1. Calcular el campo eléctrico en el punto P situado en el origen de coordenadas y creado por un sistema de cargas puntuales \(q_1 = 5nC, q_2 = -5nC \) y \(q_3 = -10nC \) situadas en \((3,4,0)\) m, \((-3,4,0)\) m y \((-3,-4,0)\) m, respectivamente.

 a. 1’08 \(\mathbf{ux} \) N/C
 b. 1’08 \(\mathbf{ux} + 2’88 \mathbf{uy} \) N/C
 c. -2’88 \(\mathbf{uy} \) N/C
 d. N.d.a.

2. El potencial eléctrico creado por una corteza esférica de radio \(R \) uniformemente cargada con carga \(Q \) en un punto \(P \) situado a una distancia \(r \) del centro de la esfera tal que \(r < R \) es:

 a. \(KQ/R \)
 b. \(KQ/r \)
 c. 0
 d. N.d.a.

3. Calcular la capacidad equivalente entre los puntos X e Y del circuito de la figura con \(C_2 = 10\mu F \) y \(C_1 = C_3 = C_4 = C_5 = 4\mu F \)

 a. 4\mu F
 b. 18\mu F
 c. 24\mu F
 d. N.d.a.

4. Hallar el trabajo realizado al mover una carga puntuual \(Q = 20\mu C \) desde el origen de coordenadas hasta el punto \((4,0,0)m\) en el campo definido por la expresión \([(x/2)+2y] \mathbf{ux} + 2x \mathbf{uy} \).

 a. 60 \mu J
 b. 80 \mu J
 c. 20 \mu J
 d. N.d.a.

5. Una región contiene una densidad de flujo magnético de \(5.10^4 \) T en la dirección positiva del eje Z y un campo eléctrico de 5 V/m en la dirección positiva del eje Z. Una carga positiva \(Q \) penetra en esa región por el origen de coordenadas con una velocidad inicial de \(2’5.10^5 \mathbf{ux} \) m/s. El movimiento que describe la carga es:

 a. Rectilíneo
 b. Circular
 c. Helicoidal
 d. N.d.a.

6. La espira circular conductora de la figura yace en el plano \(z = 0 \), tiene de radio \(0’1m \) y una resistencia de \(5\Omega \). Si el campo magnético de esa zona es \((0’2.\text{sen} 10^3t \mathbf{uz}) \) T, el módulo de la corriente inducida en la espira es:

 a. \(0’4\pi \cos 10^3t \)
 b. \(0’4\pi \text{sen} 10^3t \)
 c. No se induce corriente
 d. N.d.a.

7. En el circuito de la figura el cual está en estado de régimen permanente, el interruptor se abre en el instante \(t = 0 \). La constante de tiempo de la respuesta transitoria del circuito es:

 a. 80ms
 b. 20ms
 c. 40ms
 d. N.d.a.
8. La zona N de un diodo zener se conecta al terminal positivo de una batería de 10V a través de una resistencia serie de 5000Ω. La zona P del diodo se conecta al terminal negativo de dicha fuente. Sabiendo que este diodo se caracteriza por $V_d=0.7V; \, r_d=1\Omega; \, V_z=5V; \, r_z=10\Omega,$ ¿cuál es la corriente que circula por el diodo?
 a. 9.8mA b. 29.4mA c. 20mA d. N.d.a.

9. Calcular las intensidades en cada rama y la total del circuito de la figura:

 ![Circuito

 a. $i=168$ 0° $i_1=120$ 0° $i_2=24$ -90° $i_3=53.667$ 26.56°
 b. $i=96$ 0° $i_1=120$ 0° $i_2=24$ -90° $i_3=53.667$ 26.56°
 c. $i=168$ 0° $i_1=120$ 0° $i_2=24$ -90° $i_3=24$ 26.56°
 d. N.d.a

10. Dado el transistor de la figura de parámetro $\beta=100$, calcular el valor máximo de la resistencia R_b para garantizar la saturación. Supongamos las tensiones entre colector y emisor y entre base y emisor en saturación igual a cero voltios.

 a. $10^2\Omega$
 b. $10^4\Omega$
 c. $10^5\Omega$
 d. N.d.a.

PROBLEMA 1 (max 3 puntos)

En la figura adjunta se ha representado una puerta lógica. Explicar su funcionamiento, especificando el estado de cada uno de los transistores para cada una de las combinaciones de entrada y de la salida f. ¿A qué puerta lógica representa?

![Puerta lógica]