voluntaria, consiste en el desarrollo, en una cara de folio, de uno de los dos temas que se le ofrecen. Sólo será valorada en el caso de que el alumno haya superado, al menos con un 6, la parte objetiva en su conjunto. Podrá aumentar hasta en un punto la calificación.

Si encuentra algún ítem confuso o en el que crea preciso justificar su respuesta, entregue una hoja adjunta identificando el ítem y sus comentarios. Si lo desea, puede entregar también una hoja con los planteamientos de los cálculos que sean precisos.

Los errores penalizan: cada dos errores (E) en los ítems de la prueba objetiva se resta una respuesta correcta (A), según la fórmula $X = A - (E/2)$.

PRIMERA PARTE

TEORÍA

1. En una investigación cuantitativa, el muestreo aleatorio pretende:
 a. Eliminar el efecto de la variable dependiente
 b. Eliminar el efecto de la variable independiente
 c. Eliminar el efecto de las variables extrañas

2. Nos dicen que en una variable nominal dicotómica codificada como 0/1, el 60% de los sujetos contestaron a la categoría 1:
 a. Es incorrecto decir algo así
 b. La media aritmética es 0,6
 c. 60 sujetos acertaron el ítem.

3. La región de rechazo de la hipótesis nula la definimos a partir de:
 a. La probabilidad que tenemos de acertar por efecto del azar
 b. La probabilidad de error que estamos dispuestos a cometer al rechazar H_0
 c. Los valores del estadístico de contraste que sean menor o igual que alfa.

4. Un sujeto que se encuentra en el percentil 55, supera al 55% de sujetos del grupo de referencia:
 a. Siempre
 b. Sólo en la distribución normal
 c. Sólo en las distribuciones simétricas.

5. Tenemos un sujeto con una puntuación tipificada $S = 1$ (según la fórmula $S = 2z + 5$). Su puntuación directa:
 a. Está una desviación típica por encima de la media del grupo.
 b. Está dos desviaciones típicas por debajo de la media del grupo.
 c. Está una desviación típica por debajo de la media del grupo.
6. Una correlación de Pearson de 1.19 indica:
 a. Una correlación muy elevada
 b. Una correlación baja
 c. Es un valor incorrecto

7. El gráfico que nos muestra los cuartiles de una variable es:
 a. El ciólograma
 b. El gráfico de caja y patillas
 c. El gráfico de tallo y hojas

8. La desviación media y el coeficiente de variación son:
 a. Medidas de variabilidad
 b. Medidas de tendencia central
 c. Uno es una medida de tendencia central y el otro de variabilidad

9. El coeficiente de correlación de Spearman es especialmente adecuado para variables con nivel de medida:
 a. nominal
 b. ordinal
 c. intervalo

10. Una prueba con un coeficiente de validez predictiva de 0.86 nos indica:
 a. Que nuestra prueba predice bien las puntuaciones de la prueba utilizada como criterio
 b. Que la prueba es fiable
 c. Que no es un buen instrumento de predicción de las puntuaciones de la prueba utilizada como criterio

11. La curva normal indica...
 a. Que los sujetos se reparten por igual a lo largo del continuo de una variable
 b. Que los sujetos se concentran en la parte central del continuo de una variable
 c. Que los sujetos se concentran en las partes central y superior del continuo de una variable

12. La media y la desviación típica...
 a. Son siempre estadísticos
 b. Son siempre parámetros
 c. Pueden ser estadísticos o parámetros, depende de la procedencia de los datos

13. En un contraste estadístico de medias entre dos grupos, rechazamos la hipótesis nula cuando...
 a. No se encuentran diferencias estadísticamente significativas entre las medias de los grupos
 b. Si se encuentran diferencias estadísticamente significativas entre las medias de los grupos
 c. La hipótesis nula no es la hipótesis que se somete a contraste estadístico

14. En un contraste estadístico de medias entre dos grupos, aceptar la hipótesis nula significa...
 a. Que la probabilidad de que la diferencia de medias sea igual a cero en la población de referencia es muy pequeña, al menos tan pequeña como \(\alpha \)
 b. Que la hipótesis del investigador era correcta
 c. Que la probabilidad de que la diferencia de medias sea igual a cero en la población de referencia es grande, al menos mayor que \(\alpha \)
15. Hemos aceptado la hipótesis nula en un contraste de medias de dos grupos y hemos obtenido un tamaño del efecto de 1.2. ¿Qué pudo pasar?:
 a. Algo se hizo mal, no se puede dar esta situación.
 b. Es muy posible que la muestra fuera pequeña, sería prudente replicarlo en una muestra mayor para confirmar la significatividad y el tamaño del efecto.
 c. Es una situación común: hay diferencias estadísticamente significativas entre las medias y el tamaño del efecto es elevado.

SEGUNDA PARTE

PRÁCTICA

Un técnico en educación ha aplicado a un grupo de 10 sujetos una prueba estandarizada de rendimiento lector para conocer su nivel de lectura. Antes de seleccionar esta prueba comercial, como buenos profesionales revisamos la ficha técnica de la prueba. En la ficha técnica se dan los siguientes datos: La prueba se baremó tras la aplicación a una muestra representativa de la población formada por 1.600 sujetos. Dicha muestra tiene una distribución normal. La media de dicha muestra es de 80,5 y la desviación típica de 8,6.

NOTA: para responder, marque el resultado que más se apropíe a su solución.

16. ¿Cuál es el nivel de medida de la variable rendimiento lector?:
 a. nominal
 b. Intervalo
 c. Razón

17. Según lo indicado en el enunciado, ¿cuál es la variable independiente?:
 a. Grupo
 b. Rendimiento lector
 c. No hay

18. Según lo indicado en el enunciado, el investigador se enfrenta a:
 a. Un problema de estadística descriptiva
 b. Un problema de estadística inferencial
 c. Un problema de validación de instrumentos de medida

19. ¿Cuántos sujetos obtuvieron una puntuación entre 60 y 90?:
 a. 1.369
 b. 203
 c. 231
20. ¿Cuál es la probabilidad de obtener una puntuación superior a 100?
 a. 0.99
 b. 0.05
 c. 0.01

21. ¿En qué percentil se encuentra un sujeto que se aleja dos desviaciones típicas por debajo de la media del grupo?:
 a. 2
 b. 98
 c. 0.02

22. ¿Cuál es el penta correspondiente a un sujeto que obtuvo una puntuación directa de 70? Recuerde que cada penta contiene una puntuación típica y que el penta central va desde $Z=-0.50$ a $Z=+0.50$.
 a. 3
 b. 2
 c. 1

Ahora tenga en cuenta que la media del grupo de 10 sujetos al que hemos aplicado la prueba fue de 76 y la desviación típica inescgada 5,5.

23. Para un sujeto que obtuvo una puntuación directa de 70 en la muestra de 10 sujetos, ¿coincide exactamente su puntuación típica con la puntuación típica normalizada?
 a. Siempre coinciden
 b. Sí
 c. No

24. Tomando la media de la prueba original como la media de la población y calculando el intervalo de confianza con un nivel de confianza del 95%, ¿puede decirse que las diferencias entre la media de la población y la media de la muestra es igual a cero?
 a. Sí, porque el valor del parámetro cae dentro del intervalo de confianza
 b. No, porque el valor del parámetro cae fuera del intervalo de confianza
 c. No, porque el valor del parámetro cae dentro del intervalo de confianza

25. En consecuencia con lo respondido en la pregunta 25:
 a. Nuestra muestra puede considerarse una muestra representativa de la población
 b. La diferencia entre la media de nuestra muestra y la media poblacional puede considerarse aleatoria
 c. Nuestra muestra debe considerarse que pertenece a otra población con parámetro media inferior.
TERCERA PARTE
PARTE VOLUNTARIA

Los alumnos que aspiren a una mejor calificación, deberán responder en una cara de un folio como máximo a una de las siguientes dos grandes cuestiones:

a. Error muestral, error típico y tamaño muestral: relaciones entre conceptos.

b. Percentiles y puntuaciones normalizadas: similitudes y diferencias.